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Preface

This book, together with the preceding Principles of Magnetohydrodynamics (to be
referred to as Volume [1]), describes the two main applications of plasma physics,
laboratory research on thermonuclear fusion energy and plasma-astrophysics of
the solar system, stars, accretion disks, etc., from the single viewpoint of magneto-
hydrodynamics (MHD). This provides effective methods and insights for the inter-
pretation of plasma phenomena on virtually all scales, ranging from the laboratory
to the Universe. The key issue is understanding the complexities of plasma dy-
namics in extended magnetic structures. In Volume [1], the classical MHD model
was developed in great detail without omitting steps in the derivations. This neces-
sitated restriction to ideal dissipationless plasmas, in static equilibrium and with
inhomogeneity in one direction. In the present volume on Advanced Magneto-
hydrodynamics [2], these restrictions are relaxed one by one: introducing stationary
background flows, resistivity and reconnection, two-dimensional toroidal geome-
try, linear and nonlinear computational techniques and transonic flows and shocks.
These topics transform the subject into a vital new area with many applications in
laboratory, space and astrophysical plasmas.

The two volumes now consist of five parts:

I Plasma physics preliminaries (Volume [1], Chapters 1–3),

II Basic magnetohydrodynamics (Volume [1], Chapters 4–11),

III Flow and dissipation (Volume [2], Chapters 12–15),

IV Toroidal plasmas (Volume [2], Chapters 16–18),

V Nonlinear dynamics (Volume [2], Chapters 19–21).

Inevitably, with the chosen distinction of topics for Volume [1] (mostly ideal linear
phenomena described by self-adjoint linear operators) and topics for Volume [2]
(mostly non-ideal, toroidal and nonlinear phenomena), the difference between “ba-
sic” and “advanced” levels of magnetohydrodynamics could not be strictly main-
tained. The logical order required inclusion of some advanced topics in Volume [1],

xiii



xiv Preface

whereas some topics that now appear in Volume [2] (like stationary flows and
toroidal effects) really belong to the “principles” of MHD. Difficult parts or asides
with tedious derivations, that may be skipped on first reading, are again indicated
by a star (�) or put in small print in between triangles (� · · · �).

An overview of the subject matter of the different chapters of the two volumes
may help the reader to find his way.

Contents of Volume [1]:

– Chapter 1 gives an introduction to laboratory fusion and astrophysical plasmas, and
formulates provisional microscopic and macroscopic definitions of the plasma state.

– Chapter 2 discusses the three complementary points of view of single particle motion,
kinetic theory, and fluid description. The corresponding theoretical models provide
the opportunity to introduce some of the basic concepts of plasma physics.

– Chapter 3 gives the “derivation” of the macroscopic equations from the kinetic (Boltz-
mann) equation. Quotation marks because a fully satisfactory derivation can not be
given at present in view of the largely unknown contribution of turbulent transport
processes. The presentation given is meant to provide some idea on the limitations of
the macroscopic view point.

– Chapter 4 defines the MHD model and introduces the concept of scale independence.
The central importance of the conservation laws is discussed at length. Based on this,
the similarities and differences of laboratory and astrophysical plasmas are articulated
in terms of a number of generic boundary value problems.

– Chapter 5 derives the basic MHD waves and describes their properties, with an eye on
their role in spectral analysis and computational MHD. The theory of characteristics
is introduced as a way to describe the propagation of nonlinear disturbances.

– Chapter 6 treats the subject of waves and instabilities from the unifying point of view
of spectral theory. The force operator formulation and the energy principle are exten-
sively discussed. The analogy with quantum mechanics is pointed out and exploited.
The difficult extension to interface systems is treated in detail.

– Chapter 7 applies the spectral analysis developed in Chapter 6 to inhomogeneous plas-
mas in a plane slab. The wave equation for gravito-MHD waves is derived and solved
in various limits. Here, all the intricacies of the subject enter: continuous spectra,
damping of Alfvén waves, local instabilities, etc. The analogy between helioseis-
mology and MHD spectroscopy in tokamaks is shown to hold great promise for the
investigation of plasma dynamics.

– Chapter 8 introduces the enormous variety of magnetic phenomena in astrophysics,
in particular for the solar system (dynamo, solar wind, magnetospheres, etc.), and
provides basic examples of plasma dynamics worked out in later chapters.

– Chapter 9 is the cylindrical counterpart of Chapter 7, with a wave equation describing
the various waves and instabilities. It presents the stability analysis of diffuse cylin-
drical plasmas (classical pinches and present tokamaks) from the spectral perspective.
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– Chapter 10 solves the initial value problem for one-dimensional inhomogeneous MHD
and the associated damping due to the continuous spectrum.

– Chapter 11 discusses resonant absorption and phase mixing in the context of heating
mechanisms of solar and stellar coronae. Sunspot seismology is introduced as another
example of MHD spectroscopy.

Contents of Volume [2]:

– Chapter 12 initiates the most urgent extension of the theory presented in Volume [1]:
waves and instabilities in plasmas with stationary background flows, a theme of com-
mon interest for laboratory fusion and astrophysical plasma research. The old problem
of how to find the complex eigenvalues of stationary plasmas is solved by means of a
new method of constructing solution paths in the complex plane.

– Chapter 13 applies the new theory of Chapter 12 to the two classical topics of shear
flow in plane plasma slabs, including the Kelvin–Helmholtz instability, and to rotation
in cylindrical plasmas, including the magneto-rotational instability.

– Chapter 14 treats the considerable modification of plasma dynamics when resistivity
is introduced in the MHD description, both in the linear domain of spectral theory and
in the nonlinear domain of reconnection.

– Chapter 15 introduces the basic techniques of computational MHD, the discretization
techniques, the methods of time stepping, etc. It thus provides the modern techniques
needed to solve for the dynamics of plasmas in complicated magnetic geometries.

– Chapter 16 presents the classical theory of static equilibrium of toroidal plasmas, a
topic of central interest in fusion research of tokamaks. Both analytical theory and
numerical solutions are presented.

– Chapter 17 concerns the spectral theory of waves and instabilities in toroidal equilib-
ria, again a central topic in tokamak research. Because of this important application,
this part of MHD spectral theory is the most developed one, also with respect to com-
parison with experimental data. This activity is rightly called MHD spectroscopy.

– Chapter 18 introduces the theory of transonic equilibria and spectral theory of those
equilibria, a subject of huge interest, but still in its infancy.

– Chapter 19 presents the counterpart of Chapter 15 by introducing the numerical meth-
ods for nonlinear MHD, in particular for plasmas with large background flows, applied
in the last two chapters.

– Chapter 20 discusses the MHD shock conditions from a new perspective, scale in-
dependence leading to time reversal duality, and it introduces some of the important
areas of application of nonlinear MHD, viz. astrophysical winds and transonic flows.

– Chapter 21 introduces special relativistic MHD, in particular the linear waves and
nonlinear shocks that occur at relativistic speeds. The books ends with applications
to astrophysical phenomena, like relativistic jets, and thus completes the panorama of
the tremendously exciting field of magnetohydrodynamics dominated by flows.
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It is impossible to include all topics that actually belong to the field of advanced
MHD. Fortunately, books or chapters of books exist on most of those topics, like
dynamos (Moffatt [337], Ortolani & Schnack [357], Ferriz-Mas & Núñez [133],
Rüdiger & Hollerbach [397]); chaos (White [483]); stellarators (Freidberg [141]);
spheromaks (Bellan [31]); anomalous transport (Balescu [21], Yoshizawa, Itoh &
Itoh [492]); MHD turbulence (Biskamp [47]).

We wish to acknowledge Guido Huysmans, Jelle Kaastra, Giovanni Lapenta,
Sasha Lifschitz, Zakaria Meliani, Gábor Tóth, Ronald Van der Linden and Henk
van der Vorst for constructive comments on selected chapters, Jan Willem Blokland
for his input on the exercises of various chapters, and Bram Achterberg, Hubert
Baty, Sander Beliën, Nicolas Bessolaz, Tom Bogdan, Fabien Casse, Paul Char-
bonneau, Peter Delmont, Dan D’Ippolito, Jeff Freidberg, Ricardo Galvão, Marcel
Goossens, Giel Halberstadt, Tony Hearn, Bart van der Holst, Hanno Holties, Wolf-
gang Kerner, Rob Kleibergen, Max Kuperus, Keith MacGregor, Daniel Mueller,
Valery Nakariakov, Ronald Nijboer, Eric Priest, Jan Rem, Ilia Roussev, Paulo
Sakanaka and Karel Schrijver for fruitful collaborations and exchange of ideas.
We also thank our copy-editor, Frances Nex, for very careful and efficient editing
of our text.

The first author is particularly indebted to the management of the FOM-Institute
for Plasma Physics “Rijnhuizen”, Aart Kleyn, Niek Lopes Cardozo, Noud Oomens
and Jan Kranenbarg, for having provided optimum conditions to work on this
book. We also wish to thank Simon Capelin of Cambridge University Press for
his support and patience over all those years of preparation of this second volume
(a project agreed to be completed in less than two years after the first one), thus
accepting the universal validity of the circle theorem.

Circle theorem: The actual time to complete a project is precisely π times the best
estimate of the time that one foresees at the beginning of it.
Proof: Standing at the disk of the unknown, the best estimate is based on how long
it takes to reach the other side, the actual time spent involves encircling it so as to
really enclose it from all sides. That path is precisely π times longer; QED.

Finally, a frequently asked question is: “Will there be a third volume?” Yes,
there will be, and you, the serious students of these two volumes who realized that
these are just introductions to an enormous field of largely unexplored territory,
are going to write it. Remember, with plasmas making up 90% of all (so far vis-
ible) matter of the Universe, and plasma physics under-represented in the physics
curriculum of the universities, there is no doubt that there will be completely un-
expected discoveries for you in store. Nature is on your side!
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12

Waves and instabilities of stationary plasmas

12.1 Laboratory and astrophysical plasmas

12.1.1 Grand vision: magnetized plasma on all scales

In Chapter 1 of the preceding Volume [1] we pointed out that, since more than
90% of visible matter in the Universe is plasma, the dynamics of plasmas and the
associated magnetic fields are an important constituent of the description of nature.
In Chapter 4 [1], we then showed that the equations of magnetohydrodynamics
(MHD) are scale-independent: the scales of length, density and magnetic field
strength of a magnetically confined plasma may be divided out. This simple fact
has the amazing consequence that the macroscopic dynamics of plasmas in both
laboratory fusion devices (tokamaks, stellarators, etc.) and astrophysical objects
(stellar coronae, accretion disks, spiral arms of galaxies, etc.) may be described by
the same equations, viz. the equations of MHD. We encountered several examples
of this before, in Volume [1]. In the present Volume [2], we will continue the
investigation of this common field of research by means of the new “wide-angle
MHD telescope”.

Figure 12.1 shows two representative, but very different, examples from science
and technology, viz. the design drawing of the international tokamak experimen-
tal reactor ITER, presently under construction, and an image made by the Hub-
ble Space Telescope of the Pinwheel Galaxy M101. The consequence of scale-
independence is that the most obvious difference of the two configurations, their
length scale indicated next to the figure, is actually irrelevant for the description of
macroscopic plasma dynamics!

� Scale-dependent models To avoid misunderstanding: small-scale kinetic or two-fluid
effects like electron inertia [20], described by the scale-dependent model of Hall-MHD,
can have macroscopic consequences like reconnection and waves (see Section 14.5), which
may even be detectable by spacecrafts flying through the bow shock of the magnetosphere;
see Stasiewicz [418]. Likewise, in the description of hot plasmas in thermonuclear con-
finement experiments, kinetic effects exhibit a bewildering range of dynamical phenomena

3



4 Waves and instabilities of stationary plasmas

on many spatial and temporal scales presenting a challenge to the computational modeling
of these plasmas by different, scale-dependent, fluid closures; see Schnack et al. [403]. �

For our present purpose, the Hubble Space Telescope picture is somewhat mis-
leading since it only shows the stars and dust. Roughly an equal amount of plasma
should be present in the plasma component of galaxies (not counting the plasma
interiors of the stars themselves), and much more mass should be present in the
dark matter component. According to a recent review by Fukugita [150], for the
Universe as a whole the balance is shifted significantly towards plasma: ten times
more mass is present in plasmas than in stars (again, not counting the fact that stars
themselves are mostly plasma). Since we have no clue about the physics of dark
matter, it might be advisable to first investigate the plasma component with all tech-
niques that are presently available. Recalling our critical discussion of the standard
view of nature, which does not articulate the distinction between neutral gas and
plasma, as schematically represented in Figure 1.8 [1], one would expect on the
contrary that the abundance of plasma (≡ abundance of magnetic fields ≡ global
anisotropic dynamics) should play a much more prominent role in the description
of the Universe than it has done up till now.

In fact, there are many signs that astrophysics is beginning to fill in this gap. For
example, when Land and Magueijo [292] established that there is a small but statis-
tically significant anisotropy, with a preferred axis, in the cosmic background radi-
ation as observed with the WMAP satellite, the far-going implications for cosmol-
ogy were immediately realized. A number of researchers, e.g. Hutsemékers [234]
and Longo [316], started to speculate that, amongst other more exotic possibilities,
a large-scale cosmic magnetic field might be involved.

As another example, Kaastra et al. [251], and several other researchers (see the
review by Peterson and Fabian [368]), have recently pointed out that magnetic
fields may play an important role in the dynamics of clusters of galaxies. From
X-ray spectra obtained from the XMM-Newton satellite, they conclude that mag-
netized plasmas in huge magnetic loops, of similar spatial structure to those in
stellar coronae, may be responsible for the temperature decrement observed for
cooling plasma flows in those clusters.

Also, recently, filaments of warm hot intergalactic matter (WHIM) connecting
clusters of galaxies have been detected unequivocally by Werner et al. [478] by
means of X-ray images obtained from the same satellite. This discovery appears
to agree with dark matter simulations that ascribe this “cosmic web” mainly to
dark matter, but it would come as no surprise if the filamentary structure were
associated with a magnetized plasma component as well. The bookkeeping of the
gravitational effects ascribed to dark matter might well change in the direction of a
larger contribution of plasma.

Whatever the final outcome of these debates will be, it is probable that plasma
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Fig. 12.1 Magnetized plasmas in the laboratory and in astrophysics: (a) the international
tokamak experimental reactor ITER; (b) the Pinwheel Galaxy M101 (HST, NASA-ESA).

and, hence, magnetic fields will become much more central for our understanding
of the dynamics of the Universe at large than presently accounted for.
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12.1.2 Differences between laboratory and astrophysical plasmas

Although scale-independence of the MHD equations permits analysis of global
plasma dynamics in laboratory and astrophysical plasmas by the same techniques,
the important differences of the parameters that govern overall force balance should
not be lost sight of. For example, the parameter β ≡ 2μ0p/B

2 is small for tokamak
plasmas and usually large for astrophysical plasmas, so that plasma dynamics in
tokamaks is always dominated by magnetic fields whereas this may not be the case
for astrophysical plasmas.

Roughly speaking, one could distinguish the two kinds of plasma configurations
on the basis of the following global equilibrium characteristics.

(a) Tokamaks are magneto-hydrodynamic plasmas, with a magnetic field that is approxi-
mately a force-free field (FFF),

j×B ≈ 0 (FFF to leading order) (12.1)

= ∇p ∼ β � 1 (important correction) .

Consequently, the equilibrium is nearly exclusively determined by the magnetic field
geometry, but the pressure corrections are essential since they determine the power
output of a future fusion reactor.

(b) Most astrophysical objects are hydro-magnetic plasmas, with sizeable flows, and the
gravitational acceleration is usually not negligible,

ρv · ∇v +∇p+ ρ∇Φ ≈ 0 (Keplerian flow to leading order) (12.2)

= j×B ∼ β−1 � 1 (important correction) .

Consequently, gravity and rotation usually dominate over the magnetic terms, but the
latter may be crucial for the growth or damping of instabilities (as for the Parker in-
stability, discussed below, and the magneto-rotational instability which even operates
when the magnetic field is infinitesimal, see Section 13.4.2).

It is well known that a force-free magnetic field cannot be extended indefinitely,
as follows from the virial theorem (see Shafranov [409], p. 106). Eventually, the
magnetic pressure has to be balanced by something. In tokamaks, equilibrium is
due to balancing of the Lorentz forces on the plasma by mechanical forces on the
induction coils, which have to be firmly fixed to the laboratory by “nuts and bolts”.
(Without those, the configuration would simply fly apart: a magnetic field of 5 T
exerts a pressure of B2/(2μ0) ≈ 107 N m−2 ≈ 100 atm.) The mechanical coun-
terpart for accretion disks or galaxies is balancing of the centrifugal acceleration
by the gravitational pull of the central objects, which may include a black hole.
The implications of this difference for stability are much more wide-ranging than
generally realized, as will be illustrated by contrasting “intuition” developed on
tokamak stability to some major instabilities operating in astrophysical plasmas.



12.1 Laboratory and astrophysical plasmas 7

Interchanges in tokamaks and Parker instability in galaxies

To appreciate the issue, let us pronounce some general features of tokamak stability
theory, based on the results from the quasi-cylindrical approximation presented in
Section 9.4 [1] and anticipating the exact toroidal representation to be developed
in Chapter 17. For the present purpose, the difference between the cylindrical
approximation in terms of r, θ and z and the toroidal representation in terms of
ψ (the poloidal magnetic flux, the “radial” coordinate), ϑ (the poloidal angle) and
ϕ (the toroidal angle) may be ignored. Without exaggeration, it may then be said
that the wide variety of MHD instabilities operating in tokamaks, represented by
normal modes of the form

f(ψ, ϑ, ϕ, t) =
∑
m
f̃m(ψ) ei(mϑ+nϕ−ωt) , (12.3)

is unstable only for (approximately) perpendicular wave vectors,

k0 ⊥ B ⇒ −iB · ∇ ∼ m+ nq ≈ 0 . (12.4)

The reason is the enormous field line bending energy of the Alfvén waves,

WA ≈ 1
2

∫ [
(k0 ·B)2 |n · ξ|2 + · · ·

]
dV 	 0 , (12.5)

so that field line localization (k‖ � k⊥) is necessary to eliminate this term and
to get instability from the different higher order terms due to, e.g. pressure gra-
dients and currents. The Ansatz (12.4) is made in virtually all tokamak stability
calculations, like in the derivation of the Mercier criterion [331] involving inter-
changes on rational magnetic surfaces, of ballooning modes [91] involving local-
ization about rational magnetic field lines, of internal kink modes, of neo-classical
tearing modes, of external kink modes, etc.; see Sections 17.2 and 17.3. All in-
volve localization about rational magnetic surfaces, either inside the plasma or in
an outer vacuum. Hence, it became a kind of “intuition” in tokamak physics to
assume that this is a general truth about plasma instabilities.

In contrast, some major instabilities in astrophysical plasmas turn out to operate
under precisely the opposite conditions:

k0 ‖ B ⇒ −iB · ∇ ∼ m+ nq ≈ 1 . (12.6)

These include the Parker instability operating in spiral arms of galaxies [365] and
the magneto-rotational instability [467, 83, 18] which is held responsible for the
turbulent dissipation in accretion disks about a compact object. Both have their
largest growth rates when the wave vector k0 is about parallel to the magnetic
field, and certainly not perpendicular! (It is most peculiar that this apparent con-
tradiction with stability of laboratory plasmas went unnoticed so far.) How is the
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above argument about the dominance of field line bending energy circumvented
for astrophysical plasmas?

In order to answer that question, let us compare how the two entirely different
pairs of equilibrium conditions (12.1) and (12.2), and the associated pairs of in-
stability conditions (12.4) and (12.6), appear in the analysis of the gravitational
interchange [171]. This instability has played an important role in modeling both
the stability of laboratory plasmas (where gravity is used as just a way to simulate
magnetic field line curvature) and the Parker instability [365] which is concerned
with instability due to genuine gravity in spiral arms of galaxies.

To that end, we recapitulate the major conclusions on the gravitational inter-
change from Sections 7.5.2 and 7.5.3 [1], Eqs. (7.199), (7.206) and (7.212). The
stability criterion for gravitational interchanges of a plane plasma slab reads:

− ρN2
B ≡ ρ′g +

ρ2g2

γp
≤ 1

4B
2ϕ′2 , (12.7)

where NB is the Brunt–Väisäläa frequency and ϕ′ is the magnetic shear. Without
magnetic shear, stability just appears to depend on the square of the Brunt–Väisäläa
frequency: N2

B ≥ 0 , which amounts to the Schwarzschild criterion for convective
stability when expressed in terms of the equilibrium temperature gradient. This
criterion is obtained from the marginal equation of motion (ω2 = 0) in the limit
of small parallel wave number (k‖ → 0). However, when these two limits are
interchanged (k‖ = 0 and ω2 → 0), an entirely different criterion is obtained:

− ρN2
M ≡ ρ′g +

ρ2g2

γp+B2
≤ 0 , (12.8)

where NM is the magnetically modified Brunt–Väisäläa frequency. The apparent
discrepancy between these stability criteria was resolved by Newcomb [348] who
noted that there is a cross-over of two branches of the local dispersion equation
with the solutions

ω2
1 = (k2

0/k
2
eff)N2

M (pure interchanges) , (12.9)

ω2
2 =

N2
B

N2
M

γp

γp+B2

1
ρ

(k0 ·B)2 (quasi-interchanges) , (12.10)

where the last mode is the first to become unstable when the density gradient
is increased. The first expression holds for k‖ = 0, where the factor k2

eff ≡
k2

0 + n2π2/a2 indicates clustering of the modes, ω2
1 → 0, when the vertical mode

number becomes large, n → ∞ (this n should not be confused with the toroidal
mode number n introduced above), and the second expression is only valid for
k‖ � k⊥. Hence, field line bending is small in both cases.

In cylindrical and toroidal plasmas, magnetic field line curvature is unavoidable
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and interchange instabilities then arise when the negative pressure gradient (asso-
ciated with confinement) exceeds the shear of the magnetic field lines, analogous
to the gravitational interchange criterion (12.7). This is expressed by the criteria
of Suydam [427], Eq. (9.118) [1], and Mercier [331], Eq. (17.98). For cylindrical
plasmas without magnetic shear, expressions were derived for the growth rates of
interchanges and quasi-interchanges [474, 160, 177], analogous to Eqs. (12.9) and
(12.10) with the following replacements:

N2
M →

2B2
θ

ρrB2

(
p′ +

γp

γp+B2

2B2
θ

r

)
, N2

B →
2B2

θ

ρrB2
p′ . (12.11)

As illustrated in Figs. 9.15 and 9.11 [1], when p′ becomes negative (violation of the
shearless limit of Suydam’s criterion) first the quasi-interchanges become unstable
and the pure interchanges become unstable when p′ ≤ −γp (γp+B2)−1 (2B2

θ )/r,
in agreement with the expression for the z-pinch derived by Kadomtsev [252].

It would appear that the analogy between plasmas with curved magnetic fields
and gravitational plasmas is perfect: instability only occurs at the interchange value
k‖ = 0 or close to it. However (we now complete the analysis of the gravito-MHD
waves started in Section 7.3.3 [1]), the Parker instability operates under precisely
opposite conditions (k⊥ ≈ 0). For an exponential atmosphere, its growth rate is
given by expanding the expression (7.112) [1]:

ω2 ≈
(
1 +

ρN2
B

k2
effB

2

) γp

γp+B2

1
ρ

(k0B)2 . (12.12)

This looks similar to the expression (12.10) for the quasi-interchanges, which gives
the growth rate at k‖ ≈ 0 for localized modes (n → ∞), but it is actually com-
pletely different since the expression (12.12) for the Parker instability requires
k⊥ ≈ 0 and only yields instability for global modes (n ≈ 1). This is so because
the criterion for the Parker instability, k2

effB
2 + ρN2

B < 0 , cannot be satisfied for
n → ∞, since keff → ∞ then. In other words, it is very well possible to have a
global instability when the field line bending energy (12.5) is not small at all! This
is also the case for the magneto-rotational instability (see Section 13.4.2).

Hence, MHD instabilities occur in astrophysical plasmas under conditions that
do not allow instability in laboratory plasmas. The reason is the stabilizing “back-
bone” of a large toroidal magnetic field in the latter. Estimating orders of magni-
tudes for an equilibrium with inhomogeneity length scale L, the Parker instability
requires

N2
B ∼ −

B2

ρL2
, with β ∼ 1 . (12.13)

(Note that a sizeable magnetic field is required, actually violating the simplified
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order of magnitude estimate β 	 1 of Eq. (12.2)(b).) In contrast, the correspond-
ing term of Eq. (12.11)(b) for curvature–pressure gradient driven interchanges in
quasi-cylindrical/toroidal equilibria requires

2B2
θ

ρrB2
p′ ∼ −ε2β · B

2

ρL2
, with ε ≡ a/R0 � 1 , β ∼ ε2 . (12.14)

In the first case, the driving force of the instability can compete with the field
line bending contributions (12.5). In the latter case, because of the small factor
ε2β ∼ ε4, this is impossible so that pressure-driven interchanges in cylindrical
and toroidal plasmas never occur for k0 ‖ B. Consequently, tokamak “intuition”
focusing on rational magnetic surfaces and field lines as exclusively determining
stability may be misleading for astrophysical plasmas.

The two different view points can be reconciled as follows. Whereas the condi-
tion (12.4) for tokamak instability automatically leads to study of the degeneracy
and couplings of the Alfvén and slow continua close to marginal stability (ω ≈ 0),
an entirely different path to avoid the stabilizing contribution (12.5) of the Alfvén
waves is exploited by the Parker instabilities. These are actually modified slow
magneto-acoustic waves avoiding the coupling to the Alfvén waves by remaining
orthogonal to them: the polarization (expressed by the eigenvector ξ) of the Parker
(slow) modes is parallel to B (flow along the magnetic field is essential), whereas
the polarization of the Alfvén waves is mainly perpendicular to B. This orthogo-
nality is clearly exhibited by Fig. 12.2, which shows the complete low-frequency
part of the spectrum of modes for a gravitating plasma slab with exponential de-
pendence on height of the density, magnetic field and pressure, for different values
of the angle ϑ between the horizontal wave vector k0 and the magnetic field.

The exponentially stratified equilibrium was analyzed in Section 7.3.2 [1], result-
ing in the dispersion equation (7.116) with solutions shown in Fig. 7.10 for fixed
angle ϑ. These solutions are now shown in Fig. 12.2(a) for all directions of k0. At
ϑ = 0 (k0 ‖ B0), the Parker instability has its largest growth rate, whereas around
ϑ = 1

2π (k0 ⊥ B0), the interchanges and quasi-interchanges operate. These two
ranges correspond to two different instability mechanisms: in the k‖ ≈ 0 range,
coupling of local (high n) slow and Alfvén modes causes interchange or quasi-
interchange instability, whereas in the range k⊥ ≈ 0, global (low n) instability
of the slow magneto-sonic branch, viz. the Parker instability, occurs. In the in-
termediate range, there is a smooth transformation from the Parker instability to
interchanges via modes that we have termed quasi-Parker instabilities.

The local interchange and quasi-interchange instabilities are modified substan-
tially by the introduction of magnetic shear,

B = B0e−
1
2
αx [ sin(λx)ey + cos(λx)ez] . (12.15)
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Fig. 12.2 Spectrum of slow (quasi-Parker) instabilities, connecting the Parker instability
to the quasi-interchanges, and Alfvén waves for different angles between k0 and B0 for
exponential atmosphere with (a) uni-directional field (λ̄ = 0), (b) magnetic shear (λ̄ = 0.3)
and genuine continua ω̄2

A and ω̄2
S; ᾱ = 20, β = 0.5, k̄2

0 = 10, q̄ = nπ (n = 1, 2, . . . , 10).

Except for modifying the stability properties, it also leads to the bands of contin-
uous spectra ω2

A and ω2
S separating the Alfvén waves from the gravitational insta-
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bilities, as shown in Fig. 12.2(b), obtained by solving the full implicit eigenvalue
problem (7.91), (7.93) [1] with the “shooting” method. Clearly, the consideration
of magnetic shear is essential for the analysis of local stability criteria, as usual in
tokamak stability studies, but not so important for the Parker instability.

In conclusion, a full spectral analysis of gravitational instabilities exhibits the
existence of a large class of instabilities, called quasi-Parker instabilities, that
smoothly connect the Parker instability (operating at k ‖ B) of astrophysical plas-
mas to the quasi-interchanges and interchanges of laboratory plasmas (operating
at k ⊥ B). Eventually (stretching the imagination now), such full spectral studies
of the gravitational waves in galaxies could lead to MHD spectroscopy of galactic
plasmas, i.e. determination of the internal characteristics of the galactic plasma by
computing and observing the spatial distribution of the modes (since the frequen-
cies themselves are unobservable on a human time scale).

12.1.3 Plasmas with background flow

We have come now to a point in our exposition where we have to face a basic
omission of the theory expounded so far. In Volume [1] on Principles of Magneto-
hydrodynamics, we first presented “Plasma physics preliminaries” in Part I and
then developed “Basic magnetohydrodynamics” on equilibrium, waves and insta-
bilities in Part II mainly from the idealized picture of a plasma at rest in static
equilibrium. This view on plasmas from laboratory fusion research has led to many
fruitful insights, but it fails to account for the dynamics of the vast majority of astro-
physical plasmas where this assumption is simply wrong. Also, in fusion research,
the ultimate goal of an energy producing machine requires the presence of substan-
tial plasma flows caused by the injection of neutral beams to heat the plasma fuel
and by divertors to get rid of the exhaust and impurities. Hence, the study of the
influence of background flows on equilibrium, waves and instabilities has become
an important, and common, research theme for the study of both laboratory and
astrophysical plasmas.

The subject of background plasma flow implies that the hydrodynamics compo-
nent of MHD has to be taken more seriously. Hence, the remainder of this chapter,
which is the first of Part III on “Flow and dissipation”, is devoted to the urgent
modifications of MHD spectral theory by the consequences of equilibrium plasma
flows. This involves accounting for the effects of the Doppler shift on the spectra,
eliminating misconceptions about supposed non-self-adjointness of the operators,
construction of a method to compute eigenvalues in the complex plane, and appli-
cation to plane shear flow and rotation.

In the later chapters of Part III, we will extend the exposition to include dis-
sipation, in particular resistivity, which may be considered as the counterpart of
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viscosity in hydrodynamics (Chapter 14), and to discuss in detail the numerical so-
lution techniques needed for spectral calculations of ideal and dissipative plasmas
(Chapter 15). Only after these basic techniques have been elaborated will the other
urgent extension of Volume [1] be presented, viz. spectral theory of toroidal plas-
mas like tokamaks, in Part IV on “Toroidal plasmas”, since this demands moving
from the solution of ordinary to the solution of partial differential equations. Chap-
ters 16 and 17 are devoted to the description of toroidal equilibrium and stability
for the standard picture of static plasmas, and Chapter 18 again to the substantial
extension for stationary toroidal plasmas. Finally, in Part V on “Nonlinear dy-
namics”, the analysis of moving plasmas will be extended to the nonlinear domain
where separation of equilibrium and stability is no longer feasible. After present-
ing the numerical solution techniques needed to analyze the nonlinear dynamics
(Chapter 19), the subject of moving plasmas is resumed with the analysis of tran-
sonic flow and shocks (Chapter 20), and finally to the extreme speeds of relativistic
plasma flows encountered in the wide variety of explosions occurring in the final
phases of stellar and galactic evolution (Chapter 21).

12.2 Spectral theory of stationary plasmas

12.2.1 Basic equations

To describe the dynamics of plasmas with stationary flow, we start from the set of
nonlinear ideal MHD equations (see Volume [1], Chapter 4) for the density ρ, the
velocity v, the pressure p and the magnetic field B:

∂ρ

∂t
+∇ · (ρv) = 0 , (12.16)

ρ
(∂v
∂t

+ v · ∇v
)

+∇p− j×B− ρg = 0 , j = ∇×B , (12.17)

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 , (12.18)

∂B
∂t
−∇× (v ×B) = 0 , ∇ ·B = 0 . (12.19)

This set is to be complemented with appropriate initial and boundary conditions,
e.g. the BCs for model I (plasma confined inside a rigid wall):

n · v = 0 , n ·B = 0 (at the wall) , (12.20)

as discussed in Section 4.6.1 [1]. The gravitational acceleration g = −∇Φ is con-
sidered to be caused by a fixed external gravitational field Φ. We will consistently
exploit scale independence (see Section 4.1.2 [1]) and drop factors μ0.
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Most of Volume [1] was concerned with static equilibria (v = 0),

∇p = j×B + ρg , j = ∇×B , ∇ ·B = 0 , (12.21)

and perturbations of these equilibria described by the equation of motion with the
force operator F acting on the plasma displacement vector ξ:

F(ξ) = ρ
∂2ξ

∂t2
. (12.22)

The spectral problem for normal mode solutions ξ̂(r) exp (−iωt),

F(ξ̂) = −ρω2ξ̂ , (12.23)

was particularly effective since the linear operator F is self-adjoint, so that the
eigenvalues ω2 are real.

All this changes when stationary equilibria (v �= 0) are considered. In the first
place, none of the MHD equations (12.16)–(12.19) is trivially satisfied now, so that
the description of stationary equilibria requires four differential equations:

∇ · (ρv) = 0 , (12.24)

ρv · ∇v +∇p− j×B− ρg = 0 , j = ∇×B , (12.25)

v · ∇p+ γp∇ · v = 0 , (12.26)

∇× (v ×B) = 0 , ∇ ·B = 0 . (12.27)

Note that the presence of a background flow not only enlarges the set of equilib-
rium solutions with an additional function v(r), but it also enlarges the freedom
of choice for the functions ρ(r), p(r) and B(r). Paradoxically, though more equa-
tions are to be satisfied, more solutions are permitted. To convince yourself of this
basic fact, consider a variant of Fig. 6.1 [1] with two balls on opposite sides of
the top of a hill: not an equilibrium. However, if the two balls are constrained by
a wire connecting them, all of a sudden infinitely many equilibrium positions are
obtained. In other words, constraints produce a more intricate energy landscape.

Before we turn to the implications for the waves and instabilities, let us consider
the effects of flow on the two generic classes of equilibria, of plane plasma slabs
and cylindrical flux tubes, that were studied in Chapters 7 and 9 of Volume [1]. For
the stationary equilibrium of a plane slab with gravity, g = −gex, and the other
inhomogeneities also in the vertical direction, one easily convinces oneself that the
equilibrium equations (12.24), (12.26), (12.27) are trivially satisfied whereas the
momentum equation (12.25) is unchanged with respect to the static case:

(p+ 1
2B

2)′ = −ρg
( ′ ≡ d

dx

)
. (12.28)
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Hence, the functions vy(x) and vz(x) are entirely free, whereas ρ(x), p(x), By(x)
and Bz(x) are constrained by Eq. (12.28). This is nice since we can now study the
effects of plasma flow on the same equilibria as studied for the static case.

For cylindrical equilibria, Eqs. (12.24), (12.26) and (12.27) are also trivially sat-
isfied but the momentum equation has the important additional contribution ρv·∇v
compared to the static case. In the evaluation of this expression for cylindrical coor-
dinates (using Appendix A), one should account for the non-vanishing derivatives
of the unit vectors, ∂er/∂θ = eθ and ∂eθ/∂θ = −er, resulting in the nasty vector
expression (A.50). This yields the centrifugal acceleration

− v · ∇v = (v2
θ/r)er , (12.29)

so that the equilibrium equation becomes

(p+ 1
2B

2)′ = (ρv2
θ −B2

θ )/r − ρΦ′ ( ′ ≡ d

dr

)
. (12.30)

For the present discussion, the gravitational potential is better ignored (cylindrical
gravity fields are not very physical) but it is included here since we will need it later,
in Section 13.4.2, when discussing the cylindrical limit of accretion disks. Hence,
only the translational component vz(x) can be chosen arbitrarily, the remaining
quantities ρ(x), p(x), vθ(x), Bθ(x) and Bz(x) are constrained by the equilibrium
equation (12.30). The presence of the rotational component vθ essentially changes
the cylindrical equilibrium with respect to the static case. Moreover, the computa-
tion of waves and instabilities becomes much more complicated than for the plane
slab: translation and rotation are physically quite different phenomena.

Finally, the Eulerian perturbations ρ1, v1, p1, B1 of stationary equilibria are
described by the following linear differential equations:( ∂

∂t
+ v · ∇

)
ρ1 + ρ1∇ · v +∇ · (ρv1) = 0 , (12.31)( ∂

∂t
+ v · ∇

)
v1 + ρv1 · ∇v + ρ1(v · ∇v +∇Φ)

+∇p1 + B× (∇×B1)− (∇×B)×B1 = 0 , (12.32)( ∂
∂t

+ v · ∇
)
p1 + γp1∇ · v + v1 · ∇p+ γp∇ · v1 = 0 , (12.33)( ∂

∂t
+ v · ∇

)
B1 −B1 · ∇v + B1∇ · v

−B · ∇v1 + B∇ · v1 + v1 · ∇B = 0 , ∇ ·B1 = 0 , (12.34)

where the unsubscripted variables ρ, v, p, B should satisfy the equilibrium condi-
tions (12.24)–(12.27).

As in Volume [1], instead of the above seven primitive variables of the Eulerian
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perturbations, we will exploit a Lagrangian representation in terms of the three
components of a displacement vector ξ. This reduction will be elaborated in the
following subsection. The Lagrangian representation implies a significant simpli-
fication for the analysis of ideal plasmas, but it has three implicit shortcomings:

(a) it cannot be generalized to dissipative plasmas;

(b) it involves second order derivatives instead of first order ones;

(c) it ignores the entropy modes.

Because of the first two items, we will exploit the Eulerian representation in Chap-
ter 14 on resistive plasma dynamics and Chapter 15 on computational linear MHD.
Concerning the third item, recall the discussion of the similar apparent loss of a
degree of freedom for static plasmas in Section 5.1 [1]. This may be elucidated by
the entropy evolution equation, obtained from Eqs. (12.16) and (12.18):

DS
Dt

= 0 ⇒
( ∂
∂t

+ v · ∇
)
S1 + v1 · ∇S = 0 . (12.35)

where D/Dt denotes the Lagrangian time derivative. In the absence of a plasma
displacement ξ, i.e. a velocity perturbation, the Lagrangian representation will au-
tomatically deduce from the first expression that S1L = 0 and, hence, also S1E = 0
(since the two are connected by ξ, see Eq. (12.54) below). On the other hand, from
the second expression, the Eulerian representation will permit S1E �= 0, even in
the absence of a plasma displacement (when v1 = 0 as well). This corresponds
to so-called non-holonomic initial data, i.e. the freedom to choose initial perturba-
tions that do not arise from perturbations satisfying the ideal MHD constraints. In
Section 6.1 [1], we have called this “cheating on the initial data” since it also ap-
plies to the other variables, like the magnetic field (see Fig. 6.5 [1]). In other words:
although, admittedly, the Lagrangian representation misses out on this class of per-
turbations, one should consider this an advantage since those modes are actually
inconsistent with the ideal MHD model. In particular, associated with the possible
vanishing of the operator ∂/∂t + v · ∇ acting on S1 in Eq. (12.35), a continuous
spectrum of non-holonomic Eulerian entropy continuum modes is obtained, that
is rightly ignored in the Lagrangian representation. It is important to distinguish
these rather flimsy modes from the physically significant Lagrangian flow contin-
uum modes of hydrodynamics (introduced by Case [77] in 1960) that are related to
the vanishing of the same operator, but for variables that are expressible in terms
of ξ. We will come back to this in Section 13.1.3.

12.2.2 Frieman–Rotenberg formulation

Recall the discussion of MHD spectral theory in Volume [1], Chapter 6. That
discussion was based on the reduction from a representation of the perturbations
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in terms of the primitive, Eulerian, variables ρ1, v1, p1 and B1 to a representation
in terms of the plasma displacement vector ξ alone. This led to the powerful force
operator formalism, with spectral representations in complete analogy with the
mathematics of quantum mechanics and, hence, the possible transfer of methods
and insights from that part of physics. Can this be generalized for plasmas with
background flow?

(r , t )ξξξξξξξξ 0

stationary flow

perturbed flow

r , t0

r ,t = 00

r

Fig. 12.3 Displacement vector field for plasma with stationary background flow.
(Adapted from Frieman and Rotenberg [147].)

Clearly, the crucial part is to construct a displacement vector ξ that connects
the perturbed flow with the unperturbed flow (Fig. 12.3) and to specify coordi-
nates that exploit the fact that the stationary equilibrium is actually independent of
time. This would not be the case if the perturbed flow were described, in a truly
Lagrangian fashion, by the initial positions r0 of the fluid elements. Instead, a
quasi-Lagrangian representation will be exploited, where the position vector r of
a fluid element of the perturbed flow is connected to the position vector r0 of that
same element on the unperturbed flow:

r = r(r0, t) = r0 + ξ(r0, t) . (12.36)

In the coordinates (r0, t), the equilibrium variables are time-independent,

ρ0 ≡ ρ0(r0) , v0 ≡ v0(r0) , p0 ≡ p0(r0) , B0 ≡ B0(r0) , (12.37)

by definition satisfying the equilibrium equations (12.24)–(12.27), with a super-
script 0 on all variables and ∇ → ∇0 ≡ ∂/∂r0. In the end, we will drop these
superscripts again, but for now we keep them in order to distinguish perturbed and
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unperturbed quantities. It has to be demonstrated that the perturbations are ex-
pressible in terms of ξ(r0, t) alone. Needless to say, ξ is always considered to be
small compared to the length scales of the pertinent magnetic geometry. A non-
linear generalization, without that restriction, was made by Newcomb [349, 350].
Here, we will exploit the linear counterparts of his expressions.

To systematically exploit the coordinates (r0, t), we need to express the gradient
operator at the perturbed position in terms of that at the unperturbed position:

∇ ≡ ∂

∂r
=
∂r0

∂r
· ∂
∂r0
≡ (∇r0) · ∇0 = (∇(r− ξ)) · ∇0 = (I−∇ξ) · ∇0 .

Newcomb’s exact expression for the gradient operator is obtained by iteration,

∇ξ = ∇0ξ − (∇0ξ) · ∇0ξ + (∇0ξ) · (∇0ξ) · ∇0ξ − · · · = (I +∇0ξ)−1 · ∇0ξ

⇒ ∇ = (I +∇0ξ)−1 · ∇0 ≈ ∇0 − (∇0ξ) · ∇0 , (12.38)

where the latter approximation holds for ξ small. The Lagrangian time derivative
is expressed by

D
Dt
≡ ∂

∂t

∣∣∣∣
r0

+ v0 · ∇0 , (12.39)

so that the velocity at the perturbed position becomes

v(r0 + ξ, t) ≡ Dr
Dt

=
Dr0

Dt
+

Dξ

Dt
= v0 + v0 · ∇0ξ +

∂ξ

∂t
, (12.40)

where v0 = v0(r0) is the equilibrium velocity. As compared to the expres-
sion (6.18) [1] for static equilibria, the velocity perturbation now contains the im-
portant additional contribution v0 · ∇0ξ due to the gradient parallel to the velocity
field. This gives rise to a Doppler shift and possibly, depending on the geometry,
curvature contributions.

Similar to the procedure for static equilibria of Section 6.1 [1], we will integrate
the equations (12.16), (12.18) and (12.19) for ρ, p and B to get the exact perturbed
quantities, that we will expand to first order in ξ, and then substitute the result
in Eq. (12.17) for v to get the linearized equation of motion in terms of ξ. This
could be done by direct substitution of the expressions (12.38)–(12.40), but it is
more instructive to exploit the local conservation laws derived in Section 4.3.3 [1],
which were based on the kinematic expressions (4.88)–(4.90) for the time evolution
of the line, surface and volume elements dr, dσ and dτ . Again, we could integrate
those by substitution of the above expressions, but there is no need to do this since
the coordinate transformation (12.36) already contains the answers.

� Kinematic transformation of the line, surface and volume elements dr, dσ and dτ (at
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position r) to dr0, dσ0 and dτ0 (at position r0) just involves the coordinate transforma-
tion (12.36), which gives rise to the transpose RT of the connection matrix R with elements

rij ≡ ∂ri
∂r0j

= δij +
∂ξi
∂r0j

⇒ RT ≡ ∇0r = I +∇0ξ , (12.41)

and the associated Jacobian with Levi-Civita symbols εjmn defined in Appendix A.3,

J ≡ ∂(r1, r2, r3)
∂(r01, r

0
2, r

0
3)
≡ det(rij) = 1

6 εikl εjmnrijrkmrln

≡ det (I +∇0ξ) ≈ 1 +∇0 · ξ . (12.42)

These expressions immediately provide the transformations of line and volume element,
Eqs. (12.45) and (12.47) below. As always, transformation of the surface element dσ
(≡ drα × drβ) is a bit more complicated since it involves the inverse R−1. This requires
evaluation of the matrix C of cofactors cij , defined as the determinants of the minors of R
(obtained by taking out the ith row and jth column) multiplied by (−1)i+j , e.g.,

c23 = −
∣∣∣∣ r11 r12
r31 r32

∣∣∣∣ = −r11 r32 + r12 r31 .

The inverse R−1 is related to the transpose CT through

R−1 = (1/J)CT ⇒ ckirkj = Jδij , (12.43)

whereas the cofactors also have the following properties:

cij = 1
2εikl εjmnrkmrln =

∂J

∂rij
,

∂cij
∂r0j

= 0 . (12.44)

This provides the transformations of line, surface and volume element:

dr = R · dr0 = dr0 · (I +∇0ξ) , (12.45)

dσ = C · dσ0 , (12.46)

dτ = Jdτ0 = det (I +∇0ξ)dτ0 ≈ (1 +∇0 · ξ) dτ0 . (12.47)

as one may check by substitution and use of the properties (12.44). �

Integration of the local mass, entropy and magnetic flux conservation equations,

D
Dt

(dM) ≡ D
Dt

(ρdτ) = 0 (mass) , (12.48)

D
Dt

(S) ≡ D
Dt

(pρ−γ) = 0 (entropy) , (12.49)

D
Dt

(dψ) ≡ D
Dt

(B · dσ) = 0 (magnetic flux) , (12.50)

is now straightforward:

ρdτ = ρ0dτ0 ⇒ ρ =
ρ0

J
≈ ρ0 − ρ0∇0 · ξ , (12.51)
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pρ−γ = p0(ρ0)−γ ⇒ p =
p0

Jγ
≈ p0 − γp0∇0 · ξ , (12.52)

Bidσi = B0
i dσ

0
i ⇒ B =

1
J

R ·B0 ≈ (1−∇0 · ξ)B0 · (I +∇0ξ)

≈ B0 + B0 · ∇0ξ −B0∇0 · ξ . (12.53)

This completes the first half of the program, viz. construction of the Lagrangian
representation of density, pressure and magnetic field perturbations. Since

f1L = f1E + ξ · ∇0f0 , (12.54)

the Lagrangian expressions (12.51)–(12.53) are fully compatible with the earlier
obtained Eulerian counterparts (6.19)–(6.21) [1] for static equilibria,

ρ1E = −∇0 · (ρ0ξ) , (12.55)

π ≡ p1E = − γp0∇0 · ξ − ξ · ∇0p0 , (12.56)

Q ≡ B1E = ∇0 × (ξ ×B0) = B0 · ∇0ξ −B0∇0 · ξ − ξ · ∇0B0 . (12.57)

The abbreviations π and Q will be used in the reductions below.
It remains to substitute the expressions obtained in the equation of motion,

ρ
Dv
Dt

+∇p− (∇×B)×B− ρg = 0 (momentum) . (12.58)

This involves a number of steps that are put in small print below.

� Reduction of the equation of motion involves the following contributions, with the
full perturbed expressions on the LHS, while in the first order expansions on the RHS the
superscripts 0 on the unperturbed quantities are consistently dropped:

ρ
Dv
Dt
≈ (ρ− ρ∇ · ξ)

( ∂
∂t

+ v · ∇
)(

v + v · ∇ξ +
∂ξ

∂t

)
≈ ρv · ∇v − (∇ · ξ)ρv · ∇v + ρ(v · ∇)2ξ + 2ρv · ∇ ∂ξ

∂t
+ ρ

∂2ξ

∂t2

= ρv · ∇v + ξ · ∇(ρv · ∇v)

−∇ · (ξρv · ∇v − ρvv · ∇ξ) + 2ρv · ∇ ∂ξ

∂t
+ ρ

∂2ξ

∂t2
, (12.59)

∇p ≈ [∇− (∇ξ) · ∇] (p+ π + ξ · ∇p)
≈ ∇p− (∇ξ) · ∇p+∇(ξ · ∇p) +∇π
= ∇p+ ξ · ∇∇p+∇π , (12.60)

− (∇×B)×B ≈ −
{

[∇− (∇ξ) · ∇]× (B + Q + ξ · ∇B)
}
× (B + Q + ξ · ∇B)

≈ − (∇×B)×B− (∇×B)× (ξ · ∇B)− (∇× (ξ · ∇B))×B

+
[
((∇ξ) · ∇)×B

]×B + B× (∇×Q)− (∇×B)×Q
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= − (∇×B)×B− ξ · ∇[ (∇×B)×B
]

+ B× (∇×Q)− (∇×B)×Q , (12.61)

ρ∇Φ ≈ (ρ− ρ∇ · ξ)[∇− (∇ξ) · ∇](Φ + ξ · ∇Φ)

≈ ρ∇Φ− ρ(∇ · ξ)∇Φ− ρ(∇ξ) · ∇Φ + ρ∇(ξ · ∇Φ)

= ρ∇Φ + ξ · ∇(ρ∇Φ)− (∇Φ)∇ · (ρξ) . (12.62)

The derivation of the last line of Eq. (12.59) involves the equilibrium condition (12.24).
Adding the expressions (12.59)–(12.62), the four first terms on the RHSs cancel because
of the equilibrium condition (12.25) and the four second terms cancel as well because
they represent the Lagrangian perturbation ξ · ∇ of the same equilibrium condition. The
remaining terms constitute the desired perturbation of the equation of motion. �

This finally yields the linearized equation of motion for perturbations of station-
ary equilibria that was first derived by Frieman and Rotenberg [147]:

G(ξ)− 2ρv · ∇ ∂ξ

∂t
− ρ ∂

2ξ

∂t2
= 0 , (12.63)

where G is the generalized force operator,

G(ξ) ≡ F(ξ) +∇ · (ξρv · ∇v − ρvv · ∇ξ) , (12.64)

involving the standard force operator expression (6.23) [1] of static equilibria,

F(ξ) ≡ ∇(γp∇ · ξ)−B× (∇×Q)

+∇(ξ · ∇p) + j×Q + (∇Φ)∇ · (ρξ) . (12.65)
We here introduce the new notation G for the generalized force operator (Frieman
and Rotenberg indicate that quantity also by F), so that we can use the operator F
as a convenient abbreviation for the RHS terms of Eq. (12.65).

Because of the equilibrium, the last term of G may be transformed to

−∇ · (ρvv · ∇ξ) (12.24)= −ρ(v · ∇)2ξ , (12.66)

which yields an equivalent representation for the linearized equation of motion:

F(ξ) +∇ · (ξρv · ∇v)− ρ
( ∂
∂t

+ v · ∇
)2

ξ = 0 . (12.67)

For plane shear flow, where v · ∇v = 0, the only change with respect to the static
problem is the appearance of the Doppler shift operator v · ∇. However, since this
term varies from place to place, the relationship between the waves and instabilities
of plane static and those of plane stationary plasmas is not as straightforward as it
might appear (see Section 13.1). For more general flow fields, like rotations in
a cylinder, the equation of motion becomes much more involved since v · ∇v
yields the centrifugal acceleration (12.29) and the operator v · ∇ gives Coriolis
contributions to the frequency in addition to the Doppler shift (see Section 13.4).
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� Alternative definition Some authors [350, 199] exploit an alternative definition of the
generalized force operator, extracting the term (12.66). This yields the following more
compact form for the equation of motion:

G̃(ξ) ≡ G(ξ) + ρ(v · ∇)2ξ ≡ F(ξ) +∇ · (ξρv · ∇v
)

= ρ
D2ξ

D t2
. (12.68)

We will stick to the original definition of Frieman and Rotenberg [147], though, because it
gives the more expedient expression of the spectral equation below. �

For normal modes ξ̂(r) exp(−iωt), the associated spectral equation reads:

G(ξ̂) + 2iρωv · ∇ξ̂ + ρω2ξ̂ = 0 , (12.69)

or, equivalently, from Eq. (12.67),

F(ξ̂) +∇ · (ξ̂ρv · ∇v) + ρ(ω + iv · ∇)2 ξ̂ = 0 . (12.70)

This becomes an eigenvalue problem by supplementing appropriate BCs, e.g.

n · ξ̂ = 0 (at the wall) (12.71)

for model I (plasma confined inside a rigid wall). This eigenvalue problem is now a
quadratic one (involving both ω and ω2), in contrast to the static spectral problem
(12.23) which is linear in the eigenvalue ω2. This implies that the eigenvalues ω are
no longer restricted to the real and imaginary axes but may be genuinely complex,
so that overstable modes occur. This represents a major complication in the theory
of waves and instabilities of plasmas with background flow, as will be extensively
illustrated in the following sections. From now on, we will drop the hat on ξ̂ (we
need it for a different purpose in the following section) leaving it understood that
this time-independent part of ξ is meant if normal modes are being considered.

12.2.3 Self-adjointness of the generalized force operator�

In order to put the spectral theory of stationary plasmas on a firm mathematical
basis, we need to study the adjointness properties of the basic spectral equation
(12.69). As a first step, we will prove that the generalized force operator G itself
is actually self-adjoint. The proof will be analogous that of self-adjointness of the
operator F for static equilibria of Section 6.2.3 [1], but it cannot be copied blindly
since the static equilibrium relations were used, so that we need to carefully retrace
our steps and instead use the new stationary equilibrium relations (12.24)–(12.27).

� Transformation #1 of the inhomogeneity terms The four terms ∼ ∇p , j ,∇Φ ,v ·∇v
of the generalized force operator G may be transformed as follows:

∇(ξ · ∇p) = (∇p×∇)× ξ + (∇p)∇ · ξ + ξ · ∇∇p
(12.25)= (Bj · ∇ − jB · ∇)× ξ − ρ(∇Φ×∇)× ξ
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− [ρ(v · ∇v)×∇]× ξ + (∇p)∇ · ξ + ξ · ∇∇p
= B× (j · ∇ξ)− j× (B · ∇ξ)− ρ(∇ξ) · ∇Φ + ρ(∇Φ)∇ · ξ
− ρ(∇ξ) · (v · ∇v) + ρ(v · ∇v)∇ · ξ + (∇p)∇ · ξ + ξ · ∇∇p ,

j×Q = j× (B · ∇ξ)− j×B∇ · ξ − ξ · ∇(j×B)−B× (ξ · ∇j) ,

(∇Φ)∇ · (ρξ) = ρ(∇Φ)∇ · ξ + (∇Φ) (∇ρ) · ξ ,
∇ · (ρξv · ∇v) = ξ · ∇ (ρv · ∇v) + ρ(v · ∇v)∇ · ξ .

Hence, the sum of the four inhomogeneity terms becomes

∇(ξ · ∇p) + j×Q + (∇Φ)∇ · (ρξ) +∇ · (ρξv · ∇v)

= −B× (∇× (j× ξ)) + (∇p− 2j×B + 2ρ∇Φ + 2ρv · ∇v)∇ · ξ
+ ξ · ∇ (∇p− j×B + ρv · ∇v)− ρ(∇ξ) · ∇Φ + (∇Φ)(∇ρ) · ξ
− ρ(∇ξ) · (v · ∇v)

(12.25)= −B× (∇× (j× ξ))− (∇p)∇ · ξ − ρ∇(ξ · ∇Φ)− ρ(∇ξ) · (v · ∇v), (12.72)

which provides the revised expression of G exploited below. �

This transformation yields an equivalent form of the generalized force operator:

G(ξ) = ∇(γp∇ · ξ)−B× [∇×Q +∇× (j× ξ) ]− (∇p)∇ · ξ
− ρ∇(ξ · ∇Φ)− ρ(∇ξ) · (v · ∇v)−∇ · (ρvv · ∇ξ) , (12.73)

where the first two terms correspond to the compressional and magnetic wave con-
tributions of homogeneous plasmas (Alfvén and magneto-sonic waves), the next
four terms correspond to the wide variety of current, pressure gradient, gravitation
and velocity gradient driven instabilities of inhomogeneous plasmas (interchanges,
kinks, gravitational and rotational instabilities, and all their combinations), whereas
the last term gives the contribution (12.66) discussed above.

As in Volume [1], we exploit an inner product with real vectors ξ and η, satisfy-
ing the BCs n·ξ = 0 and n·η = 0, and associated Eulerian magnetic perturbations
Q and R. This inner product is split into a simple part involving the homogeneity
terms G1 and a complicated part with the inhomogeneity terms G2,

η ·G = η ·G1 + η ·G2 . (12.74)

The required transformation to a symmetric expression plus a divergence is
straightforward for the first part:

η ·G1 ≡ η · [∇(γp∇ · ξ)−B× (∇×Q) ]

= − γp(∇ · ξ)(∇ · η)−Q ·R +∇ · [ η γp∇ · ξ + (Bη − η B) ·Q ] .
(12.75)
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The transformation of the second part starts from the original definition (12.64) of
the operator G and then proceeds by inserting the transformed form (12.73) of G:

η ·G2 ≡ η · [∇(ξ · ∇p) + j×Q + (∇Φ)∇ · (ρξ)

+∇ · (ξρv · ∇v − ρvv · ∇ξ)] (12.76)

= η · [−B× (∇× (j× ξ))− (∇p)∇ · ξ − ρ∇(ξ · ∇Φ)

− ρ(∇ξ) · (v · ∇v)−∇ · (ρvv · ∇ξ)] . (12.77)

The substantial algebra involved in reworking the expression (12.77) to a mirror
image of the expression (12.76) plus a divergence is put in small print below.

� Transformation #2 of the inhomogeneity terms The first term of Eq. (12.77) is trans-
formed by using the equality

− η ·B× [∇× (j× ξ)] = ξ · j×R +∇ · [ jB · (ξ × η) + ξ η · (j×B)] , (12.78)

derived in the corresponding derivation of Volume [1]. Next, the following steps are taken:

η ·G2 ≡ ξ · j×R +∇ · [ jB · (ξ × η)]− η ·(∇p− j×B)∇ · ξ + ξ ·∇(η · j×B)
− ρη · ∇(ξ · ∇Φ)− ρ(η · ∇ξ) · (v · ∇v)− [∇ · (ρvv · ∇ξ)

] · η
= ξ · [∇(η · ∇p) + j×R + (∇Φ)∇ · (ρη)

]
− ρ(η · ∇ξ) · (v · ∇v)− [∇ · (ρvv · ∇ξ)

] · η
+∇ · [ jB · (ξ × η)− (∇p− j×B) · ηξ − ρηξ · ∇Φ ]

(12.25)= ξ · [∇(η · ∇p) + j×R + (∇Φ)∇ · (ρη)
]

− ρ(η · ∇ξ) · (v · ∇v)− [∇ · (ρvv · ∇ξ)
] · η

+∇ · [ jB · (ξ × η) + (∇p− j×B) · (ξη − ηξ) + ρ(v · ∇v) · ξη ]

= ξ · [∇(η · ∇p) + j×R + (∇Φ)∇ · (ρη)

+∇ · (ηρv · ∇v − ρvv · ∇η
)]

+∇ · [ jB · (ξ × η) + (∇p− j×B) · (ξη − ηξ)

− ρv((v · ∇ξ) · η − (v · ∇η) · ξ)] . (12.79)

The latter expression has the required form of a mirror image of Eq. (12.76) plus a diver-
gence. A symmetric expression is obtained by just averaging Eqs. (12.76) and (12.79):

η ·G2 ≡ 1
2η · [∇(ξ · ∇p) + j×Q + (∇Φ)∇ · (ρξ)

+∇ · (ξρv · ∇v − ρvv · ∇ξ
)]

+ 1
2ξ · [∇(η · ∇p) + j×R + (∇Φ)∇ · (ρη)

+∇ · (ηρv · ∇v − ρvv · ∇η
)]

+ 1
2∇ ·
[
jB · (ξ × η) + (∇p− j×B) · (ξη − ηξ)

− ρv((v · ∇ξ) · η − (v · ∇η) · ξ)]
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= − ( 1
2∇p) · (ξ∇ · η + η∇ · ξ)− 1

2 j · (η ×Q + ξ ×R)

+ 1
2 (∇Φ) · [η∇ · (ρξ) + ξ∇ · (ρη) ]

− 1
2ρ(v · ∇v) · (ξ · ∇η + η · ∇ξ) + ρ(v · ∇ξ) · (v · ∇η)

+∇ · [η ξ · ∇p+ 1
2 jB · (ξ × η)− 1

2 (j×B) · (ξη − ηξ)

+ 1
2ρ(v · ∇v) · (ηξ + ξη)− ρv(v · ∇ξ) · η ] . (12.80)

This finally has the requisite form of a symmetric expression plus a divergence. �

Adding Eqs. (12.75) and (12.80) yields the required form for the expression
η ·G. By using Gauss’ theorem, the integral of this expression may be transformed
to the sum of a symmetric volume integral and a surface integral. The latter is
simplified by exploiting the equality

(j×B) · (ξηn − ηξn) = jnB · (ξ × η) ,

and introducing the Eulerian perturbation of the total pressure,

Π ≡ (p+ 1
2B

2)1E ≡ π + B ·Q = −γp∇ · ξ − ξ · ∇p+ B ·Q . (12.81)

This gives the following general expression:∫
η ·G(ξ) dV

= −
∫ [

γp (∇ · ξ)∇ · η + Q ·R + 1
2(∇p) · (ξ∇ · η + η∇ · ξ)

+ 1
2 j · (η ×Q + ξ ×R)− 1

2(∇Φ) · [ η∇ · (ρξ) + ξ∇ · (ρη) ]

+ 1
2ρ(v · ∇v) · (ξ · ∇η + η · ∇ξ)− ρ(v · ∇ξ) · (v · ∇η)

]
dV

−
∫ [

ηnΠ(ξ)− 1
2ρ(v · ∇v) · (ηξn + ξηn)

+ ρvn(v · ∇ξ) · η −Bn η ·Q− jnB · (ξ × η)
]
dS , (12.82)

from which one may construct the quadratic forms for the different model problems
of Section 4.6 [1]. For model I (plasma inside a rigid wall), as well as for models II
and II* (configurations with a plasma–plasma or plasma–vacuum interface), the
last three terms of the surface integral vanish because the equilibrium requires vn =
0,Bn = 0, jn = 0 at a wall (model I), as well as at a stationary interface (models II
and II*). The extra condition vn = 0 (compared to static plasmas) insures that
equilibria have stationary interfaces. It remains to demonstrate symmetry of the
remaining terms of the surface integral for the different models.

First, restricting the discussion to model I, due to the symmetry of the second
volume integral of Eq. (12.82) only a surface integral survives in the pertinent
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difference expression, which gives the important pre-self-adjointness relation∫ [
η ·G(ξ)−ξ·G(η)

]
dV = −

∫ [
ηnΠ(ξ)−ξnΠ(η)

]
dS (no BCs) , (12.83)

that we will frequently exploit. In model I, the latter integral also vanishes because
of the BCs on the normal components of ξ and η at the wall:∫ [

η ·G(ξ)− ξ ·G(η)
]
dV = 0 (BCs satisfied) . (12.84)

This proves that the generalized force operator G is indeed self-adjoint for model I
perturbations, QED.

Next, we extend the discussion to model II*, where two plasmas are separated
by an interface S with a tangential discontinuity. We distinguish the quantities of
the two plasmas by putting a hat on one of them, indicate the discontinuities at the
interface by the notation [[f ]] ≡ f̂ − f , and let the normal n point into the plasma
with the hat. The equilibrium pressure balance BC then reads

[[ p+ 1
2B

2]] = 0 (on S) . (12.85)

The terms of the surface integral of Eq. (12.82) now need to be converted into a
symmetric expression by means of the BCs on the perturbations at the perturbed
position of the interface. Those BCs are the same as given by Eqs. (6.144) and
(6.147) [1] for static plasmas (prove that!),

[[ ξn]] = 0 (on S) , (12.86)

[[ Π + ξnn · ∇(p+ 1
2B

2)]] = 0 (on S) . (12.87)

Recall that the latter BC is obtained by evaluating pressure balance at r0 + ξnn
(rather than at r0 + ξ), since the tangential component of ξ is not continuous in
general (see Fig. 6.18 [1]). This gives the following generalization of Eq. (12.82)
for the integral over the combined volume Vall ≡ V + V̂ of the two plasmas:∫

η ·G(ξ) dVall

= −
∫ [

γp (∇ · ξ)∇ · η + Q ·R + 1
2(∇p) · (ξ∇ · η + η∇ · ξ)

+ 1
2 j · (η ×Q + ξ ×R)− 1

2(∇Φ) · [ η∇ · (ρξ) + ξ∇ · (ρη) ]

+ 1
2ρ(v · ∇v) · (ξ · ∇η + η · ∇ξ)− ρ(v · ∇ξ) · (v · ∇η)

]
dV

−
∫ [

ηn ξn n · [[∇(p+ 1
2B

2)]] + [[12ρ(v · ∇v) · (ξηn + ηξn)]]
]
dS

−
∫ [

γp̂ (∇ · ξ̂)∇ · η̂ + Q̂ · R̂ + 1
2(∇p̂) · (ξ̂∇ · η̂ + η̂∇ · ξ̂)
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+ 1
2 ĵ · (η̂ × Q̂ + ξ̂ × R̂)− 1

2(∇Φ̂) · [ η̂∇ · (ρ̂ξ̂) + ξ̂∇ · (ρ̂η̂) ]

+ 1
2 ρ̂(v̂ · ∇v̂) · (ξ̂ · ∇η̂ + η̂ · ∇ξ̂)− ρ̂(v̂ · ∇ξ̂) · (v̂ · ∇η̂)

]
dV̂ .

(12.88)

Since the surface integral is now symmetric as well, this again leads to the equal-
ity (12.84), with V replaced by Vall. Hence, the generalized force operator G is
self-adjoint for model II* equilibria, QED.

The proof of self-adjointness of the operator G for model II equilibria (plasma–
vacuum configurations) is left as an exercise for the reader. The resulting quadratic
forms are the same as for model II* in the limit ρ̂→ 0 , p̂→ 0 , ĵ→ 0 and v̂→ 0 .
This limit also applies to BC (12.87), but BC (12.86) needs to be replaced by

n · ∇ × (ξ × B̂) = B̂ · ∇ξn − n · (∇B̂) · n ξn = Q̂n (on S) , (12.89)

as shown in Eqs. (6.140) and (6.141) [1].

� Exercise Prove self-adjointness of the operator G for model II equilibria. To that end,
describe the vacuum magnetic field perturbations with the vector potential Â and exploit
the plasma–interface BCs of Section 6.6.1 [1]. If you open up the outer wall, you may also
derive the pre-self-adjointness relation for model III perturbations. �

12.2.4 Energy conservation and stability

Of course, the fact that the operator G is self-adjoint, or symmetric, does not imply
that spectral theory of MHD waves and instabilities for plasmas with background
flow is now at the same level as spectral theory for static plasmas. The important
difference is the appearance of the gradient operator parallel to the velocity, ρv·∇,
in the second term of the equation of motion (12.63). Since

∇ · (ρvξ · η) (12.24)= ρv · ∇(ξ · η) = ρ(v · ∇ξ) · η + ρ(v · ∇η) · ξ ,

that operator is anti-symmetric:∫ [
η · (ρv · ∇ξ) + ξ · (ρv · ∇η)

]
dV =

∫
ρvn ξ · η dS = 0 . (12.90)

Here the surface integral vanishes because vn = 0, both at a wall (model I) and
at stationary interfaces (models II and II*). The energy conservation equation is
obtained from the equation of motion (12.63) by dotting it with −∂ξ/∂t, and inte-
grating over the plasma volume:

−
∫
∂ξ

∂t
·G(ξ) dV + 2

∫
∂ξ

∂t
·
(
ρv · ∇∂ξ

∂t

)
dV +

∫
ρ
∂ξ

∂t
· ∂

2ξ

∂t2
dV = 0 ,
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where the second integral vanishes by virtue of the anti-symmetry (12.90). Also
exploiting the self-adjointness of the operator G then gives

d

dt

[
− 1

2

∫
ξ ·G(ξ) dV + 1

2

∫
ρ
∣∣∣∂ξ

∂t

∣∣∣2 dV ] = 0

⇒ H =
∫
H dV = const , H ≡ 1

2ρ
∣∣∣∂ξ

∂t

∣∣∣2 − 1
2ξ ·G(ξ) , (12.91)

so that the total energy, or Hamiltonian H , of the perturbations is conserved.

� Hamiltonian formulations Some of the most powerful and beautiful parts of physics
are the Lagrangian and Hamiltonian formulations of classical mechanics. In particular, the
formulation of a Lagrangian from which the equations of motion can be derived by means
of Hamilton’s principle is the most concise description of a dynamical system; see the
chapter on Lagrangian and Hamiltonian formulations for continuous systems and fields by
Goldstein [184]. One may consider a branch of physics to have become part of the classical
curriculum if one succeeds in constructing the appropriate Lagrangian. For nonlinear ideal
MHD, this was accomplished by Cotsaftis [95] and Newcomb [349] in 1962.

For linear ideal MHD, Frieman and Rotenberg [147] showed that the equation of mo-
tion (12.63) can be derived from Hamilton’s principle (see Section 6.4.2 [1]), involving the
volume integral of the Lagrangian density L:

δ

∫ t2

t1

[ ∫
L dV

]
dt = 0 , L ≡ 1

2ρ
∣∣∣∂ξ

∂t

∣∣∣2 − ρ(v · ∇∂ξ

∂t

)
· ξ + 1

2ξ ·G(ξ) . (12.92)

By defining the canonical momentum π (not to be confused with the Eulerian pressure
perturbation), one obtains the corresponding Hamiltonian density,

π ≡ ρ
(∂ξ

∂t
+ v · ∇ξ

)
⇒ H =

1
2ρ
(
π − ρv · ∇ξ

)2 − 1
2ξ ·G(ξ) , (12.93)

which yields Hamilton’s equations:

∂ξi
∂t

=
∂H
∂πi

⇒ ∂ξ

∂t
=

1
ρ
(π − ρv · ∇ξ) ,

∂πi
∂t

=
∂

∂rj

( ∂H
∂(∂ξi/∂rj)

)
− ∂H
∂ξi

⇒ ∂π

∂t
= G(ξ)− ρv · ∇(π/ρ− v · ∇ξ

)
.

(12.94)

The first equation just rephrases the definition of the canonical momentum, and the latter
equation reproduces the equation of motion (12.63), QED.

Next, Newcomb [349] integrated the nonlinear MHD equations, and constructed the
associated Lagrangian, by replacing the above quasi-Lagrangian description by a truly La-
grangian description in terms of the displacement vector field ξ with respect to the initial
positions (r0 in Fig. 12.3). Later, this approach was put in the framework of modern
Hamiltonian methods [14] and elaborated by a growing number of authors: Holm, Mars-
den, Ratiu and Weinstein [227], Morrison and Greene [340], Hameiri [211, 212], etc. �

So far, we have exploited real displacement vectors ξ and a real inner product.
For normal modes ξ(r) exp(−iωt), it is evident that we should revert to a complex
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inner product. Therefore, as for static plasmas (see Section 6.2.2 [1]), we now
assume a Hilbert space with an inner product and a finite norm defined by

〈ξ,η〉 ≡ 1
2

∫
ρ ξ∗ · η dV , I[ξ] ≡ ‖ξ‖2 ≡ 〈ξ, ξ〉 <∞ . (12.95)

With this inner product, it is convenient to absorb a factor−i in a revised definition
of the gradient operator parallel to the velocity,

U ≡ −iρv · ∇ , (12.96)

so that the equation of motion (12.63) and the spectral equation (12.69) become

G(ξ)− 2iU
∂ξ

∂t
− ρ ∂

2ξ

∂t2
= 0 ⇒ G(ξ)− 2ω Uξ + ρω2ξ = 0 . (12.97)

Both operators ρ−1G and ρ−1U are then self-adjoint (or Hermitian) in the Hilbert
space defined:

〈η, ρ−1G(ξ)〉 ≡ 1
2

∫
η∗ ·G(ξ) dV = 1

2

∫
ξ ·G(η∗) dV ≡ 〈ρ−1G(η), ξ〉 ,

〈η, ρ−1Uξ〉 ≡ 1
2

∫
η∗ · Uξ dV = 1

2

∫
ξ · (Uη)∗ dV ≡ 〈ρ−1Uη, ξ〉 ,

(12.98)
where the latter equality follows from the anti-symmetry relation (12.90). We con-
clude that the complexity of the spectral problem in plasmas with stationary flow is
not due to non-self-adjointness (as frequently stated in the literature), but to the fact
that the eigenvalue problem is quadratic, with two operators, so that ω is complex
and ξ has six (rather than three) real components.

� Eigenvalue problem in the Hamiltonian formulation As a bonus of the introduction
of the canonical momentum, for normal modes Hamilton’s equations (12.94) become(

ρ−1U −ρ−1G + (ρ−1U)2

1 ρ−1U

)(
iρ−1π

ξ

)
= ω

(
iρ−1π

ξ

)
, (12.99)

where Gξ ≡ G(ξ). In contrast to the original spectral problem (12.97), this is now a
standard linear eigenvalue problem in the six free components of iρ−1π and ξ. �

The Hamiltonian (12.91) is properly represented byH ≡ K+W . This suggests
associating the following expression for the kinetic energy K with the dynamical
variable ξ:

K ≡ 1
2

∫
ρ
∂ξ∗

∂t
· ∂ξ

∂t
dVall , (12.100)

so that the boundedness of I turns out to be related to the physical condition of
finite kinetic energy,

K[ξ] ≡ ‖∂ξ/∂t‖2 = |ω|2I <∞ . (12.101)
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The corresponding expression for the potential energy W may be obtained from
the manifestly symmetric quadratic form (12.88) by substituting η ≡ ξ∗. However,
a more compact expression (without the need for complex conjugate doubling of
some of the terms) is obtained from the sum of Eqs. (12.75) and (12.76) and inte-
gration by parts to eliminate the second derivatives of the equilibrium quantities.
This gives:

W ≡ −1
2

∫
ξ∗ ·G(ξ) dVall = W p[ξ] +W s[ξn] +W p̂[ξ̂] , (12.102)

where

W p ≡ 1
2

∫ [
γp|∇ · ξ|2 + |Q|2

+ (∇p) · ξ∇ · ξ∗ + j · (ξ∗ ×Q)− (∇Φ) · ξ∗∇ · (ρξ)

+ ρ(v · ∇v) · (ξ · ∇ξ∗)− ρ|v · ∇ξ|2
]
dV, (12.103)

W s ≡ 1
2

∫ [
|ξn|2 n ·

[[
∇(p+ 1

2B
2)
]]

+ ξn
[[
ρ(v · ∇v) · ξ∗

]] ]
dS ,

(12.104)

W p̂ ≡

⎧⎪⎪⎨⎪⎪⎩
1
2

∫
|Q̂|2 dV̂

(
≡W v

)
(model II)

1
2

∫ [
γp̂|∇ · ξ̂|2 + ···(as Eq. (12.103))···

]
dV̂ (model II*)

. (12.105)

For model I (plasma–wall) equilibria, W s = 0 because ξn = 0 at the wall, and
the term W p̂ is evidently absent. The energy expressions for model II (plasma–
vacuum) equilibria may be obtained from the ones for model II* (plasma–plasma)
equilibria by taking the limit ρ̂→ 0 , p̂→ 0 , ĵ→ 0 and v̂→ 0 . As noticed at the
end of Section 12.2.3, this also applies to the BC (12.87) on the perturbed pressure,
but the BC (12.86) on ξ̂n needs to be replaced by the condition (12.89) on Q̂n.

Compared to static equilibria, the background velocity v adds two terms to the
volume integrals W p and W p̂, one due to the centrifugal acceleration and an-
other one due to the squared gradient operator parallel to v (last two terms of
Eq. (12.103)). The surface integral W s also has an extra centrifugal contribution
(second term of Eq. (12.104)). For cylindrical plasmas in the absence of gravity,
according to Eqs. (12.29) and (12.30), this term cancels with the rotational contri-
bution so that only the magnetic curvature−B2

θ/r remains. For toroidal equilibria,
the second term of Eq. (12.104) contributes both a normal (perpendicular to the
surface) and a geodesic (inside the surface) curvature of the flow lines (see Sec-
tion 17.1.3 for the similar definitions for magnetic field lines).

The relationship between the quadratic forms and the spectral equation (12.97)
becomes much clearer when the latter is subjected to a similar operation as above
(in the derivation of Eq. (12.91)), dotting it with ξ∗ and integrating over the volume.
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This yields a quadratic equation for the eigenvalues:

Iω2 − 2V ω −W = 0 , (12.106)

where the three coefficients

I ≡ 1
2

∫
ρξ∗ · ξ dV , V ≡ 1

2

∫
ξ∗ · Uξ dV , W ≡ −1

2

∫
ξ∗ ·G(ξ) dV

(12.107)

are real because of the proved self-adjointness of the operators ρ−1U and ρ−1G.
(The meaning of the ambiguous symbol V , for the quadratic form as well as for
the volume, should be clear from the context.) The solutions of the quadratic
equation (12.106),

ω =
V ±√V 2 + IW

I
, (12.108)

are physically significant relationships between the eigenvalues ω and the quadratic
forms I , V and W , but they do not immediately provide a solution of the eigen-
value problem. Recall that, in contrast, for static plasmas (Section 6.4.3 [1]), the
relationship ω2 = W/I could easily be transformed into the Rayleigh–Ritz varia-
tional principle δΛ = 0, where the eigenfunctions ξ yield the stationary values ω2

of the Rayleigh quotient Λ ≡ W [ξ]/I[ξ]. This also provided the connection with
the energy principle W [ξ] > 0 for stability (Section 6.4.4 [1]). We now need to ac-
count for the modifications of this spectral method by the presence of the operator
U , and the associated quadratic form V , for stationary plasmas.

Splitting the eigenvalue parameter into real and imaginary parts, ω = σ + iν,
and also the eigenvalue equation (12.106),

(σ2 − ν2)I − 2σV −W = 0 , ν(σI − V ) = 0 , (12.109)

it is evident that the solutions divide into stable waves (ν = 0) and instabilities
(ν �= 0) with different energy content:⎧⎨⎩ K = σ2I ⇒ H = K +W = 2σ(σI − V ) (ν = 0) ,

K = (σ2 + ν2)I ⇒ H = K +W = 0 (ν �= 0) .
(12.110)

Hence, for stable oscillations a finite amount of energyK+W should be provided,
but for exponentially growing instabilities the increase of kinetic energy that is
accompanied by the decrease of potential energy is compatible with K +W = 0.
As we will see, this does not imply that W [ξ] > 0 is necessary for stability, nor
that W [ξ] < 0 is sufficient for instability.

Normalizing the quadratic forms V and W to correspond, in the terminology of
quantum mechanics, to the expectation values (or averages) of the operators ρ−1U
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and −ρ−1G,

V ≡ V

I
≡ 〈ρ−1U〉 , W ≡ W

I
≡ 〈−ρ−1G〉 , (12.111)

the expressions for the real and imaginary parts of ω following from Eqs. (12.109)
become:⎧⎪⎪⎨⎪⎪⎩

σ = V ±
√
V 2 +W , ν = 0 (stable waves) ,

σ = V , ν = ±
√
−V 2 −W ⇒ |ω|2 = −W (instabilities) .

(12.112)
This shows that the marginal state is no longer at the origin σ = ν = 0 of the
ω-plane (as for static plasmas), but shifted to the point σ = V , ν = 0, where
ω becomes complex for instabilities, whereas stable waves divide into faster and
slower ones there. This point is no longer at a fixed position in the ω-plane, but it
depends on the solution ξ itself. Equation (12.112) implies that unstable modes are
located at a distance |ω| ≡ √σ2 + ν2 =

√
−W to the origin of the ω-plane and

at a horizontal distance σ = V to the imaginary axis (Fig. 12.4). Hence, for every
complex eigenvalue ω, a corresponding eigenvalue ω∗ can be found. Moreover,
since stationary equilibria are invariant under reflection of the background velocity,
i.e. V → −V , the pairs −ω and −ω∗ will also be eigenvalues. (For separable
systems, this involves consideration of wave numbers of opposite sign.)

Fig. 12.4 Unstable modes ω and ω∗ at the intersections of the circle |ω|2 = −W
(with real radius for negative potential energy) and the vertical line σ = V (average
Doppler–Coriolis shift).

The most important (but not the only) physical effect of the operator U behind
these spectral properties is the Doppler shift of eigenfrequencies. For plane waves,
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ξ ∼ exp (ik · r), the relationship is immediate: V ≡ 〈−iv · ∇〉 = 〈k · v〉. How-
ever, for inhomogeneous plasma configurations with curved flow fields (e.g. ro-
tating cylindrical plasmas, see Sections 13.3 and 13.4, the differential operator U
also acts on the unit vectors so that V will contain contributions from the Coriolis
acceleration as well. Hence, we will call V the average Doppler–Coriolis shift.

With respect to stability, the standard criterion W [ξ] > 0 is still sufficient for
the stability of stationary plasmas, but the above expressions provide the following,
much sharper, criteria involving the square of the average Doppler–Coriolis shift.

A necessary and sufficient criterion for stability of stationary plasmas is that

W [ξ] > −V 2[ξ] (12.113)

for all ξ that are bound in norm and satisfy the appropriate boundary conditions.
Vice versa, sufficient for instability is that

W [ξ] < −V 2[ξ] (12.114)

for a particular choice of ξ. The proviso “bound in norm” is crucial here since
it has been shown that stationary rotating plasmas may have unstable continuous
spectra [222, 213, 351, 173]. Hence, these criteria refer to discrete modes only.

The stability criterion (12.113) should not be interpreted to imply that the ef-
fect of the average Doppler–Coriolis shift V is stabilizing. In fact, the opposite is
true since the expression (12.103) for W p contains the negative term −ρ|v · ∇ξ|2.
Splitting this term off, we obtain the following alternative definition W̃ for the po-
tential energy (corresponding to the alternative definition (12.68) for G̃), which is
identical to that of static plasmas if the centrifugal term ∼ ρv · ∇v is neglected (as
appropriate for plane shear flows):

W̃ ≡W + Δ , Δ ≡ 1
2

∫
ρ|v · ∇ξ|2 dV , (12.115)

so that the stability criterion (12.113) becomes

W + V
2 ≡ W̃ + V

2 −Δ > 0 . (12.116)

Through Schwarz’ inequality,[∫
f∗ · g dV

]2 ≤∫ |f |2 dV ∫ |g|2 dV , with f ≡ √ρ ξ , g ≡ −i
√
ρv · ∇ξ ,

⇒ V
2 −Δ ≡ 〈−iv · ∇〉2 − 〈(−iv · ∇)2〉 ≤ 0 , (12.117)

the net result is zero or negative: in general, plane shear flows are destabilizing.
This is the reason that such flows may exhibit the Kelvin–Helmholtz instability
(Section 13.1.2).
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� Modified stability criterion Similar to the σ-stability modification of the energy prin-
ciple for static plasmas by Goedbloed and Sakanaka [183], discussed in Section 6.5.3 [1],
the stability criterion (12.113) for stationary plasmas may also be relaxed as follows (see
Fig. 12.5). A necessary and sufficient criterion for ε-stability of stationary plasmas is that

W
ε
[ξ] ≡W [ξ] + ε2 > −V 2

[ξ] (12.118)

for all ξ that are bound in norm and satisfy the appropriate boundary conditions. (For
obvious reasons, the terminology σ-stability of Volume [1] is changed to ε-stability here.)
This stability criterion considers modes that exponentially grow as exp(εt) stable if ε does
not surpass a certain pre-fixed value. The motivation could be (1) that the ideal MHD model
is not appropriate anyway for very long time scales when dissipation becomes important,
(2) that one is interested only in phenomena observed during a limited time interval of a

Fig. 12.5 Unstable part of the ω-plane (grey) and marginal discrete mode (dot) with
respect to (a) ordinary stability, and (b) ε-stability.

certain experiment or astrophysical observation, (3) that the available numerical program
is not accurate enough to calculate modes that grow too slowly. (Note that, if one demands
an accuracy of ε = 10−6 in the growth rate, one should be able to compute the energy to
an accuracy of ε2 = 10−12!) In practice, all these limitations always occur.

Most importantly, the method of ε-stability avoids the neighborhood of the continua,
which for static plasmas just complicate the analysis of the marginal point ω2 = 0, but now
the analysis of the whole real ω-axis, already for plane shear flow (Section 13.1.3), not even
considering the mentioned complex unstable continua for rotating plasmas. Finally, the
proofs of sufficiency and necessity of the energy principle for static plasmas, due to Laval,
Mercier and Pellat [298], can be adapted to stability of stationary plasmas by appropriate
modification of the energy functional, and to ε-stability by replacing W by W ε. �

Having arrived at this point, it becomes clear that we should leave the esoteric
realm of spectral theory and descend into the low lands of explicit calculations for
specific equilibria in order to really get a grip on the waves and instabilities of
stationary plasmas. This is what we will do in Chapter 13 for plane shear flows
and for rotating cylindrical plasmas. The general solution method is introduced in
the following section.
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12.3 Solution paths in the complex ω plane

12.3.1 Opening up the boundaries

Recall the “simplicity” of spectral theory for static plasmas, which was based on
the fact that the eigenvalue only appears as ω2, so that ω itself is either real (for
stable modes) or imaginary (for instabilities). With flow, because of the Doppler–
Coriolis shift operator U , the eigenvalues are no longer confined to the real and
imaginary axes so that the spectral problem becomes really complex. Do we now
have to search randomly for eigenvalues in the complex plane? Of course not: we
have the powerful expressions (12.112) at our disposal telling us that the eigenval-
ues are, again, to be found in particular locations, viz. on the real ω-axis (for stable
waves) and on a path, or paths, where the real part of the average Doppler–Coriolis
shifted frequency vanishes (for instabilities). Evidently, we have to exploit these
expressions to determine those locations.

We start from the basic spectral equation (12.97), repeated here for convenience,

G(ξ)− 2ω Uξ + ρω2ξ = 0 . (12.119)

In order to solve this equation for a particular configuration, we have to be more
explicit about the actual magnetic geometry of the confined plasma and the associ-
ated BCs. In fact, the formulation (12.71) of the BC on the normal component ξn
of ξ at the wall does not show that, in general, such a “wall” may be multiply con-
nected (like for the toroidal geometries considered in controlled fusion research)
or, rather, consist of two walls (like the plane plasma slab considered in the fol-
lowing chapter). Moreover, for cylindrical and toroidal geometries, instead of an
inner wall the magnetic axis will provide a limiting BC by demanding regularity
of the solution there. The essential aspects of these conditions are well represented
by considering the model I BCs for plasma confined between two “walls”, one at
x = x1 (which may be the magnetic axis) and another one at x = x2:⎧⎨⎩ ξ(x1) = 0 , or regular at the magnetic axis (left BC)

ξ(x2) = 0 (right BC)
. (12.120)

Here and in the following, we drop the subscript on ξn and simply write ξ ≡
ξ · n. The coordinate x may represent the vertical coordinate of a plane gravitat-
ing plasma slab (Section 13.1), or the radial coordinate r of a cylindrical plasma
(Section 13.3), or the poloidal magnetic flux ψ of a toroidal plasma (Chapters 16–
18). The associated differences in the metric coefficients, which are important for
explicit calculations, are considered in detail at the places cited.

Next, notice that the spectral differential equation (12.119) can be solved, in
principle, for any complex value ω = σ+ iν if one of the BCs (12.120) is ignored.
Thus, the basic first step in many numerical computations of MHD spectra is to
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turn the eigenvalue problem (EVP) of Eqs. (12.119) and (12.120) into a one-sided
boundary value problem (BVP) by integrating Eq. (12.119) starting from the left
and dropping the right BC (12.120)(b), or starting from the right and dropping the
left BC (12.120)(a). (This one-sided BVP is usually indicated as an initial value
problem (IVP), but we will avoid that terminology to avoid confusion with the
temporal IVP associated with the spectrum, as expanded in Chapter 10 [1].) The
corresponding solutions will be called ξ	 and ξr. Taking the integration of the
(partial) differential equation for granted (the necessary numerical techniques are
detailed in Chapter 15), the problem of this section can be summarized as follows.
How do we construct a path, or paths, in the complex ω-plane from the solutions
ξ	, or ξr, such that the eigenvalues are encountered with 100% certainty?

Let us reconsider the derivation of the quadratic equation (12.106), from which
the central properties (12.112) for the eigenvalues were obtained. Again dotting
Eq. (12.119) with ξ∗ and integrating over volume, but this time not assuming that
both BCs (12.120) are satisfied, instead of Eq. (12.106) we obtain

Iω2 − 2V ω −W1 − iW2 = 0 , (12.121)

where I and V are still real, but W has an imaginary contribution W2 �= 0. For
complex ω, this quadratic gives solutions similar to the expressions (12.112)(b),

σ = V +
W 2

2ν
, ν = ±

[
−V 2−W 1 +

(W 2

2ν

)2 ]1/2 ⇒ |ω|2 = −W 1 +
σ

ν
W 2 .

(12.122)
These equalities now hold for any solution of the left or right BVP (except at the
continuous spectra). Clearly, W2 may be considered as some kind of measure for
the distance to eigenvalues. This contribution can be computed from the pre-self-
adjointness relation (12.83), obtained in the proof of self-adjointness of G:

W2 ≡ − 1
2 i(W −W ∗) ≡ 1

4 i
∫ [

ξ∗ ·G(ξ)− ξ ·G(ξ∗)
]
dV

= − 1
4 i
∫ [

ξ∗Π(ξ)− ξΠ(ξ∗)
]
dS

(1D)
= 1

2

(
ξ1Π2 − ξ2Π1

)∣∣∣x2

x1

. (12.123)

For simplicity, the surface integral over the left and right boundaries is reduced in
the last step for a one-dimensional (1D), separable, system (as analyzed in Chap-
ter 13), where the complex variables are split into real and imaginary parts,

ξ = ξ1 + iξ2 , Π = Π1 + iΠ2 . (12.124)

It is important to realize though that the boundary values appearing in W2 are ob-
tained in any numerical iteration procedure, either by solving a system of ordinary
differential equation (ODEs) in the 1D case exploiting finite differences (see Sec-
tion 15.1.2), or by solving a partial differential equation (PDE) in the 2D or 3D case
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with finite elements (see Section 15.1.3). For eigenvalues, these boundary contri-
butions vanish so that W becomes real. How do we extend this desirable property
from point eigenvalues to the paths in the complex ω-plane we are looking for?

Consider the following complex function, mapping the ω-plane onto itself:

Q	(ω) ≡ ω − V 	 ≡ ω − 〈ρ−1U〉	 ≡ ω −

∫
ξ	

∗ · Uξ	 dV∫
ρ|ξ	|2 dV

. (12.125)

It is defined everywhere in the complex ω-plane (except at the continua) for solu-
tions ξ	(r;σ + iν) of the left BVP. A similar expression may be defined for the
right solutions ξr(r;σ+ iν). For definiteness, we will restrict the discussion to the

left solutions. Notice that, since V
	

is real for any value of ω, two paths may be
constructed from Q	, viz.⎧⎨⎩ ImQL = ν = 0 ⇒ path PL

s of stable solutions

ReQL = σ − V L = 0 ⇒ path PL
u of unstable solutions

, (12.126)

where we now indicate the solutions on the paths by upper case superscripts.
In fact, according to the conditions (12.112) for eigenvalues, the straight line
ImQL = 0 and the curve(s) ReQL = 0 provide the only possible locations where
eigenvalues may be found: with respect to stability, they play the same role as the
real and imaginary axes in the static case. Hence, unstable eigenvalues are found
on the path(s) PL

u in the complex ω-plane that consists of the points σu + iνu de-
termined by solving the following nonlinear equation for σu for every value of νu:

σu = V [ξL(σu + iνu)] ≡

∫
ξL∗ · UξL dV∫
ρ|ξL|2 dV

⇒ PL
u ≡ {σL

u(νu)} . (12.127)

This amounts to determining the zeros of the function σu − V L(σu), which phys-
ically corresponds to vanishing of the solution-averaged Doppler–Coriolis shifted
real part of the frequency. Since the velocities of the stationary flow are bounded,
this equation always has at least one solution for every value of νu.

Returning now to the expression (12.123) for the imaginary contribution W2

of the energy, notice that, for the above solutions σu(νu) for the path PL
u , the first

relation (12.122) yields σu−V = W 2/(2νu) = 0. Hence, we obtain an alternative,
even more powerful, expression for the determination of the path PL

u :

W L
2 = 1

2

∫ (
ξL
1 ΠL

2 − ξL
2 ΠL

1

)
dS2

(1D)
= 1

2

[
ξL
1 (x2)ΠL

2(x2)− ξL
2 (x2)ΠL

1(x2)
]

= 0 ⇒ PL
u ≡ {σL

u(νu)} .
(12.128)
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Fig. 12.6 Schematic presentation of the three BVPs for left solutions, ξ(x1) = 0.
(a) Model I: wall on plasma (xv = x2), model II: plasma–vacuum system (x2 < xv <∞),
model III: system coupled to external device (at x = xv) injecting/extracting energy;
(b) corresponding EVs (I) and solution paths (II, in red) for the closed system and ex-
ternal solution areas (III, with W2 > 0 or W2 < 0) in the complex ω-plane for the open
system; thick black lines indicate continuous spectra.

Consequently, the energy of the solutions of the left BVP is real, not only for the
eigenvalues, but all along the path(s) PL

u . This provides additional physical justi-
fication for the present method of exploiting the paths PL

s and PL
u for the iterative

determination of the eigenvalues of stationary equilibria. For the numerical deter-
mination of the path(s), Eq. (12.128) is to be preferred over Eq. (12.127) since it
does not require the additional operation of integration but just exploits the bound-
ary values of ξ and Π. Those are directly available in whatever numerical scheme
is exploited for the solution of the one-sided BVP for the spectral equation. Note
though that Eq. (12.128), like Eq. (12.127), is a highly nonlinear equation for the
determination of the path PL

u .
It will be noticed that the construction of solution paths by means of solutions

of the one-sided BVP closely corresponds to the three confined plasma models I,
II and III introduced in Section 4.6 [1]. This is illustrated in Fig. 12.6 for left so-
lutions. Integrating the spectral equation, starting from the left, the right BC will
only be satisfied for EVs (indicated by I), when the model I BVP is solved. Along
the path (indicated by II), some unspecified model II BVP is solved: in order to
satisfy the right BC (Q̂ · n = 0), an external vacuum layer of variable (unknown)
thickness has to be added. Note that we do not actually solve this model II BVP,
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but we construct the solution path for the model I eigenvalues by invoking that
extended problem. However, the argument presented shows the physical signifi-
cance of the solution path: it is not just a way of solving the EVP, but it constitutes
an intrinsic structure of the complex ω-plane for a large class of spectral problems.
Accordingly, the conditionW2 = 0 for the solution paths delineates the areas of the
complex ω-plane where solutions are obtained of the extension with the model III
BVP, where an external device either injects energy into the system (W2 < 0) or
extracts it (W2 > 0). Thus, in order to maintain the time dependence exp(−iωt)
of the perturbations, the energy W2 should be absorbed by the external system if
it is positive and supplemented by the external system if it is negative. This direct
identification of energy supplied by the plasma to the vacuum at x = x2 and ex-
tracted by the external system at x = xv only holds on average, when the “sloshing
energy” of the plasma–vacuum oscillations with period τ ≡ 2π/σ is averaged out
in the energy conservation law for the complete system. This averaging procedure
is precisely the reason why the imaginary component of W enters.

The external device could be a system of magnetic coils coupled to a passive or
active external circuit, but it could also be a mechanical device moving the plasma
boundary. One could also imagine that the vacuum layer is replaced by another
plasma (model II* BVP), but one should then demand that this second plasma is
static. The whole point of considering an external layer of variable thickness is to
permit different physical solutions along the same solution path. Since that path
depends on the average Doppler–Coriolis shift, one cannot move the boundary xv
into the flowing part of the plasma without affecting the solution path. Obviously,
keeping the solution path fixed is crucial for the determination of the structure of
the unstable part of the spectrum.

As we will see in Chapter 13 for separable 1D systems, a unique pathPL
u is found

for the left solutions for every choice of the pair of Fourier mode numbers referring
to the ignorable directions (ky and kz for the plane case,m and k for the cylindrical
case). Similarly, a unique but different path PR

u is found for the right solutions, and
a whole bundle of paths is found for mixed BVPs. Each of those paths is unique
for the specified BVP, the imaginary part of the energy W2 = 0 on each of them,
and they all cross at the eigenvalues. Since we restrict the discussion to the left
BVP, we will refer to PL

u as the single path for the unstable modes in the separable
1D case. Inevitably, for non-separable 2D and 3D cases (like toroidal equilibria),
at least one of the Fourier mode numbers fails to be a good quantum number so
that we will obtain many paths of unstable modes then. Also, for separable 1D
systems, we will find that the path may split into separate sub-paths in many cases
of physical interest. For simplicity, we will continue to refer to PL

u as a single path
of unstable modes, leaving the multiplicity of the sub-paths understood, and also
suppressing the superscript L from now on.
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12.3.2 Approach to eigenvalues

So far, we have only considered the first half of the problem of the search for
eigenvalues in the complex ω-plane. The full problem consists of two parts, viz.:

(1) “horizontal” iteration, for fixed νu, to determine the points σu(νu) of the path Pu;

(2) iteration along the path, to determine where the eigenvalues are located on Pu.

With respect to the second part, we will again invoke arguments that are general
enough that the explicit procedures for 1D systems, to be expanded in Chapter 13,
can be generalized, in principle, to 2D and 3D systems. Note that, for real values
of ω, only the second part is relevant.

To complete the second part of the program, we need to consider solutions
that are “oscillatory” on the path Pu, or Ps for real ω, so that, eventually, both
BCs (12.120) can be satisfied. For the time being, we will not assume satisfaction
of the right BC yet. Consider two such (left) solutions, ξα and ξβ , of the spectral
equation (12.119) for two different values, ωα and ωβ , of ω. To investigate the
approach to eigenvalues, we need to study the behavior of these solutions relative
to their inner product and distance |ωα − ωβ| along the solution path. We first
construct two basic quadratic forms, involving these quantities, which govern the
relative behavior of arbitrary (not necessarily on the path) solutions.

Consider the spectral equations for ξα and ξ∗β :

G(ξα)− 2ωα Uξα + ρω2
αξα = 0 , (12.129)

G(ξ∗β)− 2ω∗
β (Uξβ)

∗ + ρω∗2
β ξ∗β = 0 . (12.130)

We construct two quadratic forms by taking the scalar product of the first equation
with ξ∗β , resp. with ω∗

βξ∗β , and of the second equation with ξα, resp. with ωαξα,
integrating over volume, subtracting and exploiting the pre-self-adjointness prop-
erty (12.83) for G and the self-adjointness property (12.98)(b) for U . This yields

(ω∗
β − ωα)

[ ∫
ξ∗β · Uξα dV − 1

2(ω∗
β + ωα)

∫
ρξ∗β · ξα dV

]
= 1

2

∫ (
ξ∗βΠα − ξαΠ∗

β

)
dS2

(1D)
= 1

2

[
ξ∗βΠα − ξαΠ∗

β

]
(x2) , (12.131)

(ω∗
β − ωα)

[ ∫
ξ∗β ·G(ξα) dV − ω∗

βωα

∫
ρξ∗β · ξα dV

]
= ωα

∫ (
ξ∗βΠα − ξαΠ∗

β

)
dS2

(1D)
= ωα

[
ξ∗βΠα − ξαΠ∗

β

]
(x2) , (12.132)

where S2 is the right boundary surface. These expressions are completely general,
they make no use of special properties of ξα and ξβ (except that they are left
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solutions of the respective spectral equations), not even of the fact that ωα and ωβ
are on the paths Pu or Ps.

Before we apply the quadratic forms (12.131) and (12.132) to the proposed study
of the relative “motion” of the solutions along the solution path, it is useful to note
that they summarize almost all previously obtained relations on complex eigen-
values (model I solutions), solution paths (model II solutions) and solutions for
arbitrary values of ω (model III solutions).

(a) For ω = ωα = ωβ , but not on the solution path, the surface integral transforms into the
expression (12.123) for W −W ∗ ≡ 2iW2 , so that we recover the relations (12.122)
that hold for σ and ν in the areas III of the complex ω-plane depicted in Fig. 12.6.

(b) For ω = ωα = ωβ on the solution path, the surface integral vanishes by definition, so
that we recover the relations (12.112)(b) that hold for complex eigenvalues (ν �= 0)
as well as for complex values of ω on the solution path. For real ω = ωα = ωβ ,
the two quadratic forms collapse into a trivial identity, of course indicating that the
relations (12.112)(a) for ν = 0 can be obtained directly from one spectral equation.

(c) For different eigenvalues ωα �= ωβ , the surface integral again vanishes because both
BCs are satisfied for ξα, as well as for ξβ , so that we obtain two relations on the
“matrix elements” of the operators ρ−1U and ρ−1G:

〈ξβ , ρ−1Uξα〉 = 1
2 (ω∗

β + ωα)〈ξβ , ξα〉 , (12.133)

〈ξβ , ρ−1G(ξα)〉 = ω∗
β ωα〈ξβ , ξα〉 , (12.134)

These relations exhibit a fundamental difference between the spectral problems for
static and stationary plasmas. For static plasmas, U ≡ 0, so that 〈ξβ , ξα〉 = 0 for
eigenfunctions. This is no longer the case for stationary plasmas, so that the eigen-
functions are not orthogonal, in general. The relations (12.133) and (12.134) were
used by Barston [24] to study stable finite dimensional Lagrangian systems.

(d) For our present study of different (non-eigen)values ωα �= ωβ on the solution path, the
full expressions (12.131) and (12.132) need to be retained since the surface integral
does not vanish.

These items once more demonstrate that the spectral problem of stationary plasmas
is governed by the two linear operators U and G, that are both self-adjoint, but that
do not fit into a linear but into a quadratic eigenvalue problem for ξ.

Returning to our study of the behavior of two arbitrary solutions ξα and ξβ on
the solution paths, we now assume that ωα and ωβ are close, so that ξα and ξβ are
close in norm, and consistently develop the quadratic forms (12.131) and (12.132)
to first order in the distance |ωα − ωβ |. To that end, we define variables ξ and
Π(ξ), corresponding to the average value ω = σ + iν on the solution path, and
perturbations η and Ψ ≡ Π(η), corresponding to the perturbation δ + iε of the
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eigenvalue parameter:

ξ ≡ 1
2(ξα + ξβ) , Π ≡ 1

2(Πα + Πβ) , σ + iν ≡ 1
2(ωα + ωβ),

η ≡ 1
2(ξα − ξβ) , Ψ ≡ 1

2(Πα −Πβ) , δ + i ε ≡ 1
2(ωα − ωβ). (12.135)

We also need the inverse relations:

ξα ≡ ξ + η , Πα ≡ Π + Ψ , ωα ≡ σ + δ + i(ν + ε) ,

ξβ ≡ ξ − η , Πβ ≡ Π−Ψ , ωβ ≡ σ − δ + i(ν − ε) . (12.136)

We now distinguish the two very different cases of stable waves (ν = 0: path Ps)
and instabilities (ν �= 0: path Pu).

Approach to real eigenvalues For real ω, it is evident from the general quadra-
tic equation (12.121), relating I , V , W1 and W2, that the condition W2 = 0
should also hold for the solution path Ps . Hence, we may exploit the quadratic
forms (12.131) and (12.132) also for this case. Inserting the inverses (12.136), and
expanding in orders of δ, the leading order vanishes and the first order yields

2δ
∫

ξ∗ ·
[
Uξ − ρσξ

]
dV = 1

2

∫
(η∗Π− ξ∗Ψ + ηΠ∗ − ξΨ∗) dS2 , (12.137)

2δ
∫

ξ∗ ·
[
G(ξ)− ρσ2ξ

]
dV = σ

∫
(η∗Π− ξ∗Ψ + ηΠ∗ − ξΨ∗) dS2 , (12.138)

where the second expression is actually redundant since it just reproduces the
quadratic (12.106), or (12.121). Transforming the first expression by reverting
to the original variables ξα, ξβ , σα and σβ , and neglecting higher order terms in
the volume integral on the LHS (since it is multiplied by the small parameter δ),
this yields the required result:

−Re
∫ (

ξ∗βΠα − ξ∗αΠβ

)
dS2

(1D)
= −

[
ξβΠα − ξαΠβ

]
(x2)

= 2(σβ − σα)
[
σα − V (σα)

] ∫
ρ|ξα|2 dV (stable waves) . (12.139)

The surface integral consists of quantities that are readily available in whatever nu-
merical integration technique is exploited. Its reduction for 1D systems automat-
ically produces an expression involving only real quantities since the components
of ξ may be chosen to be real when ω is real (as in the static case). To leading
order, the frequency factor on the RHS may be transformed into the difference of
the squares of the two Doppler–Coriolis shifted frequencies. Thus, the generaliza-
tion of the expressions (7.169) and (7.171) of Section 7.4.3 [1], representing the
oscillation theorem for static plasmas derived by Goedbloed and Sakanaka [183],
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becomes obvious. We will exploit the equality (12.139) in Section 13.1.3 in the
final proof of the oscillation theoremR for real eigenvalues.

Evidently, in order to conclude monotonicity of the frequency factor on the RHS
of Eq. (12.139), we need to exclude the zeros of the Doppler–Coriolis shifted fre-
quency since that factor changes sign there. In its simplest form, this involves
consideration of the marginal stability transition σ = σ0 (for the BVP chosen),
which is the value of σ where the path Pu meets the real axis (i.e. the path Ps) and
the solution-averaged Doppler–Coriolis shifted frequency vanishes. In that case,

σα − V (σα) = f(σα)(σα − σ0) , f(σα) �= 0 ,

σ0 = V [ξ(σ0)] ≡

∫
ξ∗ · Uξ dV∫
ρ|ξ|2 dV

⇒ σ0(ν = 0) . (12.140)

This quantity can only be computed if the integrals exist, i.e. if σ0 falls outside the
continuous spectra. Frequently, this is not the case, so that the concept of ε-stability
(end of Section 12.2.4) would have to be exploited, typically with ε� |σ0|:

σε0 = V [ξ(σε0 + iε)] ⇒ σε0(ν = ε) . (12.141)

However, this number will not be needed in our final formulation of the oscillation
theorem since the theorem will apply only to the discrete spectrum, excluding the
continua. More serious is the possibility of multiple solutions to Eq. (12.140), that
we will encounter in Section 13.4.1. With rotation, due to the Coriolis shift, the
solution path typically intersects the real axis twice. Let us call those marginal
transition points σ0 and σ1. (In the case where more than two of such points turn
up, one should take the two outermost ones.) Assuming σ1 ≤ σ0, the sign of the
expression σα − V (σα) is not definite in the range σ1 ≤ σα ≤ σ0. We leave it
understood that, if this range overlaps with a continuum, one of the points σ0 or σ1

is to be replaced by the pertinent extremum of the continuum. We will call such a
range the Doppler–Coriolis indefinite range. Consequently, for the frequencies{

σ = σ0 (single marginal stability transition)

σ1 ≤ σ ≤ σ0 (Doppler–Coriolis indefinite range)
(12.142)

the sign of the RHS of Eq. (12.139) is not definite. Outside those frequencies,
the sign is definite and easily determined, resulting in oscillation theorem R of
Section 13.1.3.

Approach to complex eigenvalues The reduction of the quadratic forms for com-
plex values of ω is significantly more complicated, as we will see. Except for the
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cross-products entering the quadratic forms (12.131) and (12.132), we also need
the quadratic forms involving the products of ξα and ξβ with themselves:

σα = V α , or W 2α = 0 , and |ωα|2 = −W 1α , (12.143)

σβ = V β , or W 2β = 0 , and |ωβ|2 = −W 1β . (12.144)

Like the cross-products, these relations are just consequences of the spectral equa-
tions (12.129) and (12.130), where the additional assumption of constraining to
the path, i.e. reality of W , is made. We need to work out the consequences of this
assumption for the quadratic forms (12.131) and (12.132) as well.

Inserting the inverse relations (12.136) into Eqs. (12.129) and (12.130), we ob-
tain the basic equations for ξ and η :

G(ξ)− 2ω Uξ + ρω2ξ = 0 , (12.145)

G(η)− 2ω Uη + ρω2η = 2(δ + iε)
[
Uξ − ρωξ

]
. (12.146)

Next, inserting the inverse relations into Eqs. (12.131) and (12.132), canceling the
zeroth order terms by using Eqs. (12.143) and (12.144) and keeping the linear terms
in δ and ε only, we obtain the corresponding first order quadratic form equations:

X ≡
∫

η∗ ·
[
Uξ − ρσξ

]
dV = (δ − iε)I − i

2ν
S , (12.147)

Y ≡ −1
2

∫
η∗ ·
[
G(ξ)− ρ|ω|2ξ

]
dV = −ω

[
(δ − iε)I − i

2ν
S
]
, (12.148)

where the surface term in the RHSs is defined by

S ≡ 1
2

∫
(ξ∗Ψ− ηΠ∗) dS2

(1D)
= 1

2

[
ξ∗Ψ− ηΠ∗](x2) . (12.149)

Since ωX + Y = 0, the expression (12.148) for the quadratic form Y is actually
redundant. Consequently, considering a solution ξ for ω = σ + iν on the solution
path Pu , the relative location of nearby solutions ξ ± η on Pu , where ‖η‖ �
‖ξ‖, is determined by the quadratic form X . Its quantitative value is obtained by
substituting the solution η of the inhomogeneous spectral equation (12.146), where
the factor on the RHS has a magnitude |δ + iε| � |σ + iν|.

If desired, the latter equation could be solved with the same numerical tech-
niques as used to solve the leading order homogeneous spectral equation (12.145),
or by exploiting Green’s functions to integrate the RHS (like in Section 10.1 [1]).
However, we do not need to pursue this route to the end, since we may determine
the requisite behavior from the scaling properties of η and X with the distance
1
2 |ωα − ωβ | ≡ |δ + iε| along the solution path. To that end, we renormalize η and
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X to become leading order quantities:

η̃ ≡ 1
δ + iε

η , G(η̃)− 2ω U η̃ + ρω2η̃ = 2
[
Uξ − ρωξ

]
, (12.150)

X̃ ≡ 1
δ − iε

X ≡
∫

η̃∗ ·
[
Uξ − ρσξ

]
dV = I − δ + iε

δ2 + ε2
i

2ν
S . (12.151)

We then find from the path equation W 2α = 0, or W 2β = 0, that S is real and
from Eq. (12.151) that it is proportional to the imaginary part of X̃:

S = −δ
2 + ε2

δ
· 2νX̃2(σ, ν) (δ �= 0) . (12.152)

The LHS and RHS of this equation consist of balancing small terms, of the order
|δ + iε|. The LHS contains the perturbations of the boundary values that are com-
puted in any numerical procedure of solving the one-sided BVP for the spectral
equation. For ν �= 0 (complex ω), since X̃2 does not depend on δ and ε, the RHS is
a monotonic function along the solution path, as long as δ does not vanish. In the
latter case, the path is locally vertical and, since both δ and X̃2 vanish, one should
exploit the real part of the complex function X̃ there:

X̃1 = I − ε

δ
X̃2 ⇒ S = ε · 2ν

[
X̃1(σ, ν)− I

]
(δ = 0) . (12.153)

Hence, the RHS remains a monotonic function along the solution path, also in
points where the path is vertical.

The expressions (12.152) and (12.153) determine the approach to eigenvalues,
where we have assumed that ωα and ωβ are two different values on the solution path
and that at least one of them is not an eigenvalue so that the equalities (12.133) and
(12.134) do not hold. Instead, the differences between the LHS and RHS of those
two quadratic forms become both proportional to X̃2 �= 0 if σβ �= σα, resp. to
X̃1 − I �= 0 if σβ = σα. (It is a useful exercise to check this statement.) Hence,
we do not need to know the values of these quantities, but just require them not to
change sign in between eigenvalues. Reverting to the original variables ξα, ξβ , ωα
and ωβ , the equalities (12.152) and (12.153) finally yield the desired relationship
between the boundary values and the distance along the solution path:

4S = Re
∫

(ξ∗βΠα − ξ∗αΠβ ) dS2

(1D)
=
[
ξβ1Πα1 − ξα1Πβ1 + ξβ2Πα2 − ξα2Πβ2

]
(x2)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|ωβ − ωα|2
σβ − σα · 4νX̃2(σ, ν) (σβ �= σα)

−(νβ − να) · 4ν
[
X̃1(σ, ν)− 1

2I
]

(σβ = σα)

(instabilities). (12.154)
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We will exploit these equalities in Section 13.2.4 in the final proof of the oscillation
theorem C for complex eigenvalues.

In conclusion, we have now obtained the required quadratic expressions (12.139)
for real values of ω (stable waves) and (12.154) for complex values of ω (insta-
bilities), with obvious monotonicity properties of the RHSs along the respective
solution paths Ps and Pu . It remains to substitute actual solutions in the LHSs and
to demonstrate how they may be used to iterate towards eigenvalues. This will be
done in Chapter 13 for 1D systems. This will finally lead to a kind of generaliza-
tion of the Sturm–Liouville type of oscillation theorems discussed in Volume [1],
Sections 7.4.3 and 9.4.1, for static plasma slabs and cylinders.

For stationary plasma equilibria, we will see that the real eigenvalues can still be
obtained by considering a real solution ξα on a sub-interval of (x1, x2) bounded by
two consecutive zeros (in the manner pioneered by Newcomb [347] in his study of
the stability of the diffuse linear pinch) and then ask the question whether the dis-
tance between the zeros of another real solution ξβ is larger or smaller when σβ is
larger than σα. The expression (12.139) will provide the answer to that. (Inciden-
tally, for 2D and 3D systems, the zeros become nodal curves and surfaces, requir-
ing much more analysis, even for static plasmas. This is evident from Courant and
Hilbert I [98], Section VI.6. Their Figs. 7 and 8 show how a multiplicity of nodal
curves, dividing a 2D domain into many sub-domains, by perturbation becomes a
single spiraling curve dividing the domain in only two sub-domains.)

However, for complex eigenvalues, this approach fails because the zeros of the
real and imaginary parts of solutions ξα cannot be forced to coincide. Also, the
“thought experiment” to consider the consecutive zeros of ξα as virtual wall posi-
tions, so that stabilization or destabilization intuitively corresponds to moving the
wall inward or outward, does not work anymore because (as mentioned in Sec-
tion 12.3.1) the solution path Pu changes when the plasma boundaries are moved.
This fundamental problem has been solved here by extending the BVP with an ex-
ternal vacuum bounded by a genuine wall, where the position x = xv of that wall
can be changed without affecting the solution path. One could consider xv as the
control parameter determining the distribution of the eigenvalues of the extended
model II problem, if one desires to solve that, but here it is used to relate it to the
value of ξα(x2) which is a kind of measure for the “distance” to eigenvalues of the
restricted model I problem for arbitrary solutions ξα on the solution path. We will
see in Sections 13.1.4 and 13.2.4 how the expression (12.153) can be exploited to
provide a monotonic approach to eigenvalues for this restricted problem.

We are now fully prepared to complete this study with the determination of the
spectra of stationary plasmas for the explicit examples of gravitating plane plasma
slabs (Sections 13.1 and 13.2) and cylindrical plasmas (Sections 13.3 and 13.4).
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12.4 Literature and exercises

Notes on literature

Stability of stationary equilibria

– Frieman & Rotenberg, ‘On the hydromagnetic stability of stationary equilibria’ [147],
outline the stationary counterpart to the widely used MHD stability theory of static
plasmas [203, 35], extensively discussed in Volume [1], when flows are admitted.
Surprisingly (certainly for plasma-astrophysical applications where incorporation of
flow is imperative), this more general theory remains underdeveloped. The present
chapters are an attempt to restore the balance.

– Chandrasekhar, Hydrodynamic and Hydromagnetic Stability [84], is one of the first
systematic presentations of the subject with numerous carefully worked out explicit
examples: it is a real pleasure to see the master at work!

Exercises

[ 12.1 ] Tokamak physics versus astrophysics

Laboratory and astrophysical plasmas appear to be very different forms of matter. In this
book, the common features are stressed.

– Why and when can a plasma in a fusion device, like a tokamak, be described with the
same theoretical model as a plasma in the Universe?

– Using the same theory, there are important differences between the two cases though,
in particular with respect to plasma equilibrium. What are those differences?

– Also with respect to the waves and instabilities, there are important differences. What
are they?

[ 12.2 ] Displacement field

Newcomb has derived an expression which relates the gradient operator at the perturbed
position to that at the unperturbed position. Explain why this expression needs special
attention in nonlinear MHD, in particular in numerical nonlinear MHD.

[ 12.3 ] Incompressible plasma

In the exercises of the following chapters, the incompressible limit will be exploited fre-
quently. Here, you will investigate what kind of implications this limit has. First, obtain
the equations for an incompressible plasma from the ones for a compressible plasma by
taking the limit γ →∞.

– Show that ∇ · v = 0 in the incompressible limit.
– Also show that ∇0 · v0 = 0.
– Show that the displacement field satisfies ∇0 · ξ = 0.
– What does this limit imply for the generalized force operator G(ξ)? What are the

advantages of taking the incompressible limit?

[ 12.4 ] Flow and self-adjointness

Show that the operator U ≡ −iρv · ∇ is self-adjoint. Motivate for every step what kind of
argument you have used. Start from 〈η, ρ−1Uξ〉.

– Indicate the differences in self-adjointness between the operators U and G. Which
one is the stronger? (Hint: consider the BCs to be satisfied by ξ in both cases.)
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[ 12.5 ] Determination of the solution path

In this exercise you will make a summary and flow diagram of how to compute the solution
paths for a one-dimensional system. This system can be described either in Cartesian or in
cylindrical coordinates.

– Suppose you have selected a growth rate νu. It looks like there are still infinitely
many possibilities to choose a value for the real part σu of the frequency. This is not
so, σu should be selected from a certain range. Determine that range.

– Once you have selected a νu and a σu, you need to solve a certain differential equa-
tion. Which differential equation is that and what are the boundary conditions?

– Which condition has to be satisfied for the selected νu and σu to be part of the solution
path and, therefore, to be an appropriate guess for the eigenvalue ω. Why are the νu
and σu selected just a guess and not already the eigenvalue ω?

– Make a flow diagram of the computation of the solution path.
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Shear flow and rotation

13.1 Spectral theory of plane plasmas with shear flow

13.1.1 Gravito-MHD wave equation for plane plasma flow

We apply the general theory of Chapter 12 to explicitly construct the basic structure
of the spectrum of waves and instabilities for representative sets of stationary 1D
equilibria, viz. plane slabs in this section, and the next, and to cylindrical plasmas
in Sections 13.3 and 13.4. These two classes of problems are the returning, first-
principle, ones in any explicit analysis of the waves and instabilities of fluids and
plasmas, as already exemplified for static plasmas in Chapters 7 and 9 [1]. With re-
spect to MHD spectral theory, the study of the mentioned 1D problems very much
functions like the study of the spectrum of the hydrogen atom in quantum mechan-
ics. It reveals the basic complexity of the system, that is to be understood before the
more complicated multi-dimensional systems can be studied fruitfully. In stability
theory of stationary plasmas, this is even more urgent than in quantum mechanics
since the basic spectral equation is quadratic in the eigenvalue and contains two
operators, rather than one.

To that end, consider the model of a plane magnetized and gravitating plasma
slab that was introduced in Section 7.3.2, Fig. 7.9 [1], but now extended with a
plane shear flow field:

B = By(x) ey +Bz(x) ez , g = −g ex , ρ = ρ(x) , p = p(x) ,

v = vy(x)ey + vz(x)ez . (13.1)

The functions ρ(x), p(x),By(x) andBz(x) should satisfy the equilibrium equation
(12.28), (p + 1

2B
2)′ = −ρg , but vy(x) and vz(x) are completely arbitrary. The

slab is confined between two solid boundaries at x = x1 and x = x2.
In applications, it is usually important that the magnetic field has magnetic shear,

so that one can assume that the magnitude of B(x) is fixed but its direction should

49
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Fig. 13.1 Directions of the horizontal wave vector, magnetic field and velocity.

change with the vertical position x. On the other hand, velocity shear effects are
usually represented by just assuming variation of the amplitude of a uni-directional
flow field v(x). Without loss of generality, one can also choose the direction of the
horizontal wave vector k0 to be along the z axis, making an angle θ with v and
an angle ϕ(x) with B (see Fig. 13.1). For the time being, we will not make these
simplifying assumptions and just derive completely general expressions for the
spectral equations of these equilibria.

In the reduction of the spectral equation for these equilibria, one of the two
velocity-dependent terms in the expression (12.64) for the generalized force oper-
ator G vanishes since there are no centrifugal forces present, so that v · ∇v = 0 ,
and the other one yields −ρ(v · ∇)2ξ , so that the eigenvalue problem (12.69), or
rather (12.70), “nearly” simplifies to the old static one, with the same operator F
but ω replaced by the Doppler shifted expression:

F(ξ) = −ρ(ω − ρ−1U)2 ξ ≡ −ρ(ω + iv · ∇)2 ξ . (13.2)

From the discussion in the previous chapter, it is evident that all the new physics
associated with stationary plasma flows is hidden in this replacement.

As in Section 7.3.2 [1], we assume normal modes with plane wave dependence
in the ignorable (y and z) directions,

ξ(x, y, z, t) = ξ(x; ky, kz) ei(kyy+kzz−ωt) , (13.3)

where we recall that a distinctive hat for the Fourier amplitude was dropped for
simplicity of the notation. For these Fourier normal modes (FNM), the operator U
in Eq. (13.2) becomes a multiplication:

ω + iv · ∇ FNM= ω̃(x) ≡ ω − Ω0(x) , Ω0 ≡ k0 · v(x) , (13.4)

where k0 ≡ kyey + kzez is the horizontal wave vector, Ω0(x) is the local Doppler
shift and ω̃(x) is the local Doppler shifted frequency observed in a local frame
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Fig. 13.2 Schematic transition to instability for (a) static and (b) stationary plasma.

co-moving with the plasma layer at the vertical position x. Hence, the eigenvalue
problem becomes

F(ξ) = −ρω̃2 ξ , (13.5)

subject to model I BCs on ξ ≡ ξx at x = x1 and x = x2 :⎧⎨⎩ ξ(x1) = 0 (left BC)

ξ(x2) = 0 (right BC)
. (13.6)

Since the equilibrium condition (12.28) is the same as for static plasmas, this im-
plies that the equations derived in Section 7.3.2 [1] for the static plane slab remain
valid for the stationary slab if just the replacement ω → ω̃(x) is made. Of course,
the x-dependence of the local Doppler shift Ω0(x) is the complicating factor. It
opens up the possibility of new flow-driven (Kelvin–Helmholtz) instabilities.

Since ω̃ depends on x through Ω0(x), every discrete eigenvalue will be subject to
a different solution-averaged Doppler shift 〈Ω0(x)〉 involving the solution ξ of the
eigenvalue problem (13.5), (13.6) across the layer. This is the averaged Doppler–
Coriolis shift V defined in Eq. (12.111), which now simplifies to

V ≡ 〈Ω0(x)〉 ≡

∫
ρk0 · v |ξ|2 dx∫

ρ|ξ|2 dx
, (13.7)

since there is no Coriolis contribution for plane flows. Inserting the left solution
ξL(σu + iνu) of the one-sided BVP (13.5), (13.6)(a) into σu = V yields the path
PL

u on which the unstable eigenvalues should be located. Schematically, this re-
sults in the difference between unstable modes in static and stationary equilibria
as illustrated in Fig 13.2. When an equilibrium parameter is varied (recall from
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Section 12.3 that this should be one that does not affect the solution path), two
stable modes may approach each other along the real ω-axis, coalesce, and then
become unstable. In the static case, this transition to instability is always through
the marginal point ω = 0. In the stationary case, this transition occurs at σ0, or
σε0 (given by the solution of Eq. (12.140), or Eq. (12.141), with U = ρΩ0), which
is away from the origin in general so that overstable modes (propagating waves
with an exponentially growing amplitude) appear. Hence, the unstable mode of
Fig. 13.2(b) could have arisen because the static equilibrium of Fig. 13.2(a) is al-
ready unstable, so that the corresponding equilibrium with flow just moves that
unstable eigenvalue off the imaginary axis into the complex plane. Alternatively,
an overstable mode could also arise without a corresponding static instability as a
result of a Kelvin–Helmholtz unstable flow profile. We will encounter examples of
both in Section 13.1.2.

The spectral equation (13.5) is reduced by exploiting the field line projection,

ex ≡ ∇x , e⊥ ≡ (B/B)× ex , e‖ ≡ (B/B) ,

∂x ≡ ex · ∇ , k⊥ ≡ −ie⊥ · ∇ , k‖ ≡ −ie‖ · ∇ ,
ξ ≡ ξx , η ≡ ie⊥ · ξ , ζ ≡ ie‖ · ξ , (13.8)

where, in contrast to the static case, the variables ξ, η and ζ are no longer purely
real in the stationary case since ω = σ + iν is genuinely complex for instabilities.
The resulting vectorial form of the gravito-MHD wave equation for plane plasma
flow [455] is just Eq. (7.89) of Section 7.3.2 [1] with the replacement ω → ω̃(x).
Eliminating η and ζ yields the scalar ordinary differential equation (ODE) form of
the gravito-MHD wave equation in terms of the normal displacement ξ,

d

dx

(
N

D

dξ

dx

)
+
[
A+

B

D
+
(C
D

)′ ]
ξ = 0 , (13.9)

involving three regular coefficients with different powers of the acceleration of
gravity (including the driving term ρ′g of the Rayleigh–Taylor instability),

A(x; ω̃2) ≡ ρ(ω̃2 − ω2
A) + ρ′g ,

B(x; ω̃2) ≡ − k2
0ρg

2 (ω̃2 − ω2
A) ,

C(x; ω̃2) ≡ − ρg ω̃2(ω̃2 − ω2
A) , (13.10)

the numerator function N determining genuine (Alfvén and slow) singularities,

N(x; ω̃2) ≡ (γp+B2)(ω̃2 − ω2
A)(ω̃2 − ω2

S) ,

ω2
A(x) ≡ k2

‖
B2

ρ
, ω2

S(x) ≡ k2
‖

γpB2

ρ(γp+B2)
, (13.11)
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and the denominator functionD determining apparent (fast and slow turning point)
singularities,

D(x; ω̃2) ≡ (ω̃2 − ω2
f0)(ω̃

2 − ω2
s0) = ω̃4 − k2

0(γp+B2)(ω̃2 − ω2
S)/ρ ,

ω2
f0,s0(x) ≡ 1

2k
2
0

γp+B2

ρ

[
1±
(

1−
4k2

‖γpB
2

k2
0(γp+B2)2

)1/2 ]
. (13.12)

Equation (13.9), together with the BCs (13.6), uniquely determines the eigenval-
ues. The tangential components η and ζ follow from ξ by algebraic relations:

η = k⊥
(γp+B2)(ω̃2 − ω2

S) ξ
′ − ρg ω̃2 ξ

ρD
,

(13.13)

ζ = k‖
γp(ω̃2 − ω2

A) ξ′ − g (ρω̃2 − k2
0B

2) ξ
ρD

.

The only formal difference with the equations for the static case is the replacement
of ω2 by ω̃2(x;ω).

For numerical integration, exploiting iterative solution of the two-sided BVP by
means of a succession of one-sided (left or right) BVPs (see Section 13.1.4), the
second order ODE (13.9) is suitably converted into an equivalent pair of first order
ODEs for the function and its first derivative. Instead of ξ′, it is more expedient to
exploit the Eulerian perturbation Π of the total pressure, defined in Eq. (12.81),

Π = −(γp+B2)(ξ′ + k⊥η)− k‖γp ζ + ρgξ = − 1
D

(Nξ′ + Cξ) .
(13.14)

This yields

N
d

dx

( ξ

Π

)
+

( C D

E −C

)( ξ

Π

)
= 0 , (13.15)

involving a new function

E(x; ω̃2) ≡ − [ρ(ω̃2 − ω2
A) + ρ′g ]N − ρ2g2(ω̃2 − ω2

A)2

= −N
(
A+

B

D

)
− C2

D
(13.16)

connected with the functions of the second order formulation as indicated.

� Apparent and spurious singularities Recall from the analysis of the analogous prob-
lems for static plasma slabs (Sections 7.3.2 and 7.4.1 [1]) and cylinders (Section 9.2.1 [1])
that the formulation in terms of the second order ODE contains the apparent singularities
D = 0 , whereas the formulation in terms of first ODEs contains spurious singularities
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N = 0 . The apparent singularities gave rise to considerable confusion, as they were orig-
inally thought to be associated with additional continua by Grad [187], which was shown
by Appert, Gruber and Vaclavik [10] to be incorrect by means of the formulation in terms
of the first order system where these singularities simply did not turn up. The absence of
D = 0 continua was further substantiated by Goedbloed [166] from the solution of the
initial value problem (Section 10.2 [1]). In the second order formulation, the condition for
the singularities D = 0 to be apparent, found by Greene [191], is

NB + C2 ∼ D . (13.17)

On the other hand, the first order formulation also has a defect, viz. the occurrence of a set
of spurious singularities N = 0 on top of the genuine ones (since N multiplies both ξ′ and
Π′ in Eq. (13.15): one factor too much). It was pointed out by Bondeson, Iacono and Bhat-
tacharjee [56], for the analogous cylindrical problem with flow (see Section 13.3.1), that it
is essential for the first order formulation that the determinant of the matrix in Eq. (13.15)
is proportional to N ,

DE + C2 ∼ N . (13.18)

This guarantees that the spurious N = 0 singularities can be eliminated again (leaving the
genuine ones). It now emerges that the problems of apparent and spurious singularities are
complementary evils: the condition (13.17) for the absence of D = 0 singularities and the
condition (13.18) for the absence of spurious N = 0 singularities are just rearrangements
of the same terms of the relation (13.16) connecting the two formulations. �

So far, we have stressed the formal similarities of the static and the stationary
problems. We now need to study the differences. It is evident that the genuine
(N = 0) and apparent (D = 0) singularities of the eigenvalue equation (13.9)
have to be considered in detail in order to understand their role in the spectrum of
stationary plasmas. Factoring these polynomials, e.g. the Alfvén component

ω̃2 − ω2
A ≡ (ω − Ω0)2 − ω2

A = (ω − Ω+
A)(ω − Ω−

A) , where Ω0 ≡ k0 · v ,
yields the new singular frequencies for equilibria with flow:

N(x;ω) = (γp+B2)(ω − Ω+
A)(ω − Ω−

A)(ω − Ω+
S )(ω − Ω−

S ) ,

Ω±
A(x) ≡ Ω0(x)± ωA(x) , Ω±

S (x) ≡ Ω0(x)± ωS(x) , (13.19)

and the new apparent singularities:

D(x;ω) = (ω − Ω+
f0)(ω − Ω−

f0)(ω − Ω+
s0)(ω − Ω−

s0) ,

Ω±
f0(x) ≡ Ω0(x)± ωf0(x) , Ω±

s0(x) ≡ Ω0(x)± ωs0(x) . (13.20)

Here, the frequencies Ω±
A and Ω±

S indicate the forward(+) or backward(−) local
Doppler-shifted Alfvén and slow frequencies in the laboratory frame. (Hence, the
shift is +Ω0 here, whereas it is −Ω0 in Eq. (13.4) since that equation refers to the
co-moving frame.) Since the analysis of the continuous spectra of static plasmas
can be applied in completely the same way to stationary plasmas, the only change
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is that the static Alfvén continuum {ω2
A(x)} is split into forward and backward

Alfvén continua {Ω+
A(x)} and {Ω−

A(x)}, and the static slow continuum {ω2
S(x)} is

split into forward and backward slow continua {Ω+
S (x)} and {Ω−

S (x)}. Similarly,
the collection of apparent singularities {ω2

f0,s0(x)} is split into the sets of forward
and backward turning point frequencies {Ω+

f0,s0(x)} and {Ω−
f0,s0(x)}.

As in the static case, to complete the essential spectrum, consisting of continua
and cluster points, one also needs to include the cluster points of the forward and
backward fast magneto-sonic waves,

Ω±
F ≡ ±∞ , (13.21)

which formally also belong to the continuous spectrum. One easily proves from
the definitions that the following ordering of the local frequencies (which are all
real!) holds at each point x1 ≤ x ≤ x2 of the plasma:

Ω−
F ≤ Ω−

f0 ≤ Ω−
A ≤ Ω−

s0 ≤ Ω−
S ≤ Ω0 ≤ Ω+

S ≤ Ω+
s0 ≤ Ω+

A ≤ Ω+
f0 ≤ Ω+

F .

(13.22)
Computation of the collections of these frequencies over the interval [x1, x2] should
precede any computation of the spectrum since they determine its overall structure.
One might object that, to determine global stability of gravitational instabilities
(driven by the term ρ′g), one is not really interested in these “trouble makers”.
However, even in that case, one needs to know where these frequencies are located
in order to properly deal with the marginal stability transition, i.e. the approach to
the real ω-axis.

Fortunately, for the 1D equilibria under consideration, all of these frequencies
are still (as in the static case) situated on the real ω-axis. We will study the continu-
ous spectra in more detail in Section 13.1.3, where we also consider the hydrody-
namic flow continuum {Ω0(x)}, or rather flow continua (since they are degener-
ate). These are not additional continua in MHD [174], but contained in the Alfvén
and slow continua from which they emerge in the limit of vanishing magnetic field.
Overlooking this limit has caused considerable confusion in the MHD literature.

13.1.2 Kelvin–Helmholtz instabilities in interface plasmas

As a non-trivial first example, consider the following extension of the interface
problem discussed at the end of Chapter 6 of Volume [1], illustrated in Fig. 6.20.
We now replace the bottom vacuum layer, that was considered there, by a second
plasma with different flow and magnetic field parameters. In the resulting config-
uration, two homogeneous plane plasma layers with embedded constant magnetic
fields B and B̂ and constant velocity fields v and v̂ are superposed, with a surface
current j∗ and a surface vorticity ω∗ creating jumps in the magnitudes and direc-
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tions of the magnetic fields and velocities at the interface. The jump of the velocity
causes the plasma to be Kelvin–Helmholtz unstable. Since we also keep the verti-
cal gravity field g = −gex, Rayleigh–Taylor instabilities will also be present. The
change of direction of the magnetic field at the interface will cause stabilization by
magnetic shear.

We summarize the assumptions on the various equilibrium quantities and recall
(Section 12.2.1) that the equilibrium is essentially the same as for the static case.

– Upper layer (0 < x ≤ a):

ρ = const , v = (0, vy, vz) = const , B = (0, By, Bz) = const ,

p′ = −ρg ⇒ p = p0 − ρgx
(
p0 ≥ ρga

)
. (13.23)

– Lower layer ( − b ≤ x < 0):

ρ̂ = const , v̂ = (0, v̂y, v̂z) = const , B̂ = (0, B̂y, B̂z) = const ,

p̂′ = −ρ̂g ⇒ p̂ = p̂0 − ρ̂gx . (13.24)

– Jumps at the interface (x = 0):

p0 + 1
2B

2
0 = p̂0 + 1

2 B̂
2
0 (pressure balance) , (13.25)

j� = n× [[B]] = ex × (B− B̂) (surface current) ,
(13.26)

ω� = n× [[v]] = ex × (v − v̂) (surface vorticity) .

Recall from Section 4.5.2 [1] that the pressure balance equation (13.25) is a genuine
boundary condition whereas the latter two equations are just implications of the
jumps permitted by this equilibrium

We perform a normal mode analysis of this configuration, with Fourier harmon-
ics in the ignorable directions: ξ ∼ exp [i(kyy + kzz − ωt)]. Above, the exam-
ple was called “simple” since the plasmas are taken incompressible and homoge-
neous so that the differential equations become trivial. The much harder part of the
inhomogeneities and associated singularities will be considered in the following
sections. In order to formulate a complete problem, we first present the general
expression for the incompressible form of the wave equation and then specify to
homogeneous plasmas. Taking the limit γ → ∞ of Eq. (13.9) yields the general
wave equation for incompressible plasmas:

d

dx

[
ρ(ω̃2 − ω2

A)
dξ

dx

]
− k2

0

[
ρ(ω̃2 − ω2

A) + ρ′g
]
ξ = 0 , (13.27)

where ω̃ ≡ ω − Ω0 ≡ ω − k0 · v is the Doppler shifted frequency and ωA ≡
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k0 ·B/√ρ0 is the Alfvén frequency. For completeness, we also present the incom-
pressible limit of the expressions (13.13) and (13.14) for the tangential variables η
and ζ and the total pressure perturbation Π:

η → −k⊥
k2

0

ξ′ , ζ → −k‖
k2

0

ξ′ , Π → ρ

k2
0

(ω̃2 − ω2
A)ξ′ . (13.28)

The incompressible counterpart of the system of first order ODEs (13.15) for ξ and
Π can easily be constructed from these expressions.

In the present case, all equilibrium quantities are constant in the respective layers
so that the ODEs simplify to equations with constant coefficients that can easily be
solved. This yields the following solutions, for the variable ξ in the top layer:

ξ′′ − k2
0ξ = 0 , with BC ξ(a) = 0 ⇒ ξ = c

sinh [k0(a− x)]
sinh (k0a)

, (13.29)

and for the variable ξ̂ in the bottom layer:

ξ̂′′ − k2
0 ξ̂ = 0 , with BC ξ̂(−b) = 0 ⇒ ξ̂ = ĉ

sinh [k0(x+ b)]
sinh (k0b)

. (13.30)

These eigenfunctions have the usual cusp-shaped form of surface modes. Obtain-
ing them was trivial, but all intricacies of the analysis and the physics now reside
in the boundary conditions at x = 0 that should determine the eigenvalues.

Since the bottom layer is a plasma rather than a vacuum, the relevant BCs con-
necting ξ and ξ̂ at x = 0 are the interface conditions for model II* that were derived
in Eqs. (6.144) and (6.147) [1]:

– First interface condition (continuity of the normal velocity):

[[n · ξ]] = 0 ⇒ ξ(0) = ξ̂(0) = 0 ⇒ c = ĉ . (13.31)

– Second interface condition (pressure balance),

[[ Π + n · ξ n · ∇(p+ 1
2B

2) ]] = 0 , Π ≡ −γp∇ · ξ − ξ · ∇p+ B ·Q . (13.32)

The latter equation needs to be reworked since γp∇·ξ is actually an undetermined
quantity for incompressible plasmas (γ → ∞, ∇ · ξ → 0). We determine it by
exploiting the incompressible expression (13.28) for Π. Inserting this expression
into the second interface condition, exploiting the equilibrium conditions (13.23)
and (13.24), and dividing by the first interface condition then yields[[

ρ

k2
0

(ω̃2 − ω2
A)
ξ′

ξ
− ρg

]]
= 0 , (13.33)
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or

−ρ
[
(ω−Ω0)2−ω2

A

]
coth(k0a)−k0ρg = ρ̂

[
(ω− Ω̂0)2− ω̂2

A

]
coth(k0b)−k0ρ̂g ,

(13.34)
which is the dispersion equation for this configuration.

In the limit of small wavelength perturbations, coth(k0a) ≈ coth(k0b) ≈ 1
(walls effectively at∞ and −∞), the explicit solutions of this dispersion equation
become:

ω =
ρΩ0 + ρ̂Ω̂0

ρ+ ρ̂
±
√√√√−ρρ̂(Ω0 − Ω̂0)2

(ρ+ ρ̂)2
+
ρω2

A + ρ̂ω̂2
A

ρ+ ρ̂
− k0(ρ− ρ̂)g

ρ+ ρ̂
. (13.35)

These solutions represent either two waves with real frequency or two modes with
complex frequency (an instability and a damped wave), depending on the sign of
the expression under the square root. When that expression is negative, an insta-
bility is obtained driven by a destabilizing Kelvin–Helmholtz contribution when
Ω0 �= Ω̂0 , a stabilizing magnetic field line bending contribution when ω2

A �= 0
and/or ω̂2

A �= 0, and a destabilizing Rayleigh–Taylor contribution when ρ > ρ̂ (or
stabilizing when ρ < ρ̂). Magnetic stabilization of both the Kelvin–Helmholtz and
the Rayleigh–Taylor instability is obtained when

(k0 ·B)2 + (k0 · B̂)2 >
ρρ̂

ρ+ ρ̂

[
k0 · (v − v̂)

]2
+ k0(ρ− ρ̂)g . (13.36)

Note that magnetic shear (different directions of B and B̂) is effective because
it prevents vanishing of the magnetic terms for directions of the wave vector k0

perpendicular to the magnetic field. The expression for arbitrary wavelengths is
easily derived from Eq. (13.34) by noting that every ρ occurs together with the term
coth(k0a) and every ρ̂ together with coth(k0b), except for the Rayleigh–Taylor
term −k0(ρ− ρ̂)g. For long wavelength perturbations, coth(k0a) ≈ (k0a)−1 	 1
and coth(k0b) ≈ (k0b)−1 	 1 (walls effectively close), this leads to genuine
competition between the three terms (all ∼ k0), so that stability depends on the
precise choice of all those parameters.

These modes illustrate the generic behavior of instabilities shown in Fig. 13.2.
Note that the dashed line of that figure becomes just a vertical straight line σ =
〈Ω0〉 = (ρΩ0 + ρ̂Ω̂0)/(ρ + ρ̂) for the present case. Summarizing, this sub-
section demonstrates how equilibrium background flow may create new (Kelvin–
Helmholtz) instabilities and affect existing (Rayleigh–Taylor) instabilities in mag-
netized plasmas. However, because of the simplifying assumption of homogeneous
plasma layers, it hardly reveals the complexity of the problem for diffuse plasmas,
as we will soon realize.
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13.1.3 Continua and oscillation theoremR for real eigenvalues

To appreciate the complexity of the spectral problem when background flow is in-
volved, consider the hydrodynamic (HD) case of a plane incompressible and invis-
cid, but inhomogeneous, fluid without gravity but with a horizontal flow velocity,

v = vy(x)ey + vz(x)ez . (13.37)

The Lagrangian time derivative of any one of the Eulerian perturbations ρ1, v1, p1

occurring in the HD counterpart of Eqs. (12.31)–(12.34) is given by(Df
Dt

)
1
≡
(∂f
∂t

+ v · ∇f
)

1

FNM= −i ω̃f1 + f0
′v1x , ω̃ ≡ ω−Ω0(x) , (13.38)

where, as in Eq. (13.4), ω̃(x) is the Doppler shifted frequency observed in a local
frame co-moving with the fluid layer at position x. Here, the gradient operator
parallel to the background velocity,

ρ−1U ≡ −iv · ∇ FNM= k0 · v ≡ Ω0(x) , (13.39)

gives rise to continuous spectra, the flow continua

ω ∈ {ΩHi ≡ Ω0(x)|x1 ≤ x ≤ x2} , (i = 1, 2) , (13.40)

consisting of all local Doppler shifts, for which the Eulerian equations are singular.
The multiplicity index i will be explained below.

Prior to the discovery of the flow continua by Case [77] in 1960 (see also Drazin
and Reid [124], p. 149), the HD literature on the inviscid limit of the Navier–Stokes
equations [310] was confused because the absence of a spectrum of discrete modes
for the simplest flow profiles appeared to imply absence of stable oscillations. This
paradox follows from the Eulerian representation in terms of the velocity perturba-
tion v1, which we here relate to both the stream function χ that is usually exploited
for incompressible HD problems and the Lagrangian fluid displacement ξ, accord-
ing to Eq. (12.40):

v1 = ez ×∇χ =
(
v0 · ∇+

∂

∂t

)
ξ = −iω̃ξ ⇒

⎧⎨⎩
v1x = −ik0χ = −iω̃ξ

v1y = χ′ = −ω̃η
.

(13.41)
For constant density ρ, these variables should satisfy the ODEs

ω̃
(d2χ

dx2
− k2

0 χ
)
− ω̃′′χ = 0 , or

d

dx

(
ω̃2 dξ

dx

)
− k2

0 ω̃
2 ξ = 0 , (13.42)

and be subject to the BCs χ(x1) = χ(x2) = 0, respectively ξ(x1) = ξ(x2) = 0.
Assuming ω̃ �= 0 and choosing a linear velocity profile, v0 = a+ bx, so that ω̃′′ =
0, these equations only possess solutions∼ exp(±k0x) that cannot satisfy the BCs.
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Clearly, the assumption ω̃ �= 0 should be dropped and one should consider singular
modes and solve the initial value problem à la Landau [293] (see Section 2.3.3 [1])
in order to construct the stable response to an initial perturbation, which amounts
to an integral representation over the continuous spectra (13.40). This is what
Case [77] did, demonstrating that the initial value problem is well-posed for HD
and that the continuum contributions damp out as t−1.

For MHD, Hameiri [207] introduced the distinction between the Eulerian and
Lagrangian descriptions, noting that the former admits solutions that are absent in
the Lagrangian formulation. As pointed out at the end of Section 12.2.1, these
additional solutions correspond to the non-holonomic Eulerian entropy continua

ω ∈ {ΩE ≡ Ω0(x)} , (13.43)

for which the entropy perturbations SE1 cannot be expressed in terms of ξ. Un-
fortunately, since the frequencies of these continua coincide with those of the flow
continua (13.40) (which, on the contrary, are expressible in terms of ξ!), the misun-
derstanding could arise that these continua are the same as the flow continua and,
hence, that the flow continua also exist in MHD [416, 222, 40]. This confusion was
eliminated only recently by Goedbloed et al. [174] by means of an initial value ap-
proach similar to that of Case, demonstrating that the plasma response due to the
Alfvén and slow continua in MHD is completely analogous to the fluid response
due to the flow continua ΩHi in HD. That there is no place in MHD for continua in
addition to the Alfvén and slow MHD continua (13.19),

ω ∈ {Ω±
A ≡ Ω0(x)± ωA(x)} , ω ∈ {Ω±

S ≡ Ω0(x)± ωS(x)} , (13.44)

should be obvious from the fact that both of these expressions transform into the
flow continua (13.40) in the limit of vanishing magnetic field. Also note that
the spectral HD equation (13.42) is obtained in that limit from the incompress-
ible spectral equation (13.27), which in turn derives from the full MHD wave
equation (13.9). In other words: the HD flow continua (13.40) and the MHD
Alfvén and slow continua (13.44) are “robust”, i.e. they describe the global dy-
namics expressed in terms of holonomic variables, whereas the Eulerian entropy
continua (13.43) are “flimsy”, i.e. they are obtained from initial data that are in-
compatible with the ideal MHD constraints. Consequently, there is no coupling
between the Eulerian entropy continuum modes and either the HD flow continua
or the MHD Alfvén and slow continua, so that it is completely legitimate to restrict
the analysis to the holonomic Lagrangian description in terms of ξ, for MHD as
well as for HD.

Extending the discussion now to compressible fluids and plasmas, the degener-
acy of the Alfvén and slow continua is resolved and cluster spectra of fast waves
with limiting frequencies Ω±

F ≡ ±∞ and normal polarization (ξ → ξex) appear in
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Table 13.1 Essential spectra, with dominant variables, in HD and MHD.

MHD, whereas analogous cluster spectra of sound waves with limiting frequencies
Ω±

P ≡ ±∞ and normal polarization (v → v1xex) appear in HD. Moreover, like
the Alfvén and slow continua in MHD asymptotically characterize the two tangen-
tial (horizontal) degrees of freedom, those degrees of freedom are characterized
in HD by the two flow continua ΩH1 and ΩH2. Thus, the Lagrangian description
involves four modes in HD and six in MHD, in the Eulerian description extended
with the Eulerian entropy modes (see Table 13.1, where the different continua are
associated with the physical variables that become dominant for those frequencies).
This is how the continuous spectra along the real ω-axis asymptotically account for
the different degrees of freedom of the linearized dynamics of stationary plasmas.
(Note how the theme of counting variables, started in Sections 5.1 and 5.2 [1] for
the nearly trivial case of waves in homogeneous fluids, keeps returning!)

Let us now consider the wider problem of how the continua “determine” the full
spectral structure of waves and instabilities for stationary plasmas and fluids, i.e.
we turn to the full spectral equation (13.9) for MHD and its β ≡ 2p/B2 →∞ limit
for compressible HD with gravity. From the analogous discussion for static plas-
mas in Section 7.4 [1], it is logical to try to involve an oscillation theorem linking
the sequences of discrete modes to the extrema of the continua by means of some
monotonicity property. However, the attempt to generalize the oscillation theorem
of Section 7.4.3 [1] to stationary plasmas immediately runs into the problem that
the eigenfunctions become complex, i.e. the triple (ξ, η, ζ) of the field line pro-
jection (13.8), which has been constructed so as to be real for static plasmas, now
becomes intrinsically complex because the spectral variable ω̃2 is no longer real.
Hence, the solution of the spectral differential equation (13.9) for ξ = ξ1 + iξ2
would involve counting of nodes of both the real part ξ1 and the imaginary part ξ2
of the eigenfunctions. We may defer this tricky problem to the following section,
where we will discuss the instabilities of stationary plasmas, since ω̃2 does remain
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real for stable oscillations, ν = 0 ⇒ ω̃ = σ − Ω(x), so that ξ remains real.
Hence, a partial answer to the above question may be obtained by considering how
the continua determine the spectral structure for stable waves.

It is clear that the collection of Doppler shifts {Ω0(x)}, which in general is not
part of the continuous spectrum in MHD, nevertheless significantly alters the spec-
trum of stable waves. In particular, notice that the marginal stability threshold σ0,
defined in Eq. (12.140), is necessarily situated inside {Ω0(x)}. Also, the new con-
tinua {Ω±

A(x)} and {Ω±
S (x)} are no longer symmetric with respect to the origin

ω = 0, and they now depend on x through two factors, viz. ωA,S(x) and Ω0(x).
This, incidentally, opens up quite a number of new possibilities for resonant heating
and for the existence of peculiar quasi-modes. To establish the connection between
the continua and the structure of the stable part of the spectrum, we will prove the
following oscillation theoremR for stable waves [174]:

The eigenvalues of stable oscillations of a stationary plasma slab [or cylinder] are
monotonic (Sturmian or anti-Sturmian) in the number of nodes of the eigenfunc-
tion ξ [or χ] for real values of ω = σ outside the continua {Ω±

A(x)} and {Ω±
S (x)},

outside the apparent singularity ranges {Ω±
s0(x)} and {Ω±

f0(x)}, and outside the
Doppler–Coriolis indefinite point σ0 or range (σ1, σ0).

In square brackets, we have indicated that the theorem is also valid for cylindrical
plasmas since the equations for χ ≡ rξr have the same structure (see Section 13.3).
To prove it, we exploit the quadratic form (12.139) involving an eigenfunction ξα,
with eigenvalue σα, and a neighboring solution ξβ of the one-sided BVP (12.119),
(12.120)(a) satisfying the left BC, with parameter σβ (which is not an eigenvalue).
For the plane slab, we exploit the second order ODE (13.9) for ξ, or the system of
first order ODEs (13.15) for ξ and Π, with BCs (13.6). (Corresponding equations
for the cylinder may be found in Section 13.3.) Furthermore, we substitute the
quartic polynomials (13.19) and (13.20) for N and D into the expression (13.14)
for Π. The quadratic form (12.139) then reduces to the following lucid expression:

−ξβ(x2)Πα(x2) = ξβ
N(σα)
D(σα)

ξ′α

∣∣∣∣
x=x2

≡ ξβ (γp+B2)
(σα − Ω−

A)(σα − Ω−
S )(σα − Ω+

S )(σα − Ω+
A)

(σα − Ω−
f0)(σα − Ω−

s0)(σα − Ω+
s0)(σα − Ω+

f0)
ξ′α

∣∣∣∣
x=x2

= 2(σβ − σα)
[
σα − V (σα)

] ∫
ρ|ξα|2 dV . (13.45)

We now apply the usual Sturm–Liouville type of reasoning (see Section 7.4.3 [1]):
If σβ > σα and if ξα > 0 on (x1, x2), so that ξ′α(x2) < 0, the sign of ξβ(x2) is
necessarily negative (resp. positive), i.e. ξβ oscillates faster (resp. slower) than ξα,
if the sign of N/[(σα − V )D] is positive (resp. negative); QED.
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Fig. 13.3 Schematic spectrum of the stable oscillations of a stationary plane flow
(a) in hydrodynamics and (b) in magnetohydrodynamics. Continua are labeled
above, apparent singularities below the axis. Marginal transitions σ0 (resp. σ1)
in Ω0 are not indicated (the location of the origin σ = 0 inside Ω0 is accidental).

Note that, in the above proof, the boundary points x1 and x2 of the plasma may
be replaced by two subsequent zeros of the solution ξα, so that the theorem applies
to all oscillatory parts of the solutions. The same arguments apply for right solu-
tions of the one-sided BVP. Consequently, for σ /∈ {Ω±

A}, {Ω±
S }, {Ω±

s0}, {Ω±
f0},

and �= σ0 (assuming a single marginal point), Sturmian or anti-Sturmian depen-
dence of σ on the number of nodes of ξ is determined by the following expression:

N(σ)
(σ − σ0)D(σ)

⎧⎨⎩
> 0 : Sturmian

< 0 : anti-Sturmian
. (13.46)

This determines the spectral structure for real values of the eigenvalue parameter,
as illustrated in Fig. 13.3.
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In compressible HD, the Doppler shifts create the flow continua {ΩHi ≡ Ω0},
with possible cluster spectra of forward and backward gravity-driven g modes at
the ends [78, 128], and it also splits apart forward and backward pressure-driven p
modes (sound waves). See Section 7.2 [1] for the corresponding static case, where
the spectral equation (7.34) [1] provides the spectral equation for the stationary case
through the transformation ω → ω̃ . This also yields the expression for the apparent
HD singularities Ω±

p0 ≡ Ω0 ± k0c, where c is the sound speed, separating the p
and the g modes. In MHD (neglecting the Eulerian entropy modes), the Doppler
shifts do not create continua but they also split apart the forward and backward
parts of the spectrum. Thus, forward and backward continua Ω±

S , Ω±
A, Ω±

F are
separated by regions Ω0, Ω±

s0, Ω±
f0 of non-monotonicity of the discrete spectrum

which, otherwise, is either Sturmian (→) or anti-Sturmian (←) along the real ω-
axis [455]. This is how the spectrum of a gravitating static equilibrium (depicted
in Fig. 7.18 [1]) is changed by background flow.

The Sturmian and anti-Sturmian sub-spectra shown in Fig. 13.3 just indicate
possible structures for sizeable background flow but small inhomogeneity, as may
be obtained for any thin slice of plasma across the normal direction. This is so
since the sequence of singular frequencies (13.22) is well-ordered for fixed posi-
tion x, so that the collections of those frequencies may leave significant portions
of the real ω-axis, but only if the inhomogeneities of the equilibrium are not too
strong. One can stack slices like that to construct a (rather artificial) equilibrium
exhibiting all sub-spectra. However, for realistic equilibria, the continua may fold
over themselves, they may overlap, and they usually “swallow” large parts of the
discrete sub-spectra. Except for the p-modes in HD and the fast modes in MHD,
the continua even may not leave any space along the real axis for discrete modes.
(Hence, the original embarrassment about complete absence of discrete modes in
incompressible HD.)

In HD, possible ε-stability threshold(s) σε0 are located immediately above the
flow continua {Ω0}. In MHD (neglecting the Eulerian entropy modes), the Doppler
range {Ω0} does not correspond to continua but it also contains the stability thresh-
old σ0, or the range σ1 ≤ σ ≤ σ0, at least if it is not overlapped with the continua.
Overlap of the Doppler range with continua is always present if the direction of the
horizontal wave vector is somewhere (say at x = x0) perpendicular to the magnetic
field, so that ωA(x0) = 0 and Ω±

A(x0) = Ω±
S (x0) = Ω0(x0). Hence, although HD

and MHD spectral theories have many similarities, in particular that the Doppler
range {Ω0} delimits the strip of the complex ω plane where instabilities may occur
for both, they differ in the important respect that this role of the Doppler range
cannot be distinguished from that of the continua in HD, but it can in MHD. In
this respect (of removing a degeneracy), MHD spectral theory is simpler than HD
spectral theory. However, we will see what other ramifications occur.
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13.1.4 Complex eigenvalues and the alternator

For instabilities of plasmas with background equilibrium flow, we have to address
the fact that, due to the variable Doppler shift Ω0(x), the eigenvalues ω = σ + iν
and the eigenfunctions ξ = ξ1 + iξ2 are irreducibly complex. Notice though that
the x-dependence of the crucial function ω̃(x) only resides in the real part:

ω̃(x) = σ̃(x) + iν , σ̃(x) ≡ σ − Ω0(x) . (13.47)

We will exploit the first order eigenvalue system (13.15), where we split all func-
tions that occur into real and imaginary parts:⎛⎜⎜⎜⎜⎜⎜⎝

ξ′1
ξ′2
Π′

1

Π′
2

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
Ĉ1 −Ĉ2 D̂1 −D̂2

Ĉ2 Ĉ1 D̂2 D̂1

Ê1 −Ê2 −Ĉ1 Ĉ2

Ê2 Ê1 −Ĉ2 −Ĉ1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ξ1

ξ2

Π1

Π2

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 . (13.48)

The explicit expressions of the real and imaginary parts of the coefficients Ĉ ≡
C/N , D̂ ≡ D/N and Ê ≡ E/N are put in small print below.

� Explicit expressions of the matrix elements The elements of the first order system of
ODEs (13.48) are given by the expressions

Ĉ1 ≡ (N1C1 +N2C2)/|N |2 , Ĉ2 ≡ (N1C2 −N2C1)/|N |2 ,
D̂1 ≡ (N1D1 +N2D2)/|N |2 , D̂2 ≡ (N1D2 −N2D1)/|N |2 ,
Ê1 ≡ (N1E1 +N2E2)/|N |2 , Ê2 ≡ (N1E2 −N2E1)/|N |2 , (13.49)

with the factors

N1 = (γp+B2)
[
(R− ω2

A)(R− ω2
S)− I2

]
, N2 = I (γp+B2) (2R− ω2

A − ω2
S) ,

D1 = R2 − I2 − k2
0

(
(γp+B2)/ρ

)
(R− ω2

S) , D2 = I
[
2R− k2

0

(
(γp+B2)/ρ

)]
,

C1 = − ρg[R(R− ω2
A)− I2

]
, C2 = −Iρg (2R− ω2

A) ,

E1 = − ρ(γp+B2)
{

(R− ω2
A + ρ′g/ρ)

[
(R− ω2

A)(R− ω2
S)− I2

]
− I2(2R− ω2

A − ω2
S)
}
− ρ2g2

[
(R− ω2

A)2 − I2
]
,

E2 = − I
[
ρ(γp+B2)

{
(R− ω2

A)(R− ω2
S)− I2

+ (R− ω2
A + ρ′g/ρ)(2R− ω2

A − ω2
S)
}

+ 2ρ2g2(R− ω2
A)
]
, (13.50)

where σ and ν only occur in the combinations

R(x;σ, ν) ≡ Re(ω̃2) = σ̃2 − ν2 , I(x;σ, ν) ≡ Im(ω̃2) = 2σ̃ν . (13.51)
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For incompressible plasmas (γp→∞), the coefficients Ĉ → 0, D̂ → −k2
0/[ρ(ω̃

2)−ω2
A],

Ê → −ρ(ω̃2 − ω2
A)− ρ′g , so that only the off-diagonal elements D̂1,2 and Ê1,2 survive:

D̂1 = − k2
0(R− ω2

A)
ρ[(R− ω2

A)2 + I2 ]
, D̂2 =

k2
0 I

ρ[(R− ω2
A)2 + I2 ]

,

Ê1 = − ρ (R− ω2
A)− ρ′g , Ê2 = −ρI . (13.52)

Note that, although the terms are significantly simpler, the complexity of the numerical
procedure does not change by this transformation. �

The eigenvalues of instabilities are determined by solving the ODEs (13.48)
subject to the BCs (12.120), which we now split into real and imaginary parts,

BVP:

⎧⎨⎩ ξ1(x1) = ξ2(x1) = 0 (left BCs)

ξ1(x2) = ξ2(x2) = 0 (right BCs)
. (13.53)

Numerical solution of the ODEs for a given value of ω is straightforward if this
two-sided BVP is turned into a one-sided BVP (according to the exposition of
Section 12.3), by “shooting”, either from the left or from the right. (Accurate
numerical library subroutines exist to solve the one-sided BVP for a system of first
order ODEs with any number of unknowns; see Section 7.5.1 [1] for the “shooting”
method in the similar problem of static plasmas, where ξ(x) and Π(x) are real.)
Hence, the above two-sided BVP will be turned into either a left one-sided BVP
with solutions ξ	, or a right one with solutions ξr (lower case superscripts here
since these solutions are not yet assumed to correspond to a solution path),

left BVP: ξ	1(x1) = ξ	2(x1) = 0 , Π	
1(x1) = 1 , Π	

2(x1) = 0 ; (13.54)

right BVP: ξr1(x2) = ξr2(x2) = 0 , Πr
1(x2) = 1 , Πr

2(x2) = 0 . (13.55)

Here, we have chosen unit boundary conditions for Π	
1(x1), or Πr

1(x2), to initialize
the derivatives of ξ	, or ξr. Note that this does not restrict the generality of the
method since one can transform the solution found to correspond to any mix of
initial derivatives by multiplying by a complex phase factor exp(iφ).

Suppose we shoot from the left. For arbitrary ω = σ + iν, we then solve the
ODEs (13.48) by imposing the left BCs (13.54) on the complex functions ξ and Π.
This provides a solution of the one-sided BVP that obviously does not qualify as an
eigenfunction since, in general, it will not satisfy the right BCs (13.53)(b). One of
those BCs can easily be satisfied, without changing the value of ω, by multiplying
the solution found by a judicious choice of the mentioned phase factor:

ξ̃ = eiφξ , tanφ ≡ −ξ2(x2)/ξ1(x2) ⇒ ξ̃2(x2) = 0 . (13.56)

To satisfy the other BC, the value of ω needs to be changed iteratively such that the
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“error” |ξ̃1(x2)| diminishes. If the iteration converges, eventually ξ̃1(x2) = 0 as
well and a solution of the two-sided BVP with associated eigenvalue is obtained.

One might wish to exploit the phase factor to force the problem into the Sturm–
Liouville type of studying the oscillatory behavior of the real components ξ1(x)
and Π1(x), as was done in Section 13.1.3 for the real functions ξ and Π of stable
oscillations. However, the freedom of choice of the arbitrary phase factor can be
applied to any internal point x ∈ [x1, x2], so that zeros of one of the components
ξ1 or ξ2 can be created anywhere. This shows that the Sturm–Liouville type of
counting nodes cannot be applied for complex solutions. We need to exploit an-
other criterion for the approach to eigenvalues. Evidently, this will come from the
exploitation of the solution paths PL

u and PR
u , introduced in Section 12.3.

A concomitant advantage of not fixing the phase factor this way, but just letting it
be determined by the condition (13.54) or (13.55), is the simplicity of the resulting
boundary properties of the left and right solutions. The Wronskian of two arbitrary
solutions ξα and ξβ of the one-sided BVP for the same value of ω is constant,

ξα(x)Πβ(x)− ξβ(x)Πα(x) = const , (13.57)

which is easily proved by differentiation with respect to x and substitution of the
derivatives by the expressions of the system of first order ODEs (13.15). Applica-
tion to ξr and ξ	 at the end points x1 and x2 yields[

(ξr1 + iξr2)(Π
	
1 + iΠ	

2)
]
x1

= −
[
(ξ	1 + iξ	2)(Π

r
1 + iΠr

2)
]
x2

, (13.58)

which, upon application of the BCs (13.54) and (13.55) to Π	
1,2 and Πr

1,2, leads
to the following useful relations between the boundary values of ξ	 and ξr on the
opposite sides (the end points) of the integration interval:

ξr1(x1) = −ξ	1(x2) , ξr2(x1) = −ξ	2(x2) . (13.59)

This demonstrates the equivalence of shooting from the left and shooting from the
right. We will exploit both though, doubling the computational effort, in order to
create a third path of solutions, intermediate between the left and right paths, that
has some attractive properties.

The solutions ξ	1(x;ω) and ξr1(x;ω) of the respective BVPs may be obtained for
any value of ω, but we now restrict those values to the solutions paths PL

u and PR
u

defined by Eq. (12.127):

ξ	(x;ω) → ξL(x;σu, νu) , σu = σL
u(νu) ,

ξr(x;ω) → ξR(x;σu, νu) , σu = σR
u (νu) . (13.60)

Note that this implies that different values of ω apply for ξL and ξR, since they refer
to different paths. Solving the nonlinear equation σu = V [ξL(σu, νu)] for PL

u , or



68 Shear flow and rotation

σu = V [ξR(σu, νu)] for PR
u , involves the evaluation of the integral average of the

operator U . According to the expression (12.128), this is equivalent to finding the
zeros of the imaginary component W L

2 (σu, νu), or WR
2 (σu, νu), of the potential

energy. For the numerical implementation, this expression is to be preferred over
the integral since it does not require addition operations (with associated loss of
accuracy), but just involves the boundary values of the solutions obtained. Not
only that, but it also provides the quantity we are looking for, replacing the node
counter of the real problem, viz. the alternating ratio R of the variables ξ and Π,
or alternator for short,1 which is real on the solution path:

W L
2 (σu, νu) = 1

2

[
ξL
1 ΠL

2 − ξL
2 ΠL

1

]
x2

= 0

⇒ RL ≡ ξL(x2)
ΠL(x2)

(PL
u )

=
ξL
1 (x2)

ΠL
1(x2)

(PL
u )

=
ξL
2 (x2)

ΠL
2(x2)

, (13.61)

WR
2 (σu, νu) = −1

2

[
ξR
1 ΠR

2 − ξR
2 ΠR

1

]
x1

= 0

⇒ RR ≡ ξR(x1)
ΠR(x1)

(PR
u )

=
ξR
1 (x1)

ΠR
1 (x1)

(PR
u )

=
ξR
2 (x1)

ΠR
2 (x1)

. (13.62)

Both RL and RR exhibit tangent-like dependence on the imaginary part ν of the
eigenvalue (see Fig. 13.6). Eigenvalues on the left, resp. right, solution path are
approached for RL → 0, resp. RR → 0. Hence, the eigenvalue problem amounts
to determining the zeros of RL on the solution path PL

u , or the zeros of RR on the
solution path PR

u . Thus, the Sturm–Liouville analysis of counting internal nodes
of real solutions is replaced by the study of the alternating ratio of boundary values
of the complex solutions. Since numerical solution of systems of ODEs and de-
termination of the zeros of real functions can be carried out with virtual unlimited
accuracy, the study of the alternator along solution paths in the complex ω plane
becomes the method of choice for the determination of the spectrum of stationary
plasmas. In the next section, we will apply it to a variety of instabilities.

One may create a third path, intermediate between PL
u and PR

u , that treats the
two plasma boundaries on an equal footing. This is the middle path PM

u obtained
from the left and right solutions ξ	 and ξr (now with lower case � and r since they
refer to values of ω on the middle path) by averaging the two average Doppler
shifts:

σu = V [ξM(σu, νu)] ≡

∫ (
ξ	

∗ · Uξ	 + ξr∗ · Uξr
)
dV∫

ρ
(
|ξ	|2 + |ξr|2

)
dV

⇒ PM
u ≡ {σM

u (νu)} .
(13.63)

1 Note the relationship to the mechanical impedance Z, defined in Eq. (10.99) of Section 10.5 [1] to describe the
complex frequencies of leaky modes: Z ≡ R−1.
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One can show that the integral expression, in fact, corresponds to the average
Doppler shift of the solution ξM ≡ ξ	 ± iξr with associated ΠM ≡ Π	 ± iΠr, of
some intermediate BVP (that need not be specified further), since the cross con-
tributions of ξ	 and ξr to the integrals cancel. From these definitions and the re-
lations (13.59), the boundary values of ξM on opposite sides of the integration
interval are related by

ξM
1 ≡ ξ	1 ∓ ξr2 ⇒ ξM

1 (x2) = ξ	1(x2) = −ξr1(x1) = ∓ξM
2 (x1) ,

ξM
2 ≡ ξ	2 ± ξr1 ⇒ ξM

2 (x2) = ξ	2(x2) = −ξr2(x1) = ±ξM
1 (x1) , (13.64)

whereas the BCs (13.54) and (13.55) provide the boundary values of ΠM,

ΠM
1 ≡ Π	

1 ∓Πr
2 ⇒ ΠM

1 (x2) = Π	
1(x2) , ΠM

1 (x1) = ∓Πr
2(x1) + 1 ,

ΠM
2 ≡ Π	

2 ±Πr
1 ⇒ ΠM

2 (x2) = Π	
2(x2)± 1 , ΠM

2 (x1) = ±Πr
1(x1) . (13.65)

Exploiting these boundary relations, the imaginary energy expression (12.123) for
the path PM

u , in fact, reduces to the sum of left and right path contributions:

WM
2 (σu, νu) = − 1

2

[
ξM
1 ΠM

2 − ξM
2 ΠM

1

]
x1

+ 1
2

[
ξM
1 ΠM

2 − ξM
2 ΠM

1

]
x2

= − 1
2

[
ξr1Πr

2 − ξr2Πr
1

]
x1

+ 1
2

[
ξ	1Π	

2 − ξ	2Π	
1

]
x2

= W r
2 +W 	

2 = 0 .
(13.66)

The first line of this expression may be converted into[
ξM
1 (x2)∓ξM

2 (x1)
][

ΠM
2 (x2)∓ΠM

1 (x1)
]

=
[
ξM
2 (x2)±ξM

1 (x1)
][

ΠM
1 (x2)±ΠM

2 (x1)
]
.

(13.67)
Hence, defining the symmetrized boundary displacement,

ξ̂M
1 ≡ 1

2 [ξM
1 (x2)∓ ξM

2 (x1)] = 1
2 [ξ	1(x2)− ξr1(x1)] ,

ξ̂M
2 ≡ 1

2 [ξM
2 (x2)± ξM

1 (x1)] = 1
2 [ξ	2(x2)− ξr2(x1)] , (13.68)

and the average total pressure perturbation at the boundaries,

Π̂M
1 ≡ 1

2 [ΠM
1 (x2)±ΠM

2 (x1)] = 1
2 [Π	

1(x2) + Πr
1(x1)] ,

Π̂M
2 ≡ 1

2 [ΠM
2 (x2)∓ΠM

1 (x1)] = 1
2 [Π	

2(x2) + Πr
2(x1)] , (13.69)

the appropriate alternator for the middle path turns out to be

RM ≡ ξ̂M

Π̂M

(PM
u )
=

ξ̂M
1

Π̂M
1

(PM
u )
=

ξ̂M
2

Π̂M
2

. (13.70)

Note that the computation of all expressions for the middle path requires no oper-
ations in addition to the computation of the expressions for ξ	 and ξr.

Based on the general theory expounded, the spectrum of flow-driven instabilities
is now found by the following two, quantitatively very different, methods:
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(1) Contour plotting In the following, as a visual aid, we first solve the eigenvalue prob-
lem graphically, in the full strip of the

Doppler range :

{
Ω0,min ≤ σ ≤ Ω0,max

0 ≤ ε ≤ ν ≤ νub

, (13.71)

by contour plotting the following functions:

W
L/R/M
2 (σ, ν) = 0 (three solution paths) ,

ξ1e(σ, ν) = 0 (real amplitude at the end point) ,

ξ2e(σ, ν) = 0 (imaginary amplitude at the end point) . (13.72)

Here, νub is an estimate of the upper bound of the growth rate as given by one of the
integral expressions derived by Barston [24] and Hameiri [209], and ξ1,2e ≡ ξ1,2(xe)
refers to the end point of the integration interval. The first three curves produce the
solution paths PL

u , PR
u and PM

u , intersected at the eigenvalues by the latter two curves.
Any pair of curves involving at least one of the latter two suffices to fix an eigenvalue,
the intersection of the other curves at the same point can be taken as a check.

(2) Eigenvalue search on solution paths The complex eigenvalues are found by first fixing
a series of one or more boxes, labeled by k, inside the Doppler range (13.71),

k boxes :

{
Ω0,min ≤ σ(k)

min ≤ σu ≤ σ(k)
max ≤ Ω0,max

0 ≤ ε ≤ ν(k)
min ≤ νu ≤ ν(k)

max ≤ νub

, (13.73)

determining the fragments of the solution path inside these boxes and composing the
full path from them,

W2
L/R/M

(
σu(νu)

)
= 0 ⇒ three paths: PL

u ,PR
u ,PM

u , (13.74)

and then computing the zeros of the three alternators on their respective solution paths,

R L/R/M
(
σu(νu)

)
= 0 ⇒ EVs: {σn, νn}, n = 1, 2, . . . . (13.75)

The solutions of Eqs. (13.74) and (13.75) may be obtained by the very accurate root
finding routines available (e.g., Numerical Recipes [385]), provided W2 has opposite
sign on the left and right borders (as is the case when the box is as large as the Doppler
range itself) so that the paths intersect the bottom and top borders of the box. As will
emerge from the examples of the following Section 13.2, the boxes should also be
narrow enough to admit not more than one solution of Eq. (13.74).

Obviously, the first (2D) approach does not lead to very accurate results, and
it is also computationally more expensive than the second (1D) method, since it
blindly scans the complex ω-plane. However, it turns out to be very useful to sort
out the relevant regions, i.e. the number and sizes of the boxes, for the search of
eigenvalues by the second method.
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Note that the three paths PL
u , PR

u , PM
u themselves also cross at the eigenvalues,

but that does not fix the eigenvalues uniquely since they also cross at intermediate
points where Π̂1 = Π̂2 = 0, according to Eq. (13.66) (see, e.g., Fig. 13.5). Those
points could be considered as the solutions of another eigenvalue problem where,
for some or the other reason, one wishes to have the total pressure perturbation
vanish at the boundary. Incidentally, this implies that the methods presented here
can be applied to a wide variety of physical problems.

13.2 Case study: flow-driven instabilities in diffuse plasmas

We now possess the appropriate tools to explore the spectra of some representative
stationary equilibria with respect to the effects of gravity, due to a non-constant
density ρ(x), of velocity shear, due to the variation of the magnitude of a uni-
directional flow field v(x), and of magnetic shear, due to the varying direction of a
constant amplitude magnetic field B(x) (see Fig. 13.1). We will choose parameters
such that gravity-driven Rayleigh–Taylor instabilities and velocity-driven Kelvin–
Helmholtz instabilities may occur simultaneously, but the current-driven magnetic
shear will be limited to a stabilizing influence only. (Current-driven instabilities
will be investigated in Chapter 14.) For the time being, we restrict the analysis to
incompressible perturbations of plasmas described by the following quantities:

k0 = k0ez , g = const , ρ(x) = ρ0 (1− δx) (x ∈ [0, 1]) ,

v(x) = v(x)(sin θey + cos θez), v(x) = v0 + v1(x− 1
2) + v2 sin τ(x− 1

2),

B(x) = B0 [ sinϕ(x)ey + cosϕ(x)ez] , ϕ(x) = ϕ0 + α(x− 1
2) . (13.76)

Note that the magnetic field is force-free, j = ∇×B = αB, where α corresponds
to the magnetic shear, ϕ′ = α. As always, we exploit dimensionless variables,
based on the three unit scales of length a ≡ x2− x1, density ρ0 and magnetic field
strength B0. Obviously, the profiles and the ten free parameters k0, δ, g, θ, v0, v1,
v2, τ , ϕ0, α can be extended to model any other desired distribution.

The equilibrium pressure may also be computed, p(x) = p0−(x− 1
2δx

2)g, but it
does not occur in the spectral equations for incompressible perturbations. For that
case, the Alfvén and slow continua coincide so that the equilibria are characterized
by the frequencies of the degenerate static continua (MHD) and of the Doppler
range (MHD) or flow continua (HD),

ωA/S(x) ≡ k0 ·B√
ρ

= k0
cosϕ(x)√
ρ(x)

Ω0(x) ≡ k0 · v = k0 cos θ v(x)

⎫⎪⎬⎪⎭ ⇒ Ω±
A/S(x) ≡ Ω0(x)± ωA/S(x) .

(13.77)
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Fig. 13.4 Characteristic frequencies of four equilibria: (a) magnetized gravitating
plasma without magnetic shear and with linear density and flow profiles (MHD1),
(b) the same with magnetic shear and with sinusoidal flow profile, τ = 4 (MHD2)
[arrows indicate potential clustering from criteria with “2nd” or “1st” derivatives];
(c) fluid with sinusoidal flow profile, τ = 5 (KH1), (d) the same, τ = 11 (KH3).

These frequencies are plotted in Fig. 13.4 for two representative MHD examples
and three HD ones (KH2 is omitted in the figure), which we here list, together with
their parameter values, in the order in which they will be treated:

(a) MHD1: Rayleigh–Taylor instabilities of stationary plasma with uni-directional mag-
netic field and linear velocity profile (Figs. 13.4(a), 13.5–13.7),

k0 = 1 , δ = −5 , g = 15 , ϕ0 = −0.35π , α = 0 ,

θ = 0.35π , v0 = 0.2 , v1 = 0.6 , v2 = 0 , τ = 0 ;

(b) KH1/2/3: Kelvin–Helmholtz instabilities of stationary fluid with sinusoidal velocity
profile (Figs. 13.4(c),(d), 13.8–13.10),

k0 = 1 , δ = 0 , g = 0 , θ = 0 , v0 = v1 = 0 , v2 = 1 , τ = 5/8/11 ;

(c) MHD2: Rayleigh–Taylor and Kelvin–Helmholtz instabilities of stationary plasma with
magnetic shear and sinusoidal velocity profile (Figs. 13.4(b), 13.11–13.13),

k0 = 1 , δ = −5 , g = 100 , ϕ0 = 0.5π , α = −π ,
θ = 0 , v0 = 1 , v1 = 2 , v2 = 1 , τ = 4 .
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We will refer to the different cases by the stated acronyms. In the MHD examples,
we have freely chosen ρ′ > 0 in order to study unstable “inverted atmospheres”
(cf. Case [79] for a corresponding HD example), without addressing the question
of what would cause such a density distribution (obviously, not gravity).

13.2.1 Rayleigh–Taylor instabilities of magnetized plasmas

In the first example (MHD1), the pure Rayleigh–Taylor instability mechanism is
operating. The velocity field v and the magnetic field B are both taken uni-
directional, making angles of +0.35π and−0.35π with the horizontal wave vector.
This yields forward continua that are well separated from both the Doppler range
and the backward continua. This creates the “space” for an infinite sequence of
gravitational (g) modes clustering at the minimum x0 ≈ 0.318 (which is also the
edge) of the degenerate forward Alfvén/slow continua, where (Ω+

A/S)min ≈ 0.323
(indicated by “2nd” in Fig. 13.4(a)). The condition for clustering is derived from
the spectral equation (13.27) for incompressible plasmas, in complete analogy to
the derivation for static compressible plasmas presented in Section 7.4.4 [1]. This
yields clustering of the gravitational modes at the real frequency ω = Ω±

A/S(x0),

where Ω±′
A/S = 0 , if

⎧⎪⎨⎪⎩
either k2

0ρ
′g < ±1

4 ρωA/S(Ω′′
0 ± ω′′

A/S) < 0 ,

or k2
0ρ

′g > ±1
4 ρωA/S(Ω′′

0 ± ω′′
A/S) > 0 .

(13.78)
Of course, the ±s in these expressions correspond to the different cases of forward
and backward continua. The second condition is satisfied for the present example.
The general conditions for clustering in stationary compressible plasmas (at the
separate Alfvén and slow continua) have been derived by van der Holst et al. [455].
Note that one does not obtain the above criteria in the limit γ → ∞ from those
conditions (different factors k2

⊥ and k2
‖ occur) because the above ones are the result

of the confluence of six of the eight N = 0 and D = 0 singularities of the general
spectral equation (13.9) in the incompressible limit.

The cluster point (Ω+
A/S)min is necessarily stable since it lies outside the Doppler

range [−0.0454, 0.2270]. Consequently, only a limited number (n ≤ 6) of the
cluster sequence is Rayleigh–Taylor unstable, as shown by the method 1 contours
in Fig. 13.5. The three paths oscillate around the six eigenvalues (and the in-
termediate points mentioned above). As expected, the middle path provides the
smoothest curve through them, so that it is the most attractive candidate for accu-
rate computation of the eigenvalues. Along this path, the transition from unstable to
stable occurs at σM

0 ≈ 0.127, i.e. far to the right of the edge (Ω−
A/S)max ≈ 0.0417

of the backward continua (indicated by the black piece of the σ-axis in the figure).



74 Shear flow and rotation

Fig. 13.5 Contours in the complex ω plane where the imaginary component of the
energy vanishes, W L/R/M

2 = 0, determining the left, right and middle paths, and
contours of vanishing boundary values of the displacement vector, ξ1e = 0 and
ξ2e = 0. Eigenvalues are located at the intersections of all curves (MHD1).

It should be stressed though that this transition does not correspond to a marginally
stable state of this equilibrium since there is no eigenvalue at this point.

The alternator R(ν) along the middle path, obtained with method 2, is shown
in Fig. 13.6(a). Whereas the real and imaginary components ξ1e and ξ2e of the
displacement vector do not oscillate in step in the interior points of the plasma,
the alternator keeps track of when they change sign simultaneously at the plasma
boundary, so that |ξe| = 0, which is necessary to have an eigenvalue. This can only
happen for values of ω on the solution path. Because of the symmetry properties of
the eigenvalue problem for the middle path, the absolute value of the total pressure
perturbation also vanishes at points of that path, |Πe| = 0, as shown in Fig. 13.6(b).
Of course, for a system of non-singular ODEs, those points cannot coincide with
the former ones. In fact, the zeros of |ξe| and |Πe| nicely alternate, as shown in
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Fig. 13.6 (a) Alternator R(ν) and (b) absolute values |ξe(ν)| and |Πe(ν)| along the
middle path (MHD1). The eigenvalues occur for R = 0, where |ξe| = 0.

Fig. 13.6(b). Hence the appropriate name “alternator” for R. It turns out to be
a perfect counter, where every new zero |Πe| = 0 initiates a new branch of R,
running from +∞ to −∞, so that the zeros |ξe| = 0 may be computed with very
high precision.

The resulting full spectrum is shown in Fig. 13.7. The six unstable eigenvalues
(and their damped complex conjugate counterparts) on the middle path join both
the Sturmian sequence of stable g-modes, clustering at the mentioned minimum
(Ω+

A/S)min of the forward continua, and another, isolated, stable g-mode on the
anti-Sturmian part of the σ-axis, bounded by the edge of the backward continua.
This is in perfect agreement with the oscillation theoremR of Section 13.1.3. The
number of nodes n of the eigenfunctions ξ(x), which are effectively real on the
σ-axis, turns out to be a direct continuation (at n = 7 and n = 7′) of the label
n of the unstable modes. Whereas along the real axis the number n counts the
number of internal nodes of the real eigenfunctions, along the solution path PM

u

the label n of the alternator counts the number of changes of sign of both the
real and the imaginary parts of the eigenfunctions ξ1e or ξ2e at the boundary. In
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Fig. 13.7 Spectrum of discrete unstable modes, and their damped complex conju-
gates, on the middle path joins the stable oscillations on the real axis (MHD1). The
Sturmian branch of the stable gravitational modes clusters towards the lower end
point of the forward continua, the anti-Sturmian branch contains only one mode
(indicated by 7′).

this way, we have constructed a counter for complex eigenfunctions that does not
require counting of the internal nodes of either the real or the imaginary part of
the eigenfunctions. It appears that we have obtained a genuine generalization for
complex eigenvalues of oscillation theorem R of Section 13.1.3. However, some
serious hurdles need to be overcome yet.

13.2.2 Kelvin–Helmholtz instabilities of ordinary fluids

All flow-driven instabilities are complex but some are more complex, as we will see
in this sub-section. In particular, the Kelvin–Helmholtz instability in the simplest
configurations gives rise to surprisingly complex solution paths in the ω plane. We
will first study them in HD and then in MHD.

We have encountered the Kelvin–Helmholtz instability in Section 13.1.2 when
discussing instabilities of interface plasmas consisting of two layers with different
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densities, velocities, and magnetic fields. The resulting expression (13.34) for the
growth rate of instabilities appears to be quite “general”, but it could falsely be
taken to suggest that the Kelvin–Helmholtz instability just requires a velocity gra-
dient to drive it. In a streaming diffuse fluid or plasma, the conditions for instability
are much more subtle than that, as could have been expected from the fact that there
is no discrete spectrum of stable modes that could be studied perturbatively to find
out about transitions to instability. In a sense, the Kelvin–Helmholtz instability is
a perturbation of the flow continua ΩHi, given by Eq. (13.40).

To appreciate the subtleties, let us return to a simple incompressible fluid layer
with a uni-directional velocity of arbitrary amplitude, v = v(x)ez . In either of
the pertinent spectral equations (13.42) for the stream function χ, or for the fluid
displacement ξ, the only expression that occurs (in addition to the factor k0) is
precisely the one that determines the flow continua,

ω̃(x) ≡ ω − Ω0(x) = ω − k0v(x) . (13.79)

For a linearly increasing velocity profile, the spectral equation for χ immediately
shows that the fluid is stable since the term ω̃′′ = −Ω′′

0 = −k0v
′′ vanishes so that

only a continuous spectrum ω̃ = 0 remains (actually two, on top of each other,
viz. the mentioned flow continua, as is evident from the spectral equation for ξ).
Hence, it is necessary for instability to have a velocity profile with v′′ �= 0 over
some region. This appears to imply that only local profile conditions matter, but
we already made the parenthetical remark “in addition to the factor k0”. That factor
cannot be scaled out of the problem since the length scale is fixed by the thickness
a ≡ x2−x1 of the fluid layer, determining the length scale of the inhomogeneities.
This observation is crucial because the solutions of the spectral equation (13.42)
become exponentially dominant for large k0 (small wavelength), so that it is im-
possible to satisfy the boundary conditions then. Hence, in addition to the local
criteria that are discussed below, the Kelvin–Helmholtz instability only occurs if
k0 is small enough, so that it is a global, long wavelength, instability.

The local conditions on the velocity profile are obtained as follows (see Drazin
and Reid [124]). Depart from the spectral equation (13.42) for χ, multiply by
χ∗, integrate over the plasma volume, transform the second derivative of χ by
integration by parts and cancel the boundary terms by satisfying the BCs:

χ′′ − k2
0χ−

ω̃′′

ω̃
χ = 0 ⇒ −

∫
ω̃′′

ω̃
|χ|2 dx =

∫ (
|χ′|2 + k2

0|χ|2
)
dx

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Re:

∫ (σ − Ω0)Ω′′
0

(σ − Ω0)2 + ν2 dx =
∫ (
|χ′|2 + k2

0|χ|2
)
dx ,

Im: − ν
∫ Ω′′

0

(σ − Ω0)2 + ν2 dx = 0 .
(13.80)
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From the imaginary part it follows that it is necessary for instability (ν �= 0) that
the velocity profile should have an inflexion point, v′′(xi) = 0, somewhere in the
flow (Rayleigh’s inflexion point theorem). A sharper criterion follows by adding
the two expressions after multiplication of the second one by [σ − Ω(xi)]/ν :

−
∫ (Ω0 − Ω0(xi))Ω′′

0

(σ − Ω0)2 + ν2 dx =
∫ (
|χ′|2 + k2

0|χ|2
)
dx > 0 . (13.81)

This implies that it is necessary for instability that the velocity profile should satisfy
[v − v(xi)]v′′ < 0 somewhere in the flow (Fjørtoft’s theorem).

In our second example (KH1/2/3), we have chosen the velocity profile to be si-
nusoidal with an inflexion point in the middle of the fluid, so that Fjørtoft’s theorem
is satisfied (nearly) everywhere:

v(x) = v2 sin τ(x− 1
2) ⇒ [v−v(xi)]v′′ = −τ2v2

2 sin2 τ(x− 1
2) ≤ 0 . (13.82)

This does not imply that the fluid is unstable for every value of τ since we still
have to consider the global boundary value problem, involving k0. This nearly
automatically implies numerical analysis, but we can obtain analytical stability
thresholds for this example because of the highly symmetrical velocity profile cho-
sen (Fig. 13.4(c) and (d)). As a result, these thresholds occur for ω = 0, when
ω̃′′/ω̃ → v′′/v = −τ2, so that marginal solutions are obtained for τ = τn:

χ′′−(k2
0−τ2)χ = 0 ⇒ χ = A sinnπx , τn ≡

√
k2

0 + n2π2 (n = 1, 2, · · ·).
(13.83)

For our example, with k0 = 1, this implies that instability sets in for τ > τ1 ≈
3.297, whereas for τ > τ2 ≈ 6.362 and for τ > τ3 ≈ 9.478, etc., new unstable
windows appear in the stability diagram, as depicted in Fig. 13.9. The three cases
τ = 5 (KH1), τ = 8 (KH2) and τ = 11 (KH3) have been chosen to illustrate how
the Kelvin–Helmholtz instability gives rise to qualitatively different spectra in the
different windows, as shown in the top frames of the figure.

Before we discuss those differences, we have to consider a striking new feature
in our analysis of the instabilities of stationary fluids, as manifested by the contour
plots of the solution paths of Figs. 13.8: for specified (left/right/middle) BVP,
the solution path no longer consists of a single curve, but it splits up! Previously
(Section 13.2.1), the solution path consisted of a single curve in the Doppler range
running from ν = +∞ to ν = 0 (and continuing to ν = −∞ for the complex
conjugate part), so that a single point on the real σ-axis could be considered to
represent the stability transition. With the Doppler range now corresponding to
continuous spectra (the flow continua), this changes dramatically: there is still a
continuous curve running from ν = +∞ to ν = ε (and a corresponding one from
ν = −ε to ν = −∞), as there should be since the path equations (13.74) have at
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Fig. 13.8 Contours in the complex ω plane of W L/R/M
2 = 0, determining the left,

right and middle path, and of ξ1e = 0 and ξ2e = 0, determining the eigenvalues
(indicated by the arrows), for fluid with sinusoidal flow profile, (a) τ = 5 (KH1),
(b) τ = 8 (KH2).

least one solution for each value of ν, but there are now additional loops between
points of the continuous spectrum.
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Fig. 13.9 Real (σ) and imaginary (ν) part of the eigenfrequency of the Kelvin–
Helmholtz instability as a function of the parameter τ measuring the period of the si-
nusoidal flow profile. Every time τ increases beyond a critical τn ≡ [k2

0+(nπ)2]1/2,
two more complex eigenvalues emerge from the origin ω = 0. Insets above the fig-
ure show the spectra for τ = 5 (KH1), τ = 8 (KH2) and τ = 11 (KH3).

In the example of Fig. 13.8(a) (KH1, τ1 < τ < τ2), the eigenvalue (indicated by
the arrow) is situated on the straight line σ = 0 through the origin for the middle
solution, but it is situated on a loop between points of the continuum for the left and
right solutions. This should not be taken to imply that the middle path represents
a superior solution, since its symmetry is just a consequence of the symmetry of
the first set of modes for these equilibria. When the value of τ is increased, as in
Fig. 13.8(b) (KH2, τ2 < τ < τ3), instead of the symmetric (σ = 0) pair of complex
eigenvalues, four asymmetric (σ �= 0) ones appear (see Fig. 13.9). In the contour
plots, those eigenvalues are situated on wiggling loops of the left and right paths,
whereas the middle path even ejects two small separate loops (not connected to the
continuous spectrum) to host the eigenvalues.

Clearly, the occurrence of multiple solutions to the path equations (13.74) is a
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major complication for the systematic study of the spectra of stationary fluids and
plasmas. This complication can not be avoided since the equation determining the
path σu(νu) is a highly implicit and nonlinear equation, depending on the details
of the equilibrium through the substitution of the solution ξ(x;σu + iνu) of the
spectral equation. Moreover, the strange behavior of the solution paths is not a
mathematical artifact of the method chosen to solve the spectral problem, but it
represents the actual physics of the extended model II problem for a plasma with
an adjacent vacuum layer of arbitrary thickness on the top (left solutions), on the
bottom (right solutions), or both on top and bottom (middle solutions). Hence, we
have to face this complication and study the topology of the solution paths.

Topology of the solution paths First of all, we need to introduce appropriate ter-
minology for the occurrence of multiple solution paths. We will continue to use
the term path for the whole system of sub-paths representing the solution of the
extended model II problem, on some (not all!) of which the wanted eigenvalues
of the restricted model I problem are found. Sub-paths will represent disconnected
branches of the full solution path. For the example of the Kelvin–Helmholtz insta-
bility for τ = 8, depicted in Fig. 13.8(b), it is obvious that the left solution path
(in green) consists of, at least, two sub-paths, viz. (1) the single curve going down
from σ > 0, νu = +∞ to the point σ ≈ −0.72, ν = 0 of the flow continuum, and
(2) another single curve connecting the two points σ = ν = 0 and σ ≈ 0.98, ν = 0
of the flow continuum. (We restrict the discussion to the upper, unstable, part of
the ω plane.) Similarly, the right solution path (in blue) consists of two sub-paths,
mirroring the left ones (replacing σ by −σ).

Next, what about the fragments of a sub-path, corresponding to the different
boxes that were defined in Eq. (13.73) to guarantee single solutions of the path
equations (13.74) inside the box? For example, the second sub-path of the left
solution of Fig. 13.8(b) just discussed consists of four fragments, viz. the parts of
the curve (a) going up (for 0 < σ < 0.11), (b) going down (0.11 < σ < 0.65),
(c) going up (0.65 < σ < 0.76), and (d) going down again (0.76 < σ < 0.98).

Recall why the boxes (13.73) were introduced in the algorithm for the eigen-
value search of Section 13.1.4. The path equation is solved for a range of values
of νu by determining the zeros of W2(σu, νu), which gives one or more solutions
σu = σu(νu). In the case of multiple solutions, those solutions are to be associated
with different sub-paths or with different fragments of the same sub-path, each in-
side its own box. Note that the distinction between these two cannot be determined
from the local solution of the path equation, it depends on the overall topology of
the full solution path, as revealed by the contour plots of W2(σu, νu) = 0. The
fragments of a sub-path are separated by the extrema ν ′u(σu) = 0 of the inverse
relation νu = νu(σu). Those extrema represent points on the path of minimum
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or maximum distance away from the continua. One might have expected that, at
those points, some drastic change would occur, like change of the dependence of
the alternator R on arc length from increasing to decreasing, or vice versa. How-
ever, anticipating the monotonicity of the alternator along the solution path (that
will finally be proved in Section 13.2.4), the numerical results clearly point to the
opposite: the alternator does not change its sense of monotonicity at these points,
but it just remains monotonic as a function of arc length along the sub-path. In
other words, the fragmentation demanded by the numerical algorithm is just a way
of solving the problem, it does not reflect a change of monotonicity. Hence, after
the problem has been solved, one should paste the fragments together to obtain a
genuine sub-path: in the example of Fig 13.8(b), the four fragments labeled (a)–(d)
constitute a single sub-path that should be considered as a whole.

From the numerical evidence collected so far (restricting the discussion to the
upper part of the ω plane), sub-paths are separated by the following special points:

– the point at infinity, νu = +∞, where all simple paths start,

– points νu = 0 of the real axis, or of the continua, where all simple paths end,

– intersections of the path with itself.

After the fragments have been assembled into sub-paths, four kinds of sub-path
may then be distinguished:

– a single curve starting at νu = +∞ and ending at a point νu = 0 of the real axis, or
of the continua (again, restricting the discussion to the upper part of the ω-plane),

– curves (with νu �= 0) connecting two points νu = 0 of the continua,

– separate closed loops,

– separate sub-paths resulting from breakup of one of the above three types of curves by
an intersection of the path with itself.

The latter three kinds of sub-path may be absent. In that case, the first sub-path
(which is always there) constitutes the full path.

Consequently, the middle path depicted in Fig. 13.8(b) consists of six sub-paths:
(1) the ν-axis from ν = ∞ to ν ≈ 0.47, (2) the ν-axis from ν ≈ 0.47 to ν = 0,
(3) the loop connecting the point σ ≈ −0.97 of the flow continuum to the point
σ = 0, ν ≈ 0.47 at the apex, (4) the loop connecting the latter apex to the point
σ ≈ 0.97 of the flow continuum, (5) an isolated loop containing the left eigenvalue
(σ ≈ −0.7024, ν ≈ 0.0952), (6) an isolated loop containing the right eigenvalue
(σ ≈ 0.7024, ν ≈ 0.0952). This example represents a very intricate limit because
the path intersects with itself, causing the breakup into the first four sub-paths, and
it splits off the two isolated loops containing the eigenvalues.

The intersection of the middle path with itself not only splits the degenerate sub-
path along the ν-axis into the two sub-paths (1) and (2), and the loop connecting
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the two points σ ≈ ±0.97 of the flow continuum into the sub-paths (3) and (4),
but it also causes the monotonicity along these two curves to change sign at the in-
tersection point (again contrary to what one might have expected!). Consequently,
the composite curves (1)–(2) and (3)–(4) cannot be considered as sub-paths, but
the composite curves (1)–(3) and (2)–(4), or alternatively the composites (1)–(4)
and (3)–(2), might be considered as sub-paths in the sense we have defined (in that
the alternator is monotonic along the full composite curve). Hence, the first four
sub-paths of the middle path solution could be considered to represent only two
(properly chosen) sub-paths. Significantly, those two composite sub-paths have
the same monotonicity properties as the two left and right solution sub-paths.

Finally, again anticipating the monotonicity of the alternator along the solution
path: the isolated loops (5) and (6) of the middle path not only contain a zero of
|ξ| (the eigenvalue) but also a zero of |Π|, so that the alternator R maintains its
monotonicity as a function of arc length along each loop by changing sign twice
(like the tangent over a period π).

We now return to the discussion of the calculation of the Kelvin–Helmholtz
spectra of Figs. 13.8 and 13.9. The corresponding eigenfunctions are shown in
Fig. 13.10. For maximum readability of the plots, they were renormalized as

ξ̄1,2 ≡ ξ1,2/a0 , η̄1 ≡ η1/a1 , η̄2 ≡ η2/a2 , Π̄1 ≡ Π1/b1 , Π̄2 ≡ Π2/b2 ,

a0 ≡ (|ξ1|, |ξ2|)max , a1 ≡ (|ξ1|, |η1|)max , a2 ≡ (|ξ2|, |η2|)max ,

b1 ≡ |Π1|max , b2 ≡ |Π2|max , (13.84)

with the scale factors a01 ≡ a0/a1, a21 ≡ a2/a1, b1 and b2 indicated. Thus, the
relative proportion of the normal components ξ1 and ξ2 is maintained, but the much
larger tangential components η1 and η2 are scaled down to fit the same frame.

The eigenfunctions of Fig. 13.10 clearly show the two aspects of the Kelvin–
Helmholtz instability: they are global, not confined to a particular part of the
plasma, but they do require the proximity of the flow continua in order to de-
velop large, rather local, variations of the amplitude of the displacement ξ. The
corresponding plots of the perturbed velocity v1 ∼ ω̃ξ (not shown) do not exhibit
such large variations because of the smallness of the factors σ̃ and ν close to the
continua. Note the qualitative difference between the symmetric/anti-symmetric
eigenfunctions depicted in Figs. 13.10(a) and (c), for τ = 5 (KH1) and τ = 11
(KH3), and the asymmetric eigenfunctions depicted in Figs. 13.10(b) and (d), for
τ = 8 (KH2) and τ = 11 (KH3). (Only the eigenfunctions for σ ≥ 0 are shown.)
The symmetric eigenfunctions correspond to purely exponentially growing modes,
with “smoothed jumps” precisely at the positions where σ = 0 and Ω0(x) = 0,
according to Fig. 13.4(a) and (b), and the asymmetric eigenfunctions correspond
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Fig. 13.10 Eigenfunctions of the Kelvin–Helmholtz instability for sinusoidal flow
for (a) τ = 5 (purely exponential mode, KH1), (b) τ = 8 (overstability, KH2),
(c) τ = 11 (purely exponential mode, KH3) and (d) τ = 11 (overstability, KH3).



13.2 Case study: flow-driven instabilities in diffuse plasmas 85

to overstable modes, where “smoothed jumps” occur at the asymmetric positions
σ − Ω0(x) = 0.

13.2.3 Gravito-MHD instabilities of stationary plasmas

We now superpose the Rayleigh–Taylor and Kelvin–Helmholtz mechanisms in a
plasma with a sheared magnetic field. In the first example (MHD1, Fig. 13.4(a)),
a minimum of the forward Alfvén/slow continua gave rise to Rayleigh–Taylor in-
stabilities connected with a stable cluster sequence concentrated at the lower edge
of those continua. We now choose the parameters of the equilibria (13.76) such
that a minimum of the backward continua Ω−

A/S occurs inside the Doppler range
(MHD2, Fig. 13.4(b)), so that the full cluster sequence of Rayleigh–Taylor modes
becomes unstable. Since the backward continua are also embedded in the much
larger range of the forward continua, a rather intricate spectral structure arises.

As in the HD examples, the flow profile is chosen sinusoidal so that Kelvin–
Helmholtz instabilities appear as well. The minimum (Ω−

A/S)min ≈ −0.0242 oc-
curs at x0 ≈ 0.112 (indicated by “2nd” in Fig. 13.4(b)), so that the Rayleigh–Taylor
modes are expected to be localized on the left part of the plasma interval, whereas
Fjørtoft’s theorem (13.81) suggests that the Kelvin–Helmholtz modes should be
concentrated on the right. In fact, the paths of unstable modes shown in Figs 13.11
and 13.12, and the eigenfunctions shown in Fig 13.13, support these expectations.
However, we first have to address some features that are less intuitive.

First, in the presence of gravity and density stratification, there are more appro-
priate criteria than the ones of Rayleigh and Fjørtoft. These involve the Richardson
number J , which is a measure of the gravitational potential energy associated with
the differences of the density with respect to the kinetic energy residing in the
relative motions of the different fluid layers. By means of an estimate of the en-
ergy change due to the displacement of a fluid element (see Chandrasekhar [84],
p. 491), or by means of the construction of a special quadratic form (see Drazin
and Reid [124], p. 327), one can show that it is sufficient for HD stability that

J ≡ − ρ′g
ρv ′2

≥ 1
4 , or ρ′g + 1

4ρv
′2 ≤ 0 (everywhere) . (13.85)

Vice versa, a necessary criterion for instability is that J < 1
4 somewhere in the

fluid. These criteria are due to Howard [233]. Hence, a fluid with a gravitation-
ally stable density stratification (ρ′ ≤ 0) may still be unstable if the shear flow is
large enough. For the present example, although the criterion (13.85) is violated
everywhere, this does not automatically imply instability since Howard’s criterion
is not valid for magnetized plasmas, where magnetic shear may overcome both the
gravitational and the shear flow instability drives.
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Second, concerning MHD stability, except for the mentioned extremum Ω−
A/S,

one also notices an additional special point in Fig. 13.4(b) (indicated by “1st”)
that lies precisely in the middle of the plasma (x = 0.5), where ωA/S = 0 and,
consequently, the two continuum frequencies Ω+

A/S and Ω−
A/S degenerate into the

Doppler frequency Ω0. For this frequency, the spectral equation (13.27) for incom-
pressible plasmas develops a quadratic singularity so that, again, a cluster sequence
could appear there, of course governed by an entirely different cluster criterion than
the one given by Eq. (13.78). Since this possibility is not realized for the present
example, and since its discussion really interrupts the flow of the argument, we put
it as a detour in small print here.

� Cluster criteria and local gravitational interchanges If a resonant surface k0 ·B = 0
occurs at some point xres in the plasma, i.e. ωA(xres) = 0, the frequencies of the forward
and backward continua coincide with the Doppler frequency. Hence, at the real frequency
ω = Ω+

A/S = Ω−
A/S = Ω0, i.e. in the limit ν → 0, the singular factor of the spectral

equation (13.27) may be expanded as

ω̃2 − ω2
A ≡ (ω − Ω0)2 − ω2

A ≈ (Ω′2
0 − ω ′2

A )s2 , s ≡ x− xres , (13.86)

so that we obtain an equation similar to Eq. (7.197) [1], governing local gravitational inter-
change modes:

d

ds

[
s2 (1 + · · ·) dξ

ds

]
− q0 (1 + · · ·) ξ = 0 , q0 ≡

(
k2
0ρ

′g
ρ(Ω′2

0 − ω ′2
A )

)
xres

. (13.87)

The indices μ1,2 = − 1
2 ±
√

1 + 4q0 are complex, associated with infinitely oscillatory
behavior of the solutions at x = xres, when 1 + 4q0 < 0, so that clustering of stable or
unstable modes occurs at ω = Ω+

A/S(xres) = Ω−
A/S(xres) = Ω0(xres),

where ωA = 0 , if

⎧⎨⎩ either k2
0ρ

′g < − 1
4ρ(Ω

′2
0 − ω ′2

A ) < 0 ,

or k2
0ρ

′g > 1
4ρ(ω

′2
A − Ω′2

0 ) > 0 .
(13.88)

The first condition applies to gravitationally stable plasmas (ρ′ < 0) when shear flow dom-
inates over magnetic shear, and the second one applies to gravitationally unstable plasmas
(ρ′ > 0) when magnetic shear dominates over shear flow. In the present example, the latter
applies but the second part of the cluster condition is not satisfied, as is evident from the
continuum profiles of Fig. 13.4(b) at the resonant point.

In the limits of HD (ωA → 0) and static MHD (Ω0 → 0), the two mutually exclu-
sive conditions (13.88) for clustering reduce to a single possibility for each case, with
precisely the opposite relation to stability. Considering the limit to HD first, the cluster
condition (13.88)(a) reduces to the inequality (13.85) (without the equality sign) so that it
refers to clustering of stable modes. This condition was studied by Case in his second 1960
paper [78] for an exponentially decreasing density and a linear velocity profile, based on
the analysis of the complex zeros of the solutions of the corresponding spectral equation
by Dyson [128]. When the condition (13.85) is satisfied, in addition to the flow continua,
the spectrum consists of a cluster sequence of stable g modes clustering towards the edge
of the flow continua. However, it was also shown that this particular class of equilibria is
stable for all values of J , demonstrating that Howard’s criterion (13.85) is only sufficient,
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Fig. 13.11 Contours of W L/R/M
2 = 0, corresponding to the left, right and middle

path, and of ξ1e = 0 and ξ2e = 0, for a gravitating plasma with magnetic shear and
sinusoidal flow profile (MHD2). A cluster spectrum of Rayleigh–Taylor instabili-
ties is continuously connected by the right path, whereas the left and middle paths
transform into a series of ever smaller closed loops at the eigenvalues (see inset).
The arrow indicates an isolated flow-driven instability close to the continuum.

not necessary for stability. For completeness: a third paper in 1960 by Case [79] concerns
the spectrum of static HD, where an unstable continuum is found, but this is due to the
consideration of a gravitationally unstable inverted atmosphere of infinite extent.

Considering the limit to static MHD, the negation of the cluster condition (13.88)(b)
yields the Schwarzschild–“Suydam” stability criterion (7.199) [1] (in the limit γ →∞):

ρ′g − 1
4B

2ϕ′2 ≤ 0 (necessary for stability in static MHD) . (13.89)

When satisfied, it predicts stability because the stabilizing magnetic shear is larger than the
destabilizing gravitational drive. It appears logical to combine this stability criterion for
static MHD with Howard’s HD criterion (13.85), but there is no justification for that (there
exists no MHD counterpart of Howard’s lucky juggling with quadratic forms). All one gets
from the cluster condition (13.88)(b) is a sufficient criterion for instability involving two
conditions that both have to be satisfied:

ρ′g > 1
4B

2ϕ′2− 1
4ρv

′2 > 0 (sufficient for instability in stationary MHD) . (13.90)

Since this criterion is not satisfied in our MHD2 example, this just implies that there are
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Fig. 13.12 Spectrum of discrete unstable modes (with right path) and stable con-
tinuum oscillations for a gravitating plasma with magnetic shear and sinusoidal
flow profile (MHD2). Rayleigh–Taylor type instabilities cluster towards the inter-
nal extremum of the backward continua. An isolated Kelvin–Helmholtz instability,
together with its complex conjugate, is shown by the inset.

no local instabilities clustering at the resonant frequency in the middle of the plasma. Of
course, as demonstrated by our results, this does not exclude either the occurrence of local
instabilities, clustering elsewhere, or the occurrence of global instabilities.

Finally, the generalization of the cluster criterion (13.88)(b) for compressible plasmas
yields two separate criteria for Alfvén and slow resonances, which exhibit subtle cross-
over limits that were first studied for pressure-driven interchanges in cylindrical geometry
by Hameiri [207] and Bondeson et al. [56]. The counterpart for gravitational interchanges
in plane slab geometry is due to van der Holst et al. [455]. �

The solution paths for this example, shown in Figs. 13.11 and 13.12, exhibit
the different stabilizing and destabilizing mechanisms at work. For large growth
rates (ν > 2), the three paths appear to be tuned towards the global gravitational
interchanges associated with the resonant frequency ω = Ω+

A/S = Ω−
A/S = Ω0 = 1

at x = 0.5. The eigenfunctions (not shown in Fig. 13.13) are completely global
there. Thus, although local resonant instabilities do not occur in this example since
the right inequality of the conditions (13.90) is not satisfied, the three terms of the
left inequality do indicate the three mechanisms that produce global instability.
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1 2

Fig. 13.13 Eigenfunctions for a gravitating plasma with magnetic shear and sinu-
soidal flow profile corresponding to the spectrum shown in Fig. 13.11 (MHD2):
(a) one of the Rayleigh–Taylor modes (n = 12) of the cluster spectrum, (b) isolated
Kelvin–Helmholtz instability. Renormalization is according to Eqs. (13.84).

For smaller values of the growth rate ν, with the approach of the continua, the
violation of the local interchange conditions (13.78)(b) at the extremum of the
backward continua permits an infinite sequence of local interchange instabilities
clustering towards the edge of the backward continua, which are embedded in the
forward continua. One of the corresponding eigenfunctions is shown in the top
frame of Fig. 13.13. Notice, again, that the three terms of the instability condi-
tions (13.78)(b) indicate the three mechanisms at work for this local instability
which, although described by second instead of first derivatives of the equilibrium
profiles, are the same as for the global interchanges. (Incidentally, the sensitive
dependence on details of the equilibrium profiles is a recurring theme in MHD sta-
bility of plasmas. Progress on this topic, both in fusion research and astrophysics,
crucially depends on progress of experimental and observational detection tech-
niques to determine those profiles. Without that, the theoretical effort in MHD
spectral theory becomes meaningless.)

The cluster sequence of local gravitational interchanges is presented quite dif-
ferently by the three solution paths. In this case, the right path (associated with a
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finite amplitude ξe �= 0 on the left) apparently permits a continuous dependence,
while the left path and, consequently, also the middle path appear to be unable to
represent the approach to the cluster point by a continuous sub-path. Instead, they
eject a series of closed loops, with the eigenvalues on them, of ever smaller sizes
when the cluster point is approached (see inset of Fig. 13.11). Recall that these
small solution sub-paths actually represent complete cycles of the alternator R,
doubly connecting the eigenvalue point, where |ξe| = 0 and R = 0, with the point
where |Πe| = 0, where R flips sign from +∞ to −∞. It may be of interest for
future investigations (e.g. of the external excitation of instabilities in laboratory or
astrophysical plasmas) to note that these closed loops actually represent “bubbles”
of positive imaginary energy W2 immersed in a “sea” of negative W2, according
to the schematic representation of Fig. 12.6.

The continuing single sub-paths of the left and middle path (associated with
finite amplitude ξe �= 0 on the right) carry on towards a point σ ≈ 0.74 of the
continua in between the gravitational cluster sequence on the left and an emerging
Kelvin-Helmholtz instability on the right. In fact, the latter instability (represented
by the inset of Fig. 13.12) has an eigenfunction that is localized on the right part of
the plasma (Fig. 13.13(b)).

From the two eigenfunctions presented in Fig. 13.13 one cannot easily draw the
above conclusions, viz. that the left one (shown on top) belongs to a gravitational
interchange cluster sequence and that the right one (shown at the bottom) is actu-
ally a gravitationally modified Kelvin–Helmholtz instability. That conclusion was
reached by some additional “numerical experiments”. If one moves in the right
boundary (e.g. by just considering the slice 0 ≤ x ≤ 0.8), the growth rates of
the most global modes decrease, but the cluster sequence of local modes remains
concentrated at the same cluster point. However, if one moves in the left bound-
ary (i.e. one removes a sizeable fraction of the gravitationally unstable part), the
growth rate of the Kelvin–Helmholtz instability increases! Most convincingly, if
one just switches off gravity (which one can do for these equilibria without affect-
ing the continuum frequencies), the growth rate increases enormously (the eigen-
value moves from σ ≈ 1.92, ν ≈ 0.0187 to σ ≈ 1.72, ν ≈ 0.168) and the eigen-
function then precisely shows the kind of dependence of the Kelvin–Helmholtz
instability exhibited in Fig. 13.10(a). In other words: the Kelvin–Helmholtz insta-
bility is suppressed by the gravitational instability in these equilibria.

In conclusion, all eigenvalues of the spectral problem may be determined by each
of the three solution paths, but some may be easier to compute by one path (like the
cluster sequence of gravitational interchanges which are continuously connected
by the right path in this case) and some may be easier to compute by another path
(like the Kelvin–Helmholtz instability by the left path). The best choice is usually
suggested by the geometry of the contour plots of W2(σ, ν) = 0.
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13.2.4 Oscillation theorem C for complex eigenvalues

In Section 12.3, we introduced the method of solution paths in the complex ω

plane and derived the two quadratic forms (12.139) for stable waves and (12.154)
for instabilities that govern the approach to eigenvalues. One might have expected
that the details of actually finding the eigenvalues for 1D equilibria would follow
by just substituting the pertinent quantities of the ODEs into those quadratic forms.
In principle, this is what we have done in Section 13.1.3 for real eigenvalues, where
we had to deal with the singularities of the continuous spectra. This complication
is of the same kind as considered already for the case of static equilibria. However,
for complex frequencies, the approach to eigenvalues is very different from that
of real eigenvalues. In particular, conceptional obstacles had to be overcome of
a completely different kind (not encountered in the static case) before we could
arrive at the present stage where we may finally formulate the oscillation theorem
that governs the distribution of eigenvalues in the complex ω plane.

We first needed to define a node counter for complex eigenfunctions that could
replace the usual node counting of real functions of the standard Sturm–Liouville
type of approach. This was done by, first, introducing the solution path approach
in Section 12.3.1 and, next, introducing the alternator R in Section 13.1.4, based
on considering the boundary values of the displacement ξ and of the total pressure
perturbation Π for the open (model II) system rather than considering the internal
nodes of ξ for the closed (model I) system, as illustrated by Fig. 12.6. Further-
more, as demonstrated by the in-depth case study of the instabilities of stationary
plasmas of the present section, we had to develop proper numerical techniques and
introduce appropriate terminology in order to compute the solutions paths and to
deal with their breakup into separate sub-paths. This now being out of the way, we
may finally conclude our quest.

Guided by the numerical results obtained, we now put everything together in the
Oscillation theorem C for instabilities.

The complex eigenvalues of a stationary plasma slab [or cylinder] are situated on
the solution path consisting of the solutions ω = σu(λ) + iνu(λ) of the spectral
differential equation for which the solution-averaged Doppler–Coriolis shifted fre-
quency σu − V (ωu), or the energy transfer across the boundary W2 , vanishes.
The alternator R ≡ ξe/Πe [or χe/Πe] is a real and monotonic function of arc
length λ along the solution path, or along each separate sub-path, in between the
zeros of |Πe| separating the eigenvalues.

To prove the theorem, we reduce the surface integral occurring in the LHS of the
quadratic form (12.154) for complex ω to an expression in terms of the increment
of the alternator along the solution path. From the path equations (12.128), or
(13.61), we obtain the following expressions for the values of the alternator at
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points ω = ωα and ω = ωβ of the same sub-path of the solution path:

Wα2 = 0 ⇒ Rα =
ξα1

Πα1
(xe) =

ξα2

Πα2
(xe) , (13.91)

Wβ2 = 0 ⇒ Rβ =
ξβ1

Πβ1
(xe) =

ξβ2

Πβ2
(xe) . (13.92)

Exploiting these expressions for evaluation of the surface integral (12.149) yields:

4S ≡ Re
[
ξ∗βΠα − ξ∗αΠβ

]
= ξβ1Πα1 − ξα1Πβ1 + ξβ2Πα2 − ξα2Πβ2

=
(
1 +

Πα2Πβ2

Πα1Πβ1

)
(ξβ1Πα1 − ξα1Πβ1)

= (Πα1Πβ1 + Πα2Πβ2)(Rβ −Rα) ≈ 2|Πα|2(Rβ −Rα) , (13.93)

where we leave it understood that all quantities are evaluated at x = xe. The last
approximation holds when ωα and ωβ are close, which is the basic assumption of
the whole analysis. Hence, the quadratic form (12.154) reduces to

Rβ −Rα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|ωβ − ωα|2
σβ − σα · 2ναX̃2

|Πα|2 (σβ �= σα)

−(νβ − να) · 2να(X̃1 − I)
|Πα|2 (σβ = σα)

. (13.94)

We have seen in Section 12.3.2 that X̃2 and X̃1 on the RHS are definite quantities
of order unity. Consequently, the alternator R is a monotonic quantity in the arc
length λ ≡ |ωβ − ωα| along any sub-path in between the zeros of |Πe|, so that the
eigenvalues (where |ξe| = 0) should lie in between them, QED.

Note that, whereas the oscillation theorems for the stable waves of a static
plasma (Section 7.4.3 [1]) and of the stable waves of a stationary plasma (Sec-
tion 13.1.3) are related straightforwardly (as the limits Ω0 → 0 and σ0 → 0), the
corresponding oscillation theorems for the instabilities appear hardly related. Of
course, this is due to the fact that the complex eigenvalues of stationary plasmas
first require the construction of the solution sub-paths. Even after they have been
obtained, the limit for the instabilities of static plasmas still represents a rather sin-
gular limit of the present oscillation theorem since the operator U vanishes then
and the path is vertical, so that the quantity X̃2/(σβ − σα) is undefined and should
be replaced by −(X̃1 − I)/(νβ − να). A related complication has already been
encountered for the middle path solutions of the Kelvin–Helmholtz instability pre-
sented in Fig. 13.8: also with a symmetric flow profile, the imaginary axis may
become part of the solution path.
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13.3 Spectral theory of rotating plasmas

13.3.1 MHD wave equation for cylindrical flow

The substantial modification of the Hain–Lüst equation for cylindrical plasmas
with flow, in particular rotation, was first obtained by Hameiri [207, 209], and
later studied in more detail by Bondeson et al. [56]. We here present the exten-
sion by Keppens et al. [255] with the effects of a gravitational field of cylindrical
symmetry, which is applied in Section 13.4.2 to the thin slice approximation of the
rotational instabilities of accretion discs.

The one-dimensional cylindrical equilibrium, described by the density ρ(r), the
pressure p(r), the magnetic field components Bθ(r) and Bz(r), and the veloc-
ity components vθ(r) and vz(r), is restrained by just the single differential equa-
tion (12.30) in the radial coordinate r. For now, the gravitational potential Φ(r)
is considered to be due to a singular mass distribution on the axis r = 0 . In Sec-
tion 13.4.2, we will consider a more appropriate limit for application to a genuine
gravitational field, viz. that of a compact central mass surrounded by an accretion
disk (replacing the line singularity by a point singularity).

Because of the cylinder symmetry, we consider Fourier components of the nor-
mal modes of the form

ξ(r, θ, z, t) = [ ξr(r)er + ξθ(r)eθ + ξz(r)ez ] ei(mθ+kz−ωt) , (13.95)

but now (in contrast to the plane case of Sections 13.1 and 13.2) the two velocity-
dependent terms of the generalized force operator G, defined in Eq. (12.64), pro-
duce contributions that cannot be cast in the simple form (13.5). In particular,
because the gradient operator not only acts on the vector components of ξ but also
on the unit vectors, the effect of the operator U ≡ −iρv · ∇ is to produce not only
a local Doppler shift Ω0(r), but also an additional local Coriolis shift proportional
to the vector product of the rotation vector (vθ/r)ez and ξ:

Uξ ≡ −iρv · ∇ξ = ρΩ0ξ − iρ(vθ/r)ez × ξ , (13.96)

Ω0(r) ≡ mvθ/r + kvz . (13.97)

Hence, in cylindrical geometry, the two velocity-dependent terms of G become

∇ · (ξρv · ∇v) = (ρv · ∇v)∇ · ξ + ξ · ∇(ρv · ∇v)

= −
[
(ρv2

θ/r)∇ · ξ + (ρv2
θ/r)

′ξr
]
er − (ρv2

θ/r
2)ξθeθ , (13.98)

−∇ · (ρvv · ∇ξ) = −ρv · ∇(v · ∇ξ) = Uρ−1Uξ

= ρΩ2
0ξ − 2iρΩ0(vθ/r)ez × ξ + ρ(v2

θ/r
2)(ξrer + ξθeθ) . (13.99)

They combine to yield the following form of the spectral equation for cylindrical



94 Shear flow and rotation

plasmas given by Bondeson et al. [56]:

F(ξ)−
[
(ρv2

θ/r)∇ · ξ + (ρv2
θ/r

2)′rξr
]
er

+ 2iρω̃(vθ/r)ez × ξ + ρω̃2ξ = 0 , (13.100)
where

ω̃ ≡ ω − Ω0 = ω −mvθ/r − kvz (13.101)

is the local Doppler-shifted frequency (but not involving the local Coriolis shift!).
In the absence of rotation, vθ = 0, the simple “quasi-static” form (13.5) is again
obtained. Note that the operator F, which is just an abbreviation of the terms ap-
pearing in the force operator (12.65) for static equilibria, is not self-adjoint for the
present stationary case. This is evident by the appearance of the two asymmetric
radial terms above which combine with F to yield the symmetric matrix represen-
tation below, but only after judicious application of the equilibrium equation.

� Three-dimensional wave equation and reduction We exploit again the field line pro-
jection (9.23)–(9.26) [1], with dimensionless “wave numbers” g ≡ G/B and f ≡ F/B,
where G ≡ mBz/r − kBθ and F ≡ mBθ/r + kBz , and dimensionless field components
bθ ≡ Bθ/B and bz ≡ Bz/B. Defining

er ≡ ∇r , e⊥ ≡ (B/B)× er , e‖ ≡ B/B ,

∂r ≡ er · ∇ , g ≡ −ie⊥ · ∇ , f ≡ −ie‖ · ∇ ,
ξ ≡ ξr , η ≡ ie⊥ · ξ , ζ ≡ ie‖ · ξ , (13.102)

the spectral equation may be written in matrix form as

(H− 2ρω̃C + ρω̃2I) ·X = 0 , X ≡ (ξ, η, ζ)T . (13.103)

Here, H ≡ HA + Hb, where HA is the previous matrix of the static case without gravity
and flow, defined in the LHS of Eq. (9.28) [1] (to obtain it, watch out not to use the static
equilibrium relation!) and Hb represents the effects of gravity and (partially) rotation,
whereas C represents the (Coriolis) effects of rotation:

HA ≡

⎛⎜⎜⎜⎜⎜⎜⎝

d

dr

γp+B2

r

d

dr
r − f2B2 − r

(
B2
θ

r2

)′
d

dr
g(γp+B2)− 2kBθB

r

d

dr
fγp

−g(γp+B2)
r

d

dr
r − 2kBθB

r
−g2(γp+B2)− f2B2 −fgγp

−fγp
r

d

dr
r −fgγp −f2γp

⎞⎟⎟⎟⎟⎟⎟⎠,

Hb ≡ −

⎛⎜⎜⎝
ρr(Φ′/r)′ gΛ fΛ

gΛ 0 0

fΛ 0 0

⎞⎟⎟⎠ , C ≡ vθ
r

⎛⎜⎜⎝
0 bz bθ

bz 0 0

bθ 0 0

⎞⎟⎟⎠ . (13.104)

The function

Λ(r) ≡ ρ(v2
θ/r − Φ′) (13.105)
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represents the deviation from static MHD equilibrium caused by gravity and rotation.
Equivalently, according to the equilibrium relation (12.30), it may be considered as the
deviation from pure Keplerian HD flow caused by pressure gradients and Lorentz forces.
Elimination of the tangential components η and ζ,

η =
GS̃(rξ)′ − [2kγpF (BθF + ρvθω̃)− 2kBθB2ρω̃2 − (2Bzρvθω̃ + rGΛ)ρω̃2

]
ξ

rBD
,

ζ =
γpFÃ(rξ)′ +

[
2kγpG(BθF + ρvθω̃) + (2Bθρvθω̃ + rFΛ)(ρω̃2 − h2B2)

]
ξ

rBD
,

(13.106)
with Ã, S̃, D and h2 defined in Eqs. (13.109) and (13.110), and substitution into the radial
component of Eq. (13.103) leads to the spectral differential equation (13.107) for ξ. �

The eigenvalue problem can be cast in the form of a second order ordinary dif-
ferential equation for the radial component χ ≡ rξ of the plasma displacement,

d

dr

(
N

D

dχ

dr

)
+
[
A+

B

D
+
(
C

D

)′ ]
χ = 0 , (13.107)

with coefficients N , D, A, B, C defined in (13.109), (13.110), (13.113)–(13.115),
and subject to model I BCs (wall at r = a),

χ(0) = 0 , χ(a) = 0 . (13.108)

Recall that the radial component ξ has been replaced by the variable χ just to be
able to express the BCs on the origin in this way, rather than to have to distinguish
between the finite |m| = 1 Fourier components of ξ(0) and the vanishing ones.

With the addition of stationary flows to the equilibrium, the expressions with
the eigenvalue ω transform into expressions involving the local Doppler shifted
frequency ω̃. Together with the parallel gradient operator F ≡ mBθ/r + kBz ,
they determine the Alfvén and slow continuum singularities N = 0, where

N ≡ 1
r
Ã S̃ ≡ ρ2(γp+B2)

r
(ω − Ω+

A)(ω − Ω−
A)(ω − Ω+

S )(ω − Ω−
S ),

Ã ≡ ρω̃2 − F 2 , S̃ ≡ (γp+B2)ρω̃2 − γpF 2 , (13.109)

and the apparent (fast and slow turning point) singularities D = 0, where

D ≡ ρ2ω̃4 − h2S̃ ≡ ρ2(ω − Ω+
f0)(ω − Ω−

f0)(ω − Ω+
s0)(ω − Ω−

s0) ,

h2 ≡ f2 + g2 ≡ m2/r2 + k2 . (13.110)

The associated definitions of the forward and backward Alfvén and slow continua,

Ω±
A(r) ≡ Ω0(r)± ωA(r) , Ω±

S (r) ≡ Ω0(r)± ωS(r) ,

ω2
A(r) ≡ F 2

ρ
, ω2

S(r) ≡
γp

γp+B2

F 2

ρ
, (13.111)
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and of the forward and backward apparent fast and slow singularities,

Ω±
f0(r) ≡ Ω0(r)± ωf0(r) , Ω±

s0(r) ≡ Ω0(r)± ωs0(r) , (13.112)

ω2
f0,s0(x) ≡ 1

2h
2 γp+B2

ρ

[
1±
√

1− 4γpF 2

h2(γp+B2)2

]
,

only differ from the plane slab definitions in that they contain an “azimuthal wave
number” contribution m/r in the effective wave number h, which replaces k0.
With these definitions, and also supplementing the cluster frequency Ω±

F ≡ ±∞ of
the fast magneto-sonic modes, the ordering (13.22) of the local frequencies of the
genuine and apparent singularities remains valid without change. Notice though
that Ω±

f0 → ±∞ for r → 0 (another sign that it cannot be a genuine singularity).
Cylindrical flow does not change the formal form of the singular expressions,

but the coefficients A, B and C are modified substantially:

A ≡ 1
r

[
Ã+ r

(B2
θ − ρv2

θ

r2

)′
+ ρ′Φ′] , (13.113)

B ≡ − 4
r3

{
(ρω̃2 − k2γp)(BθF + ρvθω̃)2

+B2
θρω̃

2
[
h2(B2

θ − ρv2
θ)− 2(m/r)(BθF + ρvθω̃)

]
− rΛ

[
h2(Bθω̃ + Fvθ)ρω̃Bθ − (m/r)(BθF + ρvθω̃)ρω̃2

]
+ 1

4r
2Λ2h2Ã

}
,

(13.114)

C ≡ 2
r2

{
(m/r)(BθF + ρvθω̃)S̃ − ρω̃2

[
(Bθω̃ + Fvθ)ρω̃Bθ − 1

2rΛÃ
]}
.

(13.115)

Note that the function A(r;ω) is a quadratic polynomial in the eigenvalue param-
eter ω, whereas the functions N , D, B and C are quartic polynomials in ω.

The differential equation (13.107) is formally identical to the spectral wave equa-
tion (13.9) for the stationary plane slab, but also to the spectral equations for the
static case presented in Volume [1], Chapter 7 for the plane slab and Chapter 9 for
the cylindrical plasma (with slightly redefined coefficients for the latter, see below).
Of course, this does not imply that the spectral problem for the stationary cylinder
is just as simple as that for the static cylinder, but it does imply that the analytical
tools of solution path and oscillation theorems governing the distribution of dis-
crete eigenvalues on them, developed in Sections 12.3, 13.1 and 13.2, and applied
there to shear flow of plane plasmas, can be applied [virtually without change] to
cylindrical plasmas as well. This we have already indicated in the formulations of
the two oscillation theorems of Section 13.1.3 and 13.2.4.

The corresponding formulation of two coupled first order differential equations
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for χ and the Eulerian total pressure variation Π ≡ −(1/D)(Nχ′ + Cχ) reads:

N
d

dr

( χ

Π

)
+

( C D

E −C

)( χ

Π

)
= 0 , (13.116)

where the new function

E ≡ −N
(
A+

B

D

)
− C2

D

[
⇒ NB + C2 ∼ D , DE + C2 ∼ N

]
(13.117)

≡ − N

r

[
Ã+ r

(B2
θ − ρv2

θ

r2

)′
+ ρ′Φ′ ]

+
4
r4

{
(BθF + ρvθω̃)2S̃ −

[
(Bθω̃ + Fvθ)ρω̃Bθ − 1

2rΛÃ
]2}

(13.118)

is a sixth order polynomial in ω.

� Redefined quantities The functions appearing in the equivalent second and first order
formulations above have been defined slightly differently from the old ones exploited in
Section 9.2.1 [1]. The old quantities, indicated with the subscript o, are obtained from the
present ones in the limit of static equilibrium and vanishing gravity as follows:

D → Do , N → No/r , B → Vo , E → Eo ,

A→ Uo + 2
(
B2
θ/r

2
)′
, C →Wo − 2

(
B2
θ/r

2
)
Do ≡ Co . (13.119)

With the new definitions, the old function Wo has become redundant and the more concise
form (13.117) for the relationship between A, B, C and E is obtained. �

With the present definitions of the basic polynomials, the formulations in terms
of the second order ODE (13.107) for χ ≡ rξ and the system of first order ODEs
(13.116) for χ and Π for the cylinder are identical to the corresponding ones, (13.9)
and (13.15), for the plane slab. Moreover, the fundamental relationship (13.117)
between the quantities of the second order ODE and the quantities of the first or-
der ODEs is identical to the relation (13.16) for the analogous plane slab relations
obtained in Section 13.1.1. Hence, the conclusion reached there on the two com-
plementary relations (13.17) and (13.18) also applies here, i.e. the apparent singu-
larities of the second order representation and the redundant singularities of the
first order representation are complementary evils, also for the cylindrical case.
The controversies on the different formulations of the spectral problem (related to
the elimination of apparent singularities [187], [10], [166]) thus finally come to
rest by observing that one representation is not superior to the other and that the
relationship (13.117) is essential for both to remove their spurious singularities.

We have now presented all the basic equations for the analysis of the spectrum
of stationary plasma flow in cylindrical geometry. One, physically very important,
structural difference with the analysis for the plane slab is the fact that, in the path
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equation

σ − V (ω) = 0 , (13.120)

the solution averaged Doppler–Coriolis shift, defined in Eq. (13.7) for the plane
slab, now acquires a Coriolis contribution:

V ≡ 〈ρ−1U〉 =

∫
ρ
{
Ω0|ξ|2 + (vθ/r)[ξ∗(bzη + bθζ) + ξ(bzη∗ + bθζ

∗)]
}
rdr∫

ρ|ξ|2 rdr
.

(13.121)
Here, the intermediate substitution of the azimuthal component in terms of the
field line projected components, iξθ ≡ bzη + bθζ, has been made to highlight the
fact that the Coriolis shift, like the Doppler shift, is real for real frequencies. Of
course, in the actual analysis, the further substitution (13.106) to expressions in
terms of χ′ and χ is made. The Coriolis shift has important consequences for the
monotonicity of real eigenvalues and for the solution path of complex eigenvalues.
For cylindrical plasmas, the solution path Pu, again obtained from Eq. (13.120),
or W2 = 0, is no longer confined to the strip {Ω0(r)} in the complex ω plane.
Moreover, this path will cross the real ω axis in more than one point, as will be
illustrated in Section 13.4.1.

13.3.2 Local stability�

In the stability theory of static cylindrical plasmas, Suydam’s criterion (9.118) [1]
for interchanges localized about rational magnetic field lines plays an important
role. Recall from the analysis of Section 9.4.1 [1] that this condition is obtained by
expanding the marginal equation of motion (ω = 0) about a singular point r = rs
where the tangential “wave vector” h ≡ (m/r)eθ + kez of the perturbations is
perpendicular to the field lines:

F (rs) ≡ (k‖B)rs = [(k + μm)Bz]rs = 0 , μ ≡ Bθ
rBz

[
≈ 1
qR0

(slender torus)
]
.

(13.122)
(The last expression in square brackets shows the approximate relationship to
toroidal geometry by relating the inverse pitch μ of the helical magnetic field lines
on a “periodic” cylinder of finite length 2πR0 to the toroidal safety factor q of an
equivalent slender torus with large radius R0, where r/R0 � 1.) The physical
significance of this resonance condition is that the magnetic field perturbations,
associated with the dominant Alfvén wave dynamics, are minimized so that in-
terchanges driven by smaller effects, like pressure gradients, can develop. The
mathematical expression of this resonance is the confluence of four genuine and
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two apparent singularities of the spectral differential equation:

F = 0 ⇒ ω2 = ω2
A = ω2

S = ω2
s0 = 0 (at r = rs) . (13.123)

For these special points of the continuous spectrum, the stability problem reduces
to a (necessary) local stability criterion in closed form.

For the analogous theory of stationary plasmas, we need to consider resonant
modes (F = 0) that are marginal in the co-moving Doppler-shifted frame (ω̃ = 0):

F = 0 , ω̃ = 0 ⇒ ω = Ω0 = Ω+
A = Ω−

A = Ω+
S = Ω−

S = Ω+
s0 = Ω−

s0

(at r = rs) , (13.124)

so that, again, confluence of six singularities occurs. However, the tacit assumption
that ω̃ = 0 is a marginal point needs justification now. If this point were not
part of the continuous spectrum, it would require proof that it is a solution of the
path equation (13.120) with V (σ) = Ω0. From the expression (13.121) for V , it
is obvious that this implies that the Coriolis shift contribution should vanish for
these solutions. In fact, for the very localized solutions of the continuum modes,
the Coriolis shift contribution of the integral (13.121) is much smaller than the
Doppler shift contribution since the latter comes with the factor |ξ|2 ∼ |η|2 ∼ |χ′|2
in the integrand and the former with the factor |ξ∗θ ξ| ∼ |χ′χ| � |χ′|2, using the
reductions (13.106) of η and ζ to χ′ and χ. Of course, none of the integrals exists
in the continuous spectrum since χ′ contains δ-function contributions. However,
approaching the continuous spectrum from above by exploiting the concept of ε-
stability, as expressed by Eq. (12.141), the integrals do exist and the smallness
argument remains valid, as long as ε is small and does not vanish, so that the
solution of the path equation becomes

σε0 ≈ Ω0(rs) . (13.125)

Violation of the local stability criterion then implies that the underlying point of
the continuous spectrum is a cluster point of unstable modes lying on this path.

Expansion of the coefficients of the spectral differential equation (13.107) about
the singular point r = rs yields

ω̃ ≈ −Ω′
0s , F ≈ F ′s , F ′ = −kBzμ′/μ , where s ≡ r − rs , (13.126)

so that the functions N and D defined in Eqs. (13.109) and (13.110) become

N ≡ 1
r
ÃS̃ , D ≈ −(k2B2/B2

θ )S̃ , (13.127)

Ã ≈ −(1− M̃2)F ′2s2 , S̃ ≈ −(γp+B2)(M2
c − M̃2)F ′2s2 .

Here, the trans-Alfvénic factor involves the shear Alfvén Mach number M̃ mea-
suring the shear of the background velocity with respect to the shear of the Alfvén
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velocity, both taken along the parallel “wave vector” k‖ ≡ h(m=−k/μ), at the
resonant surface:

M̃ ≡ − ω̃

ωA
≈
[√

ρΩ′
0

F ′

]
rs

≡
[ (k‖ · v)′

(k‖ · vA)′

]
rs

, (13.128)

whereas the trans-slow factor M2
c − M̃2 involves the critical (or cusp) value Mc

of the shear Alfvén Mach number, where the shear of the background velocity be-
comes equal to the shear of the continuum slow wave speed at the resonant surface:

Mc ≡ ωS

ωA
≡
√

γp

γp+B2
. (13.129)

The rest of the analysis proceeds similarly to that of Section 9.4.1 [1].
In the expansion of N/D, the familiar magnetic shear term (μ′/μ)2 is now mul-

tiplied by the trans-Alfvénic factor,

N

D
≈ αs2 , α ≡ B2

θB
2
z

rB2
(1− M̃2)

(
μ′

μ

)2

, (13.130)

and the spectral differential equation for ω ≈ Ω0(rs) reduces to

α
d

ds

(
s2
dχ

ds

)
− βχ = 0 , β ≡ −

[
A+

B

D
+
(C
D

)′]
rs

, (13.131)

where the explicit form for β, involving the trans-Alfvénic as well as the trans-
slow factor, can be read off from the resulting form of the local stability crite-
rion (13.134) below. Close to the singularity s = 0, the solutions behave as

χ = asν1 + bsν2 , ν1,2 = −1
2 ± 1

2

√
1 + 4β/α , (13.132)

which gives rise to solutions with infinitely many oscillations as s → 0 if the
indices are complex. Hence, local stability demands the opposite:

1 + 4β/α > 0 . (13.133)

Substitution of the coefficients α and β in this inequality produces the following,
rather formidable, generalization of Suydam’s criterion of a cylindrical plasma with
background flow and a radial gravitational field:

1

1− M̃2

[
p′ −

√
ρvθB

2
zM̃

Bθ

μ′

μ
+
r2B2

2B2
θ

(ρv2
θ

r2

)′ − rB2

2B2
θ

ρ′Φ′ +
2ρv2

θ

r
− Λ
]

− 2(
√
ρvθ −BθM̃)[γpBθ(

√
ρvθ −BθM̃)− rB2M̃Λ]

rBθ(γp+B2)(M2
c − M̃2)(1− M̃2)

− rB2Λ2

2B2
θ (γp+B2)(M2

c − M̃2)
+ 1

8rB
2
z

(μ′
μ

)2
> 0 . (13.134)
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Recall that the gravitational terms are to be used only in an annular thin slice ap-
proximation of a disk with central compact object of mass M∗ (see Fig. 13.16(a)
below), producing a radial acceleration g = −ger, where g = Φ′ ≈ GM∗/r2. In
that context, Λ ≡ ρ(v2

θ/r − Φ′) represents deviations from Keplerian flow.
The local stability criterion (13.134), without the gravitational terms, was first

obtained by Hameiri [209], and investigated numerically by Bondeson et al. [56].
By means of a boundary layer analysis [207, 56], violation of the criterion was
shown to lead to a solution path (in our present terminology) consisting of two
straight lines crossing at ω̃ = 0, with a sequence of unstable discrete modes on
each of them. The boundary layer analysis consists of asymptotic matching of
the “external” solutions of Eq. (13.132) to the “inner”, inertial, solutions of the
spectral equation, where the approximations (13.127) for Ã and S̃ are extended
with the imaginary contributions of the growth rate ν. This yields an accurate ap-
proximation of the cluster frequencies for ν → 0, whereas the more global modes
with larger growth rates need to be computed numerically. Obviously, this analysis
breaks down for M̃2 → 1 and M̃2 →M2

c . Those limits are associated with possi-
ble transfer of the cluster sequences [56] from the resonant point to a minimum or
maximum of one of the continua (see text in small print below).

Without shear flow (v′θ = v′z = 0 ⇒ M̃ = 0) and gravity (Φ′ = 0), only the
first and last term of the criterion (13.134) survive and Suydam’s criterion [427] is
recovered. However, the simple picture of instability driven by a pressure gradient
and stabilized by magnetic shear is no longer valid in the presence of shear flow.
Many terms occur and their influence on stability or instability changes depending
on the magnitude of M̃2, giving rise to the following shear flow regimes:⎧⎪⎪⎨⎪⎪⎩

0 ≤ M̃2 < M2
c (sub-slow) ,

M2
c ≤ M̃2 < 1 (slow/sub-Alfvénic) ,

1 ≤ M̃2 (super-Alfvénic) .

(13.135)

In the absence of rotation but with shear flow in the longitudinal direction, the
pressure gradient of Suydam’s criterion is divided by the trans-Alfvénic factor and
an additional compressional term appears that is divided by both factors:

1

1− M̃2
p′ − 2B2

θM
2
c M̃

2

r(M2
c − M̃2)(1− M̃2)

+ 1
8rB

2
z

(μ′
μ

)2
> 0 . (13.136)

This simplified criterion was exploited in the boundary layer analyses cited above.
The flow regimes will return in a different guise in Chapter 18 (unstable toroidal
Alfvén–slow continua) and Chapter 20 (transonic MHD flows and shocks).

In the limit of an annulus with r → ∞, but finite Δr, a plane slab is obtained.
In that limit, only the fourth term of the first line and the two terms of the last line
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of Eq. (13.134) survive. Dividing out a factor rB2/(2B2
θ ), the criterion of van der

Holst et al. [455] for stability of gravitational interchanges in stationary plasmas
with plane shear flow is recovered:

− 1

1− M̃2
ρ′g − M2

c

M2
c − M̃2

ρ2g2

γp
+ 1

4B
2ϕ′2 > 0 . (13.137)

This criterion exhibits obvious similarity with the cylindrical criterion (13.136), but
the compressional term spoils the simple analogy between pressure-driven inter-
changes in cylinder and gravitational interchanges in plane slab geometry. Without
flow, the interchange criterion (7.199) [1] for static plasmas is recovered.

� Transfer of cluster sequences In the incompressible limit (γp → ∞, M2
c → 1) of

the criterion (13.137), the trans-Alfvénic and trans-slow factors coincide and one recovers
the criteria (13.88)(a) and (13.88)(b) [or (13.90)] (involving first derivatives) studied in
Section 13.2.3. Recall that, for the example of the equilibrium of Fig. 13.4(b), no cluster-
ing occurs at the resonant point (indicated with “1st”) but, instead, there is a sequence of
unstable modes clustering at the extremum of the slow/Alfvén continuum Ω−

A/S (indicated
with “2nd”) since the cluster condition (13.78)(b) (involving second derivatives) is violated
there. This transfer of cluster sequences is demonstrated by the spectra and eigenfunctions
of Figs. 13.11–13.13.

In the compressible case, for the plane as well as the cylindrical equilibrium, reconsid-
ering the expansion (13.127), e.g. for the slow continua,

Ω±
S ≈ Ω0 + (M̃ ±Mc)(F/

√
ρ)s+ 1

2Ω±′′
S s2 , (13.138)

it is clear that, when M̃ → ±Mc, the given derivation of the cluster criterion (13.134)
needs to be modified since the second derivatives become dominant then. In that case,
the sequence of unstable modes at the resonant point may be transferred to an unstable
sequence clustering at the minimum (Ω±′′

S > 0) or maximum (Ω±′′
S < 0) of the slow

continua. For gravitational interchanges in plane slab geometry, the relevant cluster condi-
tions, derived by van der Holst et al. [455], are generalizations (replacing ω′′

S by Ω±′′
S ) of

the static conditions (7.180) and (7.181) of Volume [1]. For the analogous cylindrical case,
this transfer is discussed at length for purely longitudinal flows by Bondeson et al. [56]
and for rotations by Wang et al. [472]. �

13.3.3 WKB approximation

In the astrophysics literature on MHD instabilities in cylindrical models, e.g. of
rotating stars [145] or accretion disks [127, 433, 276], frequent use is made of the
WKB approximation for waves in inhomogeneous media. This leads to a so-called
local dispersion equation. Let us apply standard WKB analysis to the second order
differential equation (13.107) for χ, written in the form (fχ′)′ − gχ = 0. This
involves solutions of the form

χ(r) = p(r) exp
[
i
∫
q(r) dr

]
, (13.139)
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where BCs on χ lead to quantization of the definite form of the integral over q.
The expressions p(r) and q(r) should be determined such that these solutions are
correct to leading order in the inhomogeneity. Substitution into Eq. (13.107) gives

− fpq2 − gp+ i(f ′pq + 2fp′q + fpq′) + fp′′ + f ′p′ = 0. (13.140)

Introducing a length scale L for the radial inhomogeneities (∼ the width of the
disk), where (qL)−1 � 1, and neglecting the second order terms fp′′ + f ′p′ com-
pared to the first order ones, this yields the following expressions for the effective
radial “wave number” q and the slowly varying amplitude p:

q ≈ (−g/f)1/2 , p ≈ (−fg)−1/4 . (13.141)

Hence, the local dispersion equation reads:

q2 ≈ − g
f
≡ D

N

[
A+

B

D
+
(C
D

)′]
. (13.142)

Here, first derivatives in the expansions for D, N , A, B and C are to be kept, but
second derivatives should be dropped since terms of O(qL)−2 have been assumed
to be negligible in the derivation above. Accordingly, the last term of equation
(13.142) contributes, so that the local dispersion equation becomes a polynomial
of tenth degree in ω.

� Erroneous form of the local dispersion equation If one naively inserts solutions of
the form (13.139) for both χ(r) and Π(r) into the system of first order ODEs (13.116), one
obtains the dispersion equation

q2wrong ≈ −
1
N2

(C2 +DE) (13.117)=
D

N

(
A+

B

D

)
, (13.143)

which is evidently wrong since the last term of Eq. (13.142) is missing. This erroneous
dispersion equation was actually presented in Eq. (9) of Keppens et al. [255], fortunately
without implications for the explicit spectral results presented there since they were ob-
tained by numerical integration of the exact system of differential equations. The correct
form of the dispersion equation is obtained from the first order system by admitting a phase
difference between the variables χ and Π:

Π(r) = [s(r) + it(r)
]

exp
[
i
∫
q(r) dr

]
. (13.144)

One then has to determine the four quantities p(r), q(r), s(r), t(r) from the real and imag-
inary parts of the two equations (13.116) such that the expressions are valid to O(qL)−1 .
Of course, this again leads to the correct local dispersion equation (13.142). It demon-
strates though that, for WKB analysis, the second order differential equation (13.107) is to
be preferred over the first order system (13.116). �

It may come as a surprise that the correct dispersion equation is a polynomial of
tenth degree in ω rather than a sixth degree polynomial, as would be the case if a
homogeneous plasma permitting six discrete eigenvalues (forward and backward
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slow, Alfvén and fast waves) were just slightly perturbed. Apparently, it is impos-
sible to “slightly perturb”. The reason is, once more, that apparent singularities
D = 0 lead to spurious roots due to the term ∼ D(C/D)′ of the local dispersion
equation (13.142). In general, this additional term is not negligible and, hence, nec-
essary to get correct results from the local dispersion equation. However, it also
introduces spurious roots for frequencies on one side of an apparent singularity
D(r;ω) = 0, viz. the side where q2 → ∞. At points in the radial domain corre-
sponding to those frequencies, the function g(r) jumps from −∞ to +∞ so that
the assumptions underlying the WKB analysis are violated. These roots should be
eliminated a posteriori. Hence, except that the local dispersion equation (13.142)
provides useful estimates of growth rates (see e.g. Section 13.4.2 on the magneto-
rotational instability), solution of the exact differential equation (13.107) is greatly
to be preferred.

Whereas the approach of cluster points or edges of the continua {Ω±
S }, {Ω±

A} and
{Ω±

F} implies that the local approximation becomes ever more valid, the approach
of the edges of the apparent singularity ranges {Ω±

s0} and {Ω±
f0} implies precisely

the opposite. Even in the absence of the mentioned derivative term, proper analy-
sis of the latter two frequency ranges reveals that the WKB approximation is not
valid there since the solutions are not oscillatory but evanescent (exhibiting turning
point behavior). Actual computation of growth rates of instabilities for accretion
disks from the local dispersion equation, involving matching of the WKB solu-
tions to analytic approximations in the turning point regions, has been carried out
by Blokland et al. [53].

13.4 Rotational instabilities

13.4.1 Rigid rotation of incompressible plasmas

In order to obtain some understanding of the Coriolis effects on the distribution
of eigenvalues in the complex ω plane, we consider a special case that can be
solved analytically, both with respect to the solution path and with respect to the
eigenvalues on it. Since the coefficients of the ODEs (13.107) and (13.116) are
rather formidable, making explicit analysis cumbersome, we first simplify them by
taking the incompressible limit of the spectral equation in its second order form,

r
d

dr

[
ρω̃2 − F 2

h2r

dχ

dr

]
−
[
ρω̃2 − F 2 + r

(
B2
θ − ρv2

θ

r2

)′
+ ρ′Φ′

− 4k2(BθF + ρvθω̃)2

h2r2(ρω̃2 − F 2)
− r
(

2m(BθF + ρvθω̃)
h2r3

)′ ]
χ = 0 , (13.145)
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or in its first order form,

d

dr

( χ

Π

)
+

( Ĉ D̂

Ê −Ĉ

)( χ

Π

)
= 0 , (13.146)

Ĉ ≡ C

N
≡ mα

r
, D̂ ≡ D

N
≡ − h2r

ρω̃2 − F 2
,

Ê ≡ E

N
≡ −1

r
(1− α2)(ρω̃2 − F 2)−

(
B2
θ − ρv2

θ

r2

)′
− 1
r
ρ′Φ′ .

Defining the function

α(r) ≡ 2(BθF + ρvθω̃)
r(ρω̃2 − F 2)

, (13.147)

the tangential components of ξ and the total pressure perturbation simplify to

η = − 1
h2r

(gχ′ − fkαχ) , ζ = − 1
h2r

(fχ′ + gkαχ) , (13.148)

Π = −i
ρω̃2 − F 2

k
ξz =

ρω̃2 − F 2

h2r

(
χ′ +

m

r
αχ
)
, (13.149)

whereas the azimuthal component of ξ in the Coriolis part of the Doppler–Coriolis
shift expression (13.121) for V becomes

iξθ ≡ bzη + bθζ = − 1
h2r

(m
r
χ′ − k2αχ

)
. (13.150)

These expressions suggest how the equilibrium should be chosen in order to get
analytical solutions.

Neglecting gravity and choosing equilibria where both Bθ ∼ r and vθ ∼ r , so
that two coefficients of the spectral equations (13.145) and (13.146) vanish and α
becomes constant, the solutions can be written in terms of Bessel functions. This
amounts to an extension of the static equilibrium with helical magnetic field of
constant pitch, considered in Section 9.3.2 [1], to a rigidly rotating equilibrium:

Bθ = μr , Bz = B0 , ρ = ρ0 , vθ = λr , vz = const. (13.151)

(We here indicate the rotation frequency with λ, rather than the more usual Ω,
to avoid confusion with the Doppler shifted frequencies for which we already ex-
ploited that symbol.) We assume the plasma to be confined within a cylinder of
radius r = a. Of course, we exploit scale independence by setting B0 = 1, ρ0 = 1
and a = 1. In the absence of gravity, the equilibrium condition (12.30) demands
that the pressure profile (not appearing in the spectral equation though) is parabolic:

p = p0 − (μ2 − 1
2λ

2)r2 . (13.152)
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For these equilibria, the spectral equation (13.145) reduces to

r
d

dr

[
1
h2r

dχ

dr

]
−
[
1−
(
α2 − 2mα

h2r2

)
k2

h2

]
χ = 0 , (13.153)

where the parameter

α ≡ 2(μF + λω̃)
ω̃2 − F 2

, with F (≡ ωA) ≡ mμ+ k , (13.154)

is now constant. (We here exploit a more appropriate definition, α ≡ αo/m, where
the corresponding parameter (9.97) of Section 9.3.2 [1] is indicated by αo .) Note
that all equilibrium dependence is now represented by this parameter.

Defining a kind of modified wave number

k∗ ≡ k
√

1− α2 ≡ i�∗ , �∗ ≡ k
√
α2 − 1 , (13.155)

the solutions of Eq. (13.153) are expressions in terms of modified Bessel functions
with argument k∗r when α2 < 1, or ordinary Bessel functions with argument �∗r
when α2 > 1. (We have encountered such solutions in Section 9.3 [1], with α = 0,
for perturbations of a vacuum field in Eq. (9.57) and, with different definitions of
α, for a θ-pinch in Eq. (9.76) and for a constant-pitch magnetic field in Eq. (9.98).)
Suppressing the arbitrary amplitude factor, these solutions read:

χ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∗rI′|m|(k

∗r)−mαI|m|(k∗r) (0 ≤ α2 < 1)

[|m|+ 1
2(1± 1)h2r2 ]r|m| (α = ±sg(m))

�∗rJ′|m|(�
∗r)−mαJ|m|(�∗r) (α2 > 1)

. (13.156)

(The reader may wish to obtain these solutions, which here “dropped from the air”,
by deriving the equivalent second order ODE for Π, which is just a Bessel equation,
so that Π ∼ I|m|(k∗r) ∼ J|m|(�∗r), and expressing χ in terms of Π′ and Π.) These
solutions satisfy the BC on the origin, χ(0) = 0. The complete BVP involves the
BC on the wall as well, obviously requiring oscillatory Bessel functions:

χ(1) = �∗J′|m|(�
∗)−mαJ|m|(�∗) = 0 ⇒ �∗ = �∗i (i = 1, 2, . . .) . (13.157)

This yields a discrete set of solutions labeled by the index i. Through the relation-
ships (13.155) between �∗ and α and (13.154) between α and ω, this determines
the discrete eigenvalues. The spectral equation (13.153) is singular for α2 → ∞,
when the constant factor ω̃2 − F 2 vanishes. This yields the forward and backward
degenerate Alfvén–slow continua, collapsed into the two points

Ω±
A/S ≡ Ω0 ± ωA , Ω0 = mλ+ kvz , ωA (≡ F ) = mμ+ k . (13.158)

These frequencies act as the limiting frequencies of the discrete spectrum, deter-
mined by the BVP (13.157), which clusters both from above and from below so that
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four discrete sub-spectra are obtained. Hence, the label i should be supplemented
with some other discrete labels to obtain four infinite sequences.

The additional labels, distinguishing the sub-spectra, are obtained by first solv-
ing the quadratic equation (13.154) for ω(α) and then connecting α to �∗i by means
of the quadratic equation (13.155):

ω = ωs1,s2a/s,i ≡ Ω0 + λ/αi + s1

√
F 2 + 2(μ/αi)F + (λ/αi)2 , s1 = ±1 ,

α = α(�∗i ) ≡ −s2
√

1 + (�∗i /k)2 , s2 = ±1 . (13.159)

Consistent with our previous notation, the Doppler shifted frequencies are indi-
cated with upper case symbol Ω and subscripts A/S for the continua, but with lower
case symbol ω and subscripts a/s for the discrete eigenvalues. With the additional
labels s1 and s2, this yields four discrete sub-spectra along the real ω axis, if the
discriminant in the expression (13.159)(a) for ω is positive, viz. forward or back-
ward (s1 = 1 or −1) and Sturmian or anti-Sturmian (s2 = 1 or −1) Alfvén/slow
modes. If the discriminant becomes negative, the forward Sturmian and back-
ward anti-Sturmian branches meet and then bifurcate into branches with overstable
modes (labeled 0+) and damped modes (labeled 0−) on it. This yields the following
schematic structure for the spectrum of modes:

[
ω−+

a/s,i , Ω−
A/S , ω

−−
a/s,i

]
,

⎡⎣ ω0+
a/s,i

ω0−
a/s,i

⎤⎦ , [ω++
a/s,i , Ω+

A/S , ω
+−
a/s,i

]
.

(backward) (complex) (forward) (13.160)

This is illustrated in Fig. 13.14 for a particular, unstable, case (λ < μ). However,
anticipating the discussion below, it is to be noted that the association of the label
s1 with forward or backward modes and of the label s2 with Sturmian or anti-
Sturmian modes only holds asymptotically, in the approach of the cluster points
Ω+

A/S and Ω−
A/S.

The top frame of Fig. 13.14 shows the spectrum for the static case. It consists
of four discrete sub-spectra, clustering at the degenerate Alfvén/slow continuum
frequencies ±ωA/S, and located partially along the real axis (stable modes) and
partially along the imaginary axis (exponentially growing and damped modes).
The bottom frame shows how this spectrum is modified by rotation. This produces
a fixed Doppler shift Ω0 = mλ+kvz (the dashed vertical line) as well as a varying
Coriolis shift, deforming the locus of unstable modes into the circular path

ω = σ̂ + τ̂eiφ (0 ≤ φ < 2π) . (13.161)

The explicit expressions for σ̂ and τ̂ are given below. Increasing the rotation
rate |λ|, the radius of this circular path shrinks, until it finally vanishes at one
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Fig. 13.14 Spectrum of incompressible cylindrical plasma with magnetic field of
constant pitch, μ ≡ Bθ/r = 1, for mode numbers m = −2 and k = 2.2:
(a) static case, λ ≡ vθ/r = 0; (b) rigidly rotating plasma, λ = 0.25, vz = 0.
Left solution paths are green, arrows indicate the sense of monotonicity of the four
sequences of discrete modes clustering at the degenerate Alfvén /slow continua.

of the degenerate continua Ω±
A/S when |λ| = |μ|. (Notice that the Doppler shift

remains, but the Coriolis shift vanishes there; in Chapter 18, we will encounter
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continua where this is not the case.) For faster rotation, |λ| > |μ|, the plasma is
stable. Hence, for this particular class of equilibria, rotation exclusively stabilizes.

Let us analyze how the solution obtained is related to the general method of
solution paths and oscillation theorems developed in Sections 12.3, 13.1 and 13.2.
In the present case, the solution path PL of left solutions is obtained by dropping
the right BC (13.157) so that �∗, or rather α, becomes a continuous parameter:

α = −s2
√

1 + (�∗/k)2 , s2 = ±1 . (13.162)

The solution path is then simply given by the solution of the quadratic equation

ω = Ω0 + λ/α+ s1
√
F 2 + 2(μ/α)F + (λ/α)2 , s1 = ±1 . (13.163)

This path is along the real ω axis if the discriminant is positive. When it vanishes,
the two real sub-paths meet and turn into the complex plane. This happens at two
frequencies:

σ = σ0,1 = V (ν = 0) = σ̂ ± τ̂
= Ω0 + λ/α0,1 = Ω0 − F μ

λ

(
1∓
√

1− λ2/μ2
)
. (13.164)

When increasing the counting parameter �∗, the subscript 0 indicates the location
on the sub-path PL

s where the modes become unstable and the subscript 1 indicates
the location on the sub-path PL

u where they become stable again. Hence, σ0 and σ1

indicate the two marginal stability transitions (see Fig. 13.14, the point σ1 lies out-
side the frame). Instability amounts to determining whether any of the eigenvalues
have crossed the marginal point σ0, but not yet σ1.

For the range of α in between α0 and α1, the discriminant is negative and the
real and imaginary parts of Eq. (13.163) provide the expressions for σu(α) and
νu(α) of the sub-path PL

u of unstable solutions. This yields the mentioned circle
of radius τ̂ around the point σ = σ̂, defined by

σ̂ ≡ 1
2(σ0+σ1) = Ω0− μ

λ
F , τ̂ ≡ 1

2 |σ0−σ1| =
∣∣∣F μ

λ

√
1− λ2/μ2

∣∣∣ . (13.165)

Of course, this is the solution path which, in general, is obtained from the path
equation (13.120), as one might verify by substituting the Bessel function solu-
tions (13.156) into the expression (13.121) for V and evaluating the integrals. In
this manner, by varying the continuous parameter α, one obtains the solution paths
PL

s and PL
u and, with minor additional effort, the discrete eigenvalues on them by

determining the zeros of the alternator

R(α) ≡ ξ(1)
Π(1)

∼
�∗J ′

|m|(�
∗)

J|m|(�∗)
−mα . (13.166)
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Fig. 13.15 Spectrum of rigidly rotating incompressible cylindrical plasma with
magnetic field of constant pitch, μ = 1, λ = 0.84, vz = 0, m = −2 and k = 2.2.
The first five discrete modes of each sequence are numbered (outside frame: three
eigenvalues σ ≈ −0.686,−0.990,−1.127 of forward anti-Sturmian sequence).
The grey strip indicates non-monotonicity in the Doppler–Coriolis range (σ1, σ0).

In this case, this is nothing else but rephrasing of the BVP (13.157). However,
recall that the generic procedure does not depend on being able to reduce the solu-
tion to known special functions but just requires a numerical algorithm for solving
the general spectral differential equation, where extension with compressibility and
arbitrary distributions of magnetic field and rotation frequency is just a matter of
defining appropriate function routines for the coefficients.

With respect to our oscillation theorem R, the two points σ0 and σ1 mark the
Doppler–Coriolis indefinite range σ1 ≤ σ ≤ σ0, introduced in Eq. (12.142) of
Section 12.3.2, where the sign of σ − V (ν = 0) becomes indefinite. This implies
possible non-monotonicity of the real eigenvalues in that range, as illustrated in
Fig. 13.15. Compared to the equilibrium of Fig. 13.14, the rotation rate λ is in-
creased so that the eigenvalues have spread over the full circle and one of them has
“intruded” the space of the backward Sturmian sequence ω−+

a/s (which is squeezed
into the narrow range to the left of the cluster point). Consequently, since two dis-
crete modes, both labeled with a 1 (on opposite sides of the grey strip in the figure),
are situated on the same sub-path, the discrete spectrum cannot be monotonic in the
number of nodes of the eigenfunction there. This is in agreement with the exclu-
sion of the Doppler–Coriolis indefinite range (σ1, σ0) in oscillation theorem R of
Section 13.1.3. Also notice that the “intruder” is a result of the merger of the two
stable sequences ω−−

a/s and ω++
a/s at σ0 and subsequent merger of the resulting unsta-

ble sequences ω0+
a/s and ω0−

a/s at σ1, so that the superscripts s1 and s2 of the modes
cannot simply refer to backward/forward and Sturmian/anti-Sturmian anymore.

The spectrum of Fig. 13.15 also illustrates the role of the two marginal points
for the formulation of stability or instability criteria. To guarantee the existence of
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an unstable range of eigenvalues �∗i , i.e. a range of the associated parameter α(�∗i )
defined by Eq. (13.159) in between the two values α0 = λ/σ̃0 and α1 = λ/σ̃1

given by Eq. (13.164), the following criterion on the magnitude of the parallel
wave vector k‖ ≡ F ≡ mμ+ k should be satisfied:

|μ|(1−
√

1− λ2/μ2 )√
1 + (�∗i /k)2

< |mμ+ k| < |μ|(1 +
√

1− λ2/μ2 )√
1 + (�∗i /k)2

. (13.167)

Given the eigenvalues for the lowest modes of the present equilibrium (�∗1 ≈ 4.267,
�∗2 ≈ 7.557, �∗3 ≈ 10.766, �∗4 ≈ 13.946, �∗5 ≈ 17.113), one easily checks that only
�∗2, �∗3 and �∗4 are unstable, in agreement with Fig. 13.15. One obtains the maximum
unstable range for instabilities localized about a particular rational surface, i.e. by
assuming large values of the mode numbers, |m| → ∞ and |k| → ∞ but such that
|mμ+ k| remains finite, so that the denominators→ 1:

|μ|(1−
√

1− λ2/μ2 ) < |mμ+ k| < |μ|(1 +
√

1− λ2/μ2 ) . (13.168)

For static (non-rotating) plasmas, this condition reduces to the usual instability
range of quasi-interchange modes on the two sides of k‖ = 0, with marginal sta-
bility at k‖ = 0 (see Fig. 9.15 [1]). With rotation (λ �= 0), the latter wave vector
direction becomes stable, and the unstable range even completely disappears when
the rotation is fast enough: rigid rotation stabilizes quasi-interchange instabilities
if |λ| > |μ|. In terms of the so-called poloidal Alfvén Mach number, this stability
condition requires the rotation speed to be super-Alfvénic:

M2
A,p ≡ v2

θ/v
2
Aθ = λ2/μ2 < 1 . (13.169)

This condition is strictly valid for incompressible plasmas only.
Discrete modes on circular solution paths were first found by Spies [416] for

interchange modes in a rigidly rotating θ-pinch plasma with a density profile.
Hameiri [208] extended this analysis to admit shear flow stabilization of the cen-
trifugal analogy of the Rayleigh–Taylor instability. Analytical and numerical re-
sults on spectra of rigidly rotating plasmas with a constant pitch magnetic field,
also permitting compressibility so that the Alfvén/slow degeneracy is lifted, have
been derived by Nijboer et al. [352].

Of course, the examples of Kelvin–Helmholtz instabilities of Section 13.2 will
prevent us from drawing oversimplified conclusions with respect to the stability,
and particularly with respect to the geometry of the solution paths in the complex
ω plane, for arbitrary velocity distributions (with velocity shear) from the very
special equilibrium treated in this section. Whereas the example does serve to
highlight the important effects of the Coriolis shift on the spectrum of rotating
plasmas, it is actually a rather devious, possibly misleading, representation of the
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theory of spectra of stationary plasmas. The point is that a real representation
of the Bessel function solutions (13.156) suffices here, since the zeros given by
Eq. (13.157) are real, whereas the path on which these solutions are situated is
obtained by solving the quadratic equation (13.154) for ω, again assuming real α.
In other words: the example is so simple that obtaining the solution path as well
as the eigenvalues is nearly trivial. Without the examples of Section 13.2.2 on
the breakup of solution paths by shear flow, one might be seduced to draw false
conclusions from this example. Nevertheless, it is useful as an illustration of how
rotation changes the geometry of solution paths through the Coriolis effect. For
example, contrary to the spectra of plane shear flow equilibria of Section 13.2,
where at least one solution sub-path off the real axis is always present (though
there may not be unstable modes on it), with rotation even this may not be the case.
In the present example, for |λ| ≥ |μ|, the plasma is not only stable, but solution
paths away from the real axis do not exist: Doppler shifts and Coriolis shifts are
entirely different physical phenomena.

13.4.2 Magneto-rotational instability: local analysis

As an application of the rather formidable spectral problem for cylindrical plas-
mas with flow outlined in Section 13.3.1, we will consider the stability problem
of an accretion disk around a compact object. This object may be a young stellar
object (mass M∗ ∼ M�) or an active galactic nucleus (massive black hole with
M∗ ∼ 109M�). For this incredible range of objects, the same fundamental prob-
lem arises, viz. how can accretion on such objects occur at all on a reasonable time
scale? Without dissipation this would be impossible, because a disk (that would al-
ready be there for whatever reason) would conserve angular momentum and, hence,
rotate forever without change. Some form of viscosity is needed to facilitate the
transfer of angular momentum to larger distances. But, with viscosity there is still
a problem since the ordinary molecular viscosity coefficient is much too small to
produce accretion of the correct order of magnitude. A turbulent increase of this
coefficient might give the right answer. For such a process, small-scale instabilities
are needed. However, no hydrodynamic instabilities were found for these disks.
It is generally assumed that the resolution of this problem involves the magneto-
rotational instability (MRI), as first suggested by Balbus and Hawley [18]. The
instability itself was already described thirty years earlier by Velikhov [467] and
Chandrasekhar [83], of course, without application to accretion disks. We here
present a derivation of the instability conditions to demonstrate that the analysis of
Section 13.3.1 is actually applicable to genuine astrophysical objects.

We simplify the schematic axi-symmetric (2D) representation of an accretion
disk, shown in Fig. 4.1 [1], even further by neglecting vertical equilibrium varia-
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Fig. 13.16 Schematic geometries for accretion disk: (a) cylindrical slice model;
(b) quasi two-dimensional model.

tions so that the annular cylindrical (1D) thin slice model of Fig. 13.16(a) is ob-
tained. (One might object that is not a disk at all anymore, but this is how plasma-
astrophysicists grapple with the problem of turbulent transport in these objects.)

We specify the gravitational potential to be due to a compact object of mass M∗
at the origin,

Φ = − GM∗√
r2 + z2

≈ −GM∗
r

, (13.170)

where the latter, cylindrical, approximation is appropriate for short wavelengths
fitting the disk in the vertical direction:

kΔz 	 1 . (13.171)

We wish to investigate the instabilities in the limit of small magnetic fields:

β ≡ 2p
B2
	 1 . (13.172)

This approximation justifies the simplification of the spectral equation (13.107) to
the incompressible limit (13.145). It is also consistent with incompressibility to as-
sume a constant density so that the explicit gravitational term ρ′Φ′ disappears from
the spectral equation (of course, not the implicit dependence through the equilib-
rium equation (12.30) which the functions ρ, p,Bθ,Bz and vθ still have to satisfy).
Next, we simplify the magnetic configuration to the most simple form consistent
with a rotating magnetized disk by choosing a purely vertical and constant mag-
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netic field and a purely azimuthal velocity field:

Bθ = 0 , vz = 0 ⇒ ωA = kBz/
√
ρ = const , Ω0 = mvθ/r . (13.173)

Furthermore, we restrict the analysis to vertical wave numbers k only:

m = 0 ⇒ Ω0 = 0 , so that ω̃ = ω . (13.174)

The spectral problem then simplifies to the solution of

(ω2−ω2
A)r

d

dr

(
1
r

dχ

dr

)
−k2
[
ω2−ω2

A−r
(
v2
θ

r2

)′
− 4ω2v2

θ/r
2

ω2 − ω2
A

]
χ = 0 , (13.175)

subject to the BCs χ(r1) = χ(r2) = 0. As always, these conditions do not imply
that no dynamics occurs outside this range, but just that we wish to minimize the
consequences of our ignorance about it by considering modes that are localized
within this range. With all these approximations, nearly everything is constant,
except the angular rotation frequency λ(r) ≡ vθ(r)/r.

To concord with the astrophysical literature, we replace the symbol λ by the
standard notation for the angular frequency Ω(r) (not be confused with Ω0(r) now)
and a derived quantity called the epicyclic frequency κ(r):

Ω [ ≡ λ ] ≡ vθ
r
, κ2 ≡ 1

r3
(r4Ω2)′ = 2rΩΩ′ + 4Ω2 . (13.176)

The latter quantity is a measure of how much the specific angular momentum L̂(r)
of the disk deviates from a constant distribution:

L̂ ≡ L/ρ ≡ rvθ ≡ r2Ω ⇒ L̂′ = 0 , if κ2 = 0 . (13.177)

In terms of these quantities, the spectral equation may be written as

r
d

dr

(
1
r

dχ

dr

)
− k2

[
1− κ2(r)

ω2 − ω2
A

− 4ω2
AΩ2(r)

(ω2 − ω2
A)2

]
χ = 0 . (13.178)

This equation exposes the important difference between the stability of a hydrody-
namic disk (ω2

A = 0) and the stability of a magnetohydrodynamic disk (ω2
A �= 0),

even when the magnetic field is arbitrarily small (ω2
A → 0).

In the hydrodynamic limit, one easily derives Rayleigh’s circulation criterion
(see below, or Drazin and Reid [124], p. 69), stating that the fluid is stable to axi-
symmetric disturbances (m = 0) when

κ2 ≥ 0 everywhere , (13.179)

which is why κ2 is called Rayleigh’s discriminant in hydrodynamics. Neglect-
ing the influence of the pressure gradient on the equilibrium relation (12.30), this
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criterion is satisfied for Keplerian rotation,

ρv2
θ,K

r
= ρΦ′ = ρ

GM∗
r2

⇒ Ω2
K =

GM∗
r3

⇒ κ2
K =

GM∗
r3

> 0 , (13.180)

so that such equilibria are hydrodynamically stable under rather wide assumptions.
This explains why interest shifted to magnetohydrodynamic instabilities to explain
the turbulent increase of the dissipation processes in accretion disks.

(The restriction to incompressible plasmas and axi-symmetric modes is actually
made to highlight the merits of the MRIs. It implies exclusion of quite a number
of instabilities, e.g. the hydrodynamic one found by Papaloizou and Pringle [361]
(see Pringle and King [388], Chapter 14), which is a global m �= 0 overstability
operating in compressible thin disks as well as thick tori for κ2 = 0.)

To obtain a stability criterion for the magnetohydrodynamic case, we first have
to construct the solution path Pu from the path equation (13.120), with the ex-
pression (13.121) for the Doppler–Coriolis shift. Under the present assumptions,
m = 0, vz = 0, Bθ = 0 and incompressibility, the Doppler shift Ω0 vanishes,
whereas the auxiliary function α defined in Eq. (13.147) and the tangential expres-
sions (13.148) reduce to

α(r) =
2Ω(r)ω
ω2 − ω2

A

, iξθ = η =
α

r
χ , iξz = ζ = − 1

kr
χ′ , (13.181)

so that the remaining Coriolis shift becomes

V = 4Re
(

ω

ω2 − ω2
A

) ∫
Ω(r)2 |ξ|2rdr∫

(|ξ|2 + |η|2 + |ζ|2)rdr
. (13.182)

A trivial solution (the imaginary ω axis) of the path equation (13.120) for Pu is
found immediately by inspection:

σ = V (ω = iν) = 0 . (13.183)

It is evident from the symmetry of the perturbations and the equilibrium that no
other solutions, with σ �= 0, can exist. Hence, in a problem with a genuine rotation
profile Ω(r), we have managed to produce solution paths Ps and Pu (the real and
imaginary ω axes) that are identical to those of a static equilibrium! Needless to
say that this lucky circumstance will get lost for more general perturbations and
equilibria, with m �= 0 and Bθ �= 0 (see Section 13.4.3).

Next, we note that the construction of the eigenvalues on the solution paths re-
quires the solution of the spectral differential equation (13.178) which, like in the
static case, only depends on the squared eigenvalue parameter, ω2, which we now
know to be real. Hence, instability or stability depends on whether or not there are
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eigenvalues ω2 < 0. We construct a quadratic form by multiplying the differential
equation by χ, integrating over the plasma interval r1 ≤ r ≤ r2, integrating by
parts and canceling the boundary term by applying the BCs:

(fχ′)′ − gχ = 0 ⇒
∫ r2

r1
(fχ′2 + gχ2)rdr = 0 . (13.184)

Here, f and g indicate the coefficients of Eq. (13.178), but it is clear that the argu-
ment applies to any second order differential equation with real coefficients. (We
have encountered it many times before in Volume [1].) Clearly, to obtain eigen-
functions (i.e. oscillatory solutions satisfying the BCs) for real values of ω2, the
ratio of these coefficients should be negative,

g

f
(r;ω2) ≡ k2

[
1− κ2(r)

ω2 − ω2
A

− 4ω2
AΩ2(r)

(ω2 − ω2
A)2

]
< 0 , (13.185)

over at least some sub-interval r1 ≤ rA < r < rb ≤ r2 . From our oscillation
theorems R (Section 13.1.3) and C (Section 13.2.4), which reduce to the ones
for the static case (Section 9.4.1 [1]) under the present approximations, stability
or instability is determined by the absence or presence of oscillatory solutions of
the marginal equation of motion, obtained from Eq. (13.178) in the limit ω → 0.
Hence, the criterion for the absence of magneto-rotational instabilities becomes

ω2
A + κ2 − 4Ω2 ≥ 0 everywhere , (13.186)

significantly different from the criterion (13.179) for absence of HD instabilities.
Inserting the definition (13.176) for κ2, the MHD criterion is violated for Keplerian
disks when the magnetic field is sufficiently small (ω2

A → 0),

κ2
K − 4Ω2

K ≡ r(Ω2
K)′ (13.180)= −3Ω2

K < 0 . (13.187)

Hence, in contrast to hydrodynamic disks, disks with a small magnetic field are
always unstable with respect to the magneto-rotational instability [18]. This is the
reason for the popularity of research of MRIs in accretion disks.

Two problems remain to be addressed.

(a) Why does the MHD condition (13.186) not transform into the HD condition (13.179)
in the limit ω2

A → 0?

(b) Can one actually find parameters for the disk and a range of unstable wave numbers k
that satisfy all mentioned smallness assumptions imposed on the solutions?

Both problems are most effectively solved by means of the consideration of local-
ized modes of the type introduced in Section 13.3.3.

The apparent contradiction between pure hydrodynamics (ω2
A = 0) and the hy-

drodynamic limit of MHD (ω2
A → 0) is resolved when the growth rate of instabil-

ities is taken into account. This is best illustrated by considering modes that are
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sufficiently localized radially to exploit the WKB solution (13.139) with

q Δ̃r 	 1 ( Δ̃r ∼ r1 � Δr ≡ r2 − r1 ) . (13.188)

The restriction to Δ̃r instead of Δr is necessary here since the equilibrium, i.e.
Φ(r), has anO(1) variation over a much narrower range than the width of the disk.
With the ratio g/f of the coefficients of the approximate spectral equation (13.178)
as given by Eq. (13.185), the local dispersion equation (13.142) reduces to

q2 = − g
f
⇒ (k2+q2)(ω2−ω2

A)2−k2κ2(ω2−ω2
A)−4k2ω2

AΩ2 = 0 , (13.189)

giving two solutions,

ω2 = ω2
A + 1

2

k2

k2 + q2
κ2 ±

√(
1
2

k2

k2 + q2
κ2

)2

+ 4
k2

k2 + q2
ω2

AΩ2 . (13.190)

This yields the following approximations under various assumptions.

(1) As always, the asymptotic spectral structure is obtained from the most local modes
(q2 	 k2 	 1) forming cluster spectra immediately above and below the degenerate
Alfvén/slow continua Ω±

A/S = ±ωA,

ω2 ≈ ω2
A ± 2(k/q)ωAΩ (continua and cluster spectra) . (13.191)

(2) The expressions for the most global modes (q2 � k2) yield the instability criteria,

ω2 ≈ ω2
A + 1

2κ
2 ± 1

2

√
κ4 + 16ω2

AΩ2 ⇒
{

κ2 < 0 , for ω2
A = 0 (HD)

κ2 − 4Ω2 < −ω2
A (MHD)

.

(13.192)

(3) Small magnetic field strengths (ω2
A � κ2 ∼ Ω2) yield the two relevant kinds of modes,

ω2 ≈

⎧⎪⎨⎪⎩
k2

k2 + q2
κ2 + (4Ω2/κ2 + 1)ω2

A (epicyclic modes)

−(4Ω2/κ2 − 1)ω2
A (MRIs)

. (13.193)

In the limit of vanishing magnetic field (ω2
A → 0), the upper solution is unstable if

Rayleigh’s stability criterion (13.179) is violated, i.e. for rotation profiles Ω(r) that
fall off faster than r−2. For those profiles, the lower solution is stable. However,
for rotation falling off with a lower power, like Keplerian rotation Ω ∼ r−3/2, the
upper solution is stable and the lower solution (corresponding to MRI) is unstable, but
with a vanishing growth rate. Consequently, for Keplerian rotation profiles, the MRI
dominates as long as ω2

A is finite, but sufficiently small.

Consequently, the maximum growth rate for MRIs is obtained from the bottom
expression (13.193)(b), which is valid for the most global modes (q2 � k2). For
increasing values of q, a whole sequence of MRIs is obtained, crossing the marginal
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point ω = 0 and bifurcating there, and finally joining the − pair of cluster spectra
(13.191) for q → ∞. In that limit, the epicyclic modes (13.193)(a) transform into
the + pair. This structure is illustrated in Section 13.4.3 (Fig. 13.17).

With respect to the order of magnitude of the different physical parameters for
which the MRI will be operating in the disk, we first utilize scale-independence by
setting three parameters equal to 1. This time, since we want to study the limits
of small and vanishing magnetic field strength, it is not expedient to exploit Bz
for that purpose. Instead, we normalize frequencies with respect to the angular
rotation frequency at r = r1 and eliminate dimensions by fixing the following
three parameters:

r1 ≡ 1 , ρ ≡ 1 , Ω(r1) ≡ 1 (scale independence) . (13.194)

The geometry of a thin and wide accretion disk is then represented by a small
parameter ε and a large parameter Δ:

ε ≡ Δz � 1 � Δ ≡ Δr ≡ r2 − r1 (thin and wide disk) . (13.195)

The longitudinal wave number k and the radial “wave number” q should be chosen
such that the conditions (13.171) and (13.188) are satisfied, e.g.

k ∼ ε−2 	 ε−1 ∼ q 	 1 (local disturbances) . (13.196)

We can now estimate the order of magnitude of the magnetic field Bz , i.e. of the
Alfvén frequency ωA, required to give significant growth of the MRI during one
rotation period (the condition (13.186) excludes growth faster than that):

ωMRI ∼ ωA ≡ kBz ∼ Ω(1) ≡ 1 ⇒ Bz ∼ k−1 � ε� 1 . (13.197)

Assuming k ∼ ε−2, this implies the very small order of magnitude of the mag-
netic field, Bz ∼ ε2Ω(1) (in dimensionless units), above which the MRI switches
off. Even with the successes of modeling turbulent processes in accretion disks by
means of the magneto-rotational instability (see Balbus and Hawley [19], Stone et
al. [422]), this still begs the question whether nature actually makes use of these
processes. Eventually (in a very distant future), this question can only be answered
by means of extremely high-resolution observations, unequivocally establishing
the magnetic signature of the modes involved.

13.4.3 Magneto-rotational instability: numerical solutions

Since the window in parameter space of the MRI is so narrow, it is logical that
intensive research was conducted on extended models of accretion disks where the
mentioned restrictive conditions were dropped one by one. We here discuss one
particular model, by Keppens et al. [255], since it illustrates the complexity of the
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spectrum of waves and instabilities of rotating equilibria with “numerically exact”
solutions of the full spectral equation (13.107) for a cylinder with a relevant choice
of the radial distribution of the equilibrium variables for accretion disks. This
brings in dependence on compressibility (i.e. lifting of the degeneracy of Alfvén
and slow sub-spectra and appearance of the fast sub-spectrum), a toroidal magnetic
field (Bθ �= 0) and toroidal mode numbers m �= 0. (Note that “toroidal” here
refers to the azimuthal component, in contrast to cylindrical models for tokamaks
where the same angle is always called “poloidal” angle, simulating a torus by a
periodic cylinder.) The results presented were obtained with a numerical code
(LEDAFLOW [353]) dating from before the development of the concepts of solution
path and alternator, but clearly illustrating their central importance.

The cylindrical equilibrium equation (12.30) is satisfied for disks with a power
dependence of the radial variable r:

vθ = v1r
− 1

2 , ρ = re, p = p1r
e−1, Bθ = Bθ1r

1
2
(e−1), Bz = Bz1r

1
2
(e−1),

(13.198)
where approximate Keplerian rotation is assumed. The normalization is chosen
slightly differently from Eq. (13.194), viz.GM∗ ≡ 1 , but v1 ≡ vθ(1) ≡ Ω(1) ≈ 1,
where the exact expression for v1 is given in Eq. (13.201) below. In the present
context of an ideal stationary equilibrium, the exponent e is completely arbitrary.
It will be fixed to the value e = −3/2, corresponding to a particular class of self-
similar dissipative stationary disk solutions, given by Spruit et al. [417], with radial
accretion velocity vr (� vθ, see below) and associated outward angular momen-
tum transport due to turbulent viscosity, modeled with the parameter α introduced
by Shakura and Sunyaev [410]. Related to their celebrated scaling, we general-
ize the cylindrical model of Fig. 13.16(a) somewhat, to the quasi-2D model of
Fig. 13.16(b), by estimating the pressure from the vertical component of the two-
dimensional equilibrium equation by balancing the pressure gradient and gravita-
tional acceleration in the z-direction (see Frank, King and Raine [139], p. 87):

1
ρ

∂p

∂z
= −∂Φ

∂z
≈ − z

r3
⇒ p ≈ p1r

−5/2
(
1− z2

2H2

)
, H ≈ √p1r . (13.199)

Here, H is the scale height of the disk, thus assumed to be determined by thermal
effects only. This very crude estimate of the two-dimensional structure of the equi-
librium permits us to relate the magnitude of the pressure to the inverse aspect ratio
of the disk:

√
p1 = ε ≡ H

r
. (13.200)

Note that these considerations on dissipation and geometry only fix the orders of
magnitude of the ideal one-dimensional equilibrium that will be investigated with
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respect to the MRI and its generalizations. It thus becomes a four-parameter family
in terms of ε, the pitch μ1 of the magnetic field lines at r = r1, the ratio β between
kinetic and magnetic pressure, and the width Δ ≡ r2 − r1 of the disk:

vθ = v1r
− 1

2 , ρ = r−
3
2 , p = ε2r−

5
2 , Bθ = μ1Bz1r

− 5
4 , Bz = Bz1r

− 5
4 ,

v1 =
[
1− 2.5ε2

(
1 +

1
β

1 + 0.2μ2
1

1 + μ2
1

)]1/2
,

β ≡ 2p/B2 , μ1 ≡ Bθ1/Bz1 , Bz1 = ε
/√

1
2β(1 + μ2

1) . (13.201)

This completely determines the equilibrium for the spectral study.
Two side remarks are in order: first, the inverse aspect ratio ε of the disk and the

iso-thermal sound speed for these equilibria are related by

cs ≡
√
p/ρ = ε/

√
r ⇒ ε = cs/vθ , (13.202)

showing that the rotation speeds involved are necessarily supersonic (vθ 	 cs).
Second, the frequently cited estimate of Shakura and Sunyaev [410] of the kine-
matic viscosity due to turbulent eddies with sizes not exceedingH exhibits a simple
scaling in terms of the dimensionless parameter α (estimated to have a magnitude
of order 0.1–1), that also justifies the neglect of the radial inflow velocity:

ν = αcsH = αε2
√
r ⇒ vr ≈ −3ν

2r
= −3

2αε
2r−

1
2 � vθ = r−

1
2 . (13.203)

Simple and attractive but, obviously, to be taken with a grain of salt. After all, the
magnitude of α is not a constant of nature but should be the eventual outcome of
the MRI calculations.

Figure 13.17 shows the complete MHD spectrum of axi-symmetric modes for
an equilibrium (13.201) with parameters ε = 0.1, μ1 = 1, β = 2000, Δ = 9,
perturbed with wave numbers m = 0 and k = 70. The different discrete modes,
corresponding to different numbers of radial nodes (i.e. of the wave number q in
the local approximation of Section 13.4.2), exhibit the monotonicity of the alter-
nator R required by the oscillation theorems R and C. Due to the choice k 	 1,
they are very densely distributed over the central part of the imaginary ω axis and
smoothly join the sequence of stable epicyclic modes along the real axis, eventu-
ally clustering at the continua. Because so many discrete modes are calculated, the
distinction between continua and discrete modes is somewhat blurred in the figure.
In conclusion, the slow and Alfvén modes interact to produce both the MRIs and
the stable epicyclic modes, and it supports the general expectation that the many
local MRIs may provide the required source of turbulent increase of the viscosity
to yield accretion flows of the correct order of magnitude.

The numerical spectrum of the full range of local and global modes of Fig. 13.17
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κ κ
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ΩA,S
− ΩA,S

+

Ωf0
− Ωf0

+
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κκ

Fig. 13.17 MHD spectrum for weakly magnetized accretion disk for axi-symmetric
(m = 0) modes. Magneto-rotational instabilities (MRIs) and stable epicyclic modes
(κ) are associated with cluster spectra of interacting Alfvén and slow modes about
the overlapping forward and backward continua {Ω+

A,S} and {Ω−
A,S}; fast modes

starting from the turning point ranges {Ω+
f0} and {Ω−

f0} cluster towards Ω±
F ≡ ±∞;

ε = 0.1, μ1 = 1, β = 2000, Δ = 9, k = 70. (Adapted from Keppens et al. [255].)

agrees qualitatively with the local analysis of Section 13.4.2, but also quantitatively
if the following considerations on mode localization are taken into account. The
approximation (13.193)(b) for the growth rate of global MRIs (q2 � k2) yields

νMRI ≈
√

4Ω2/κ2 − 1ωA =
√

3ωA = kBz1

√
3/ρ ≈ 0.271/

√
r . (13.204)

This agrees with the maximum growth rate of Fig. 13.17 for modes localized at the
inside (r = 1), whereas modes localized on the outside (r = Δ = 9) have much
reduced growth rates since the associated value of q is much larger. Actually, the
more localized modes have to cross the origin for some value of q 	 1 since they
eventually have to join onto the cluster spectra (13.191) at the continua Ω±

A = ±ωA

and Ω±
S = ±ωS for q → ∞. The degeneracy of the incompressible Alfvén/slow

continua Ω±
A/S is now lifted but, because β = 2000, it is clear that this is just a tiny

effect, much smaller than the width of the continua produced by the r dependence,
so that the two pairs of continua still largely overlap.

Along the real axis, except for the mentioned cluster spectra, there is also the
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Fig. 13.18 MHD spectrum for weakly magnetized accretion disk for non-axi-
symmetric perturbations. Doppler shifted MRIs and epicyclic modes are associated
with cluster spectra of interacting Alfvén and slow modes about the overlapping
continua, dominated by a large Doppler shift: Ω+

A,S ≈ Ω−
A,S ≈ Ω0, extending from

Reω = −10 to −0.37; fast modes and wide turning point ranges {Ω−
f0} and {Ω+

f0}
clutter the real axis; ε = 0.1, μ1 = 1, β = 2000, Δ = 9, m = −10, k = 70.
(Adapted from Keppens et al. [255].)

sequence (13.193)(a) of stable epicyclic modes (indicated by κ in the figure),

ωκ ≈ ±κ = ±1/
√
r , (13.205)

with a maximum value |ωκ| ≈ 1. In addition, because of the finite value of β, the
fast modes, that are situated at ±∞ for incompressible plasmas, appear to come
much closer to the slow and Alfvén sub-spectra than one might have expected.
This is due to the power dependence of the sound speed, so that the fast modes
have frequencies

ωf ≈ ±
√

(k2 + q2)γp/ρ ≈ √γ kε/√r = 9.04/
√
r , (13.206)

with a minimum value of |ωf | ≈ 3 corresponding to localization at the outer edge.
These modes are spread over a wide range, containing the non-monotonicity ranges
Ω+

f0 = ωf0 and Ω−
f0 = −ωf0, where ωf0 ≡ ωf(q = 0), indicated in the figure and

clustering towards the two limiting values Ω±
F ≡ ±∞.

Extending the analysis to non-axi-symmetric modes (Fig. 13.18), with azimuthal
mode number m = −10, the spectrum is dominated by the large Doppler shift,
resulting in a Doppler range {Ω0} = [−10,−0.37] for the parameters chosen. The
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MRIs are now shifted away from the imaginary ω axis, but they remain situated in
the mentioned Doppler strip since the Coriolis shift is negligible for this particular
case. This is in agreement with the theory developed in this chapter. The growth
rates of the instabilities have the same order of magnitude as for the axi-symmetric
modes, but they are reduced by about a factor 2.

The Doppler shift Ω0 = m/(r
√
r) is largest for the inner edge of the disk and

smallest for the outer edge. Since the fastest growing (global) modes are concen-
trated on the inside and the most local modes are concentrated on the outside, the
Doppler shift is largest for the fastest growing instabilities and remains small for
the near marginal ones, in agreement with the figure. Even though β = 2000
is large, the fast magneto-sonic modes and the associated turning point ranges
{Ω−

f0} = [−19.04,−3.38] and {Ω+
f0} = [−0.96, 2.64] come close to the continua,

and {Ω−
f0} even overlaps with them, because of the large extension of the disk.

Hence, identification of the modes along the real axis in terms of slow, Alfvén and
fast becomes meaningless: except at the edges of the continua, they are all of mixed
type.

Several extensions have been made for cylindrical plasmas with β ∼ 1 (so-
called “equipartition”). According to the disk expansion (13.200) represented in
Fig. 13.16(b), this really implies a fat disk so that incorporation of toroidal effects
becomes essential. In Chapter 18, we show that, due to coupling of the Alfvén
and slow modes, the continua themselves may become unstable in that case so that
magnetically dominated instabilities become even more important then.

13.5 Literature and exercises

Notes on literature

Hydrodynamic and magnetohydrodynamic stability

– Chandrasekhar, Hydrodynamic and Hydromagnetic Stability [84], discusses a great
variety of topics in fluid dynamic stability, like thermal instability, effects of shear
flow, rotation, gravity and stability of jets and cylinders. Magnetic field effects en-
ter at many places, e.g. in Chapter IX in the discussion of the magneto-rotational
instability, shortly earlier discovered by Velikhov [467] and independently by Chan-
drasekhar [83].

– Drazin & Reid, Hydrodynamic Stability [124], is the classical compendium on the
subject of linear hydrodynamic stability, treating both inviscid and viscous flows with
respect to thermal convection, shear flow and rotation, and containing a short intro-
duction of some topics in nonlinear stability.

– Hameiri, ‘Spectral estimates, stability conditions, and the rotating screw-pinch’ [209],
presents the first systematic study of the spectrum of stationary cylindrical plasmas.

– Bondeson, Iacono & Bhattacharjee, ‘Local magnetohydrodynamic instabilities of
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cylindrical plasma with sheared equilibrium flows’ [56], extend Hameiri’s results with
a numerical analysis of local instabilities at resonant magnetic surfaces.

Astrophysical flows

– Balbus & Hawley, ‘Instability, turbulence, and enhanced transport in accretion disks’
[19], point out the significance of the magneto-rotational instability as a possible
mechanism for turbulent enhancement of angular momentum transport in accretion
disks about compact objects.

– Pringle & King, Astrophysical Flows [388], is a basic textbook on the fluid dynami-
cal processes relevant to astrophysics, covering wave propagation, shocks, spherical
flows, stellar oscillations, and instabilities driven by magnetic fields, thermal conduc-
tion, gravity, shear flow and rotation.

Exercises

[ 13.1 ] Convection in a plasma slab

In this exercise we investigate the convective instability of a plasma slab. Assume that the
slab has a constant flow and magnetic field.

– Derive the spectral equation in the incompressible limit.
– Derive the local dispersion equation using a solution of the form ξ ∼ eiqx, assuming

that qΔx	 1.
– What are the solutions of this dispersion equation?
– What is the role of the magnetic field?

[ 13.2 ] Gravito-acoustic waves in a stationary fluid

Similarly to Section 7.2.3 [1], we are going to investigate gravito-acoustic waves, i.e. ne-
glect the magnetic field, but we do take flow into account.

– Derive an equation for the pressure assuming that the density is exponentially decay-
ing, ρ = ρ0e−αx, and that the gravity is constant. Show that the sound speed c and
the decay parameter α are constant.

– Writing

(ω̃2 − k2
0c

2)
[
ω̃2/(ω̃2 − k2

0c
2)
]′

= −k2
0λ(x, ω) ,

find the expression for λ(x, ω).
– Derive from the general spectral equation a second order differential equation for the

displacement ξ. Write this equation in the form ξ′′ + f(x, ω)ξ′ + g(x, ω)ξ = 0.
– Looking at this differential equation, one might think to try solutions of the form
ξ ∼ C exp[(a± iq)x]. Explain, why this kind of solutions cannot be used in general.

– Assume that the velocity is constant. Explain, why the form mentioned in the previous
question can now be used. Show that both f(x, ω) and g(x, ω) are real.

– Derive the dispersion equation from the spectral equation.
– Determine the eigenfrequencies from the dispersion equation.

[ 13.3 ] Magneto-rotational instability and convection

In Section 13.4.2, the magneto-rotational instability is discussed assuming constant den-
sity. Here, we drop this assumption, which allows us to study convective instabilities.
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– Derive the spectral equation in the incompressible limit. Assume a constant magnetic
field in the vertical direction, and a purely azimuthal velocity field. Consider only
axi-symmetric perturbations. (Hint: use the function Λ(r) defined in Eq. (13.105).)

– Derive the local dispersion equation from the spectral equation, assuming oscillatory
solutions of the form χ ∼ exp(iqr) with qΔr 	 1.

– Determine the solutions of the dispersion equation.
– Derive a stability criterion from them and explain the role of the magnetic field.

[ 13.4 ] Magneto-rotational instability and non-zero azimuthal magnetic field

In the previous exercise, you have investigated the magneto-rotational instability in combi-
nation with convection in the absence of an azimuthal magnetic field. Here, you will look
at the case of a non-vanishing azimuthal magnetic field.

– Convince yourself that the azimuthal magnetic field cannot be constant.
– Repeat the first two questions of the previous exercise, including an azimuthal mag-

netic field. Find a local dispersion equation of the form ω4 + a2ω
2 + a1ω + a0 = 0,

and determine the coefficients a2, a1 and a0.
– The solutions of this dispersion equation cannot be obtained analytically. You have

to find them numerically. To do so, an equilibrium has to be specified. Work out the
coefficients for the equilibrium specified in Eq. (13.201) for an accretion disk.

– Compute the solutions of the dispersion equation making use of Laguerre’s method
(see Numerical Recipes [385]; in IDL use FZ ROOTS, in Matlab use ROOTS1). Use
the following parameters for the equilibrium: ε = 0.1 (thin disk), μ1 = 1 (inclusion
of azimuthal magnetic field), β = 1000 (weakly magnetized plasma), and GM∗ = 1.
As a starting value for Laguerre’s method use the complex number ω̂ = i. What do
you notice? What happens if you include an azimuthal magnetic field?

– Make a plot of the growth rate and oscillation frequency as a function of the vertical
wavenumber k. What is the minimum value for the wavenumber k? What do you
conclude from this plot?

[ 13.5 ] WKB analysis

In the previous exercises, we have assumed qΔx	 1, or qΔr 	 1, depending on whether
we describe the plasma in Cartesian or in cylindrical coordinates. This assumption is part
of the WKB analysis of the spectral equation. Here, you are going to perform the WKB
analysis for plasma in Cartesian coordinates. (For cylindrical coordinates, this can be done
in a similar fashion.)

– To perform a proper WKB analysis, write the displacement ξ in the following form:

ξ(x, y, z) = p(x) exp
[
i
∫ x

x0

q(s)ds+ i(kyy + kzz)
]
,

where p(x) and q(s) are the amplitude and “wavenumber” in the x-direction, respec-
tively. Calculate the first and second derivative of ξ with respect to x.

– The spectral equation (13.9) can be written as

d

dx

(
f(x)

dξ

dx

)
− g(x)ξ = 0.

Work this out by inserting the expressions found in the previous question.
– Derive an expression for the amplitude p(x) in terms of f(x) and q(x).
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– Now apply the WKB approximation. This implies that (qL)−1 � 1, whereL ∼ d/dx
is the length-scale of the variation of the background. Show that the spectral equation
of the previous question reduces to an algebraic equation. This is the local dispersion
equation. What is the approximate expression for the amplitude p(x)?

– Take a closer look at the expression for g(x), especially the last term. Find an ar-
gument that justifies neglecting this term compared to the other ones. (Hint: try to
identify a term proportional to ω̃2 − ω2

A in the expression for D.)
– Derive the local dispersion equation by inserting the expressions for f(x) and g(x).

Show that this dispersion equation is a third order polynomial in ω̃2 and compute all
coefficients of it.
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Resistive plasma dynamics

14.1 Plasmas with dissipation

14.1.1 Conservative versus dissipative dynamical systems

We have already come across the enormous difference between conservative (ideal)
MHD and dissipative (resistive, viscous, etc.) MHD in Volume [1], Chapter 4. This
difference runs through all of classical dynamics of discrete and continuous media.
It involves quite different physical assumptions and corresponding different mathe-
matical solution techniques. An instructive example is spectral theory (Volume [1],
Chapter 6) which is classical, consistent and misleadingly beautiful for ideal MHD,
but full of unresolved problems in resistive MHD. The classical part concerns self-
adjoint linear operators in Hilbert space, analogous to quantum mechanics, and
stability analysis by means of an energy principle. When dissipation is impor-
tant, precisely these two “sledge hammers” are missing in the dynamical systems
workshop. Even the definition of what is an important, i.e. physically dominant,
contribution to the dynamics deserves extreme care. This is best illustrated by the
general description of the dynamics of ordinary fluids which is fundamentally dif-
ferent for ideal fluids, characterised by an infinite Reynolds number, and viscous
fluids, characterised by a finite Reynolds number. This is even so for extremely
large Reynolds numbers, in a certain sense irrespective of how large this number
is. Viscous boundary layers always arise in real fluids. This qualitative difference
between ideal and dissipative dynamics, with the occurrence of boundary layers,
also applies to MHD when resistivity is introduced. This gives rise to internal
resistive boundary layers, facilitating new modes of instability, as we will see in
Section 14.2. The physical cause of these instabilities is the loss of conservation of
magnetic flux, leading to reconnection of magnetic field lines (Section 14.4). The
implications for the structure of the resistive spectrum are only partly understood
(Section 14.3). Resistive MHD is only one of a number of extensions of the ideal
MHD model which come under the name of “extended MHD” (Section 14.4.4).
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14.1.2 Stability of force-free magnetic fields: a trap

As a preliminary to the study of resistive instabilities, to be undertaken in Sec-
tion 14.2, let us first investigate the ideal MHD stability of about the simplest sys-
tem that deserves analysis, viz. a plane current-carrying plasma slab. The reader is
warned in advance that an educational trap has been laid in this section.

The current will be chosen such that the magnetic field has a constant magnitude
but its direction varies. The simplest case to treat is a so-called force-free magnetic
field with a constant ratio α between the current and the magnetic field:

j = ∇×B = αB , α = const , (14.1)

or, in components,

jy = −B′
z = αBy , jz = B′

y = αBz .

This equation can easily be integrated:

B = B0 [ sinϕ(x)ey + cosϕ(x)ez] , ϕ(x) = αx , B0 = const , (14.2)

representing a field with a uniformly varying direction (Fig. 14.1). The plasma
is considered to be confined between two perfectly conducting plates at x = x1

and x = x2 . Hence, the parameter αa , where a ≡ x2 − x1 , is a measure for
the total current through the plasma. In the absence of gravity, equilibrium would
still permit a finite, but constant, pressure. However, we will neglect pressure
altogether by considering a zero-β plasma. We wish to investigate the stability of
this configuration.

Fig. 14.1 Plane force-free field.
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(a) An interesting stability result . . .

Stability may be investigated by means of the energy principle, i.e. the study of the
sign of the energy W [ξ] of the perturbations ξ , exploiting the explicit expression
(6.85) of Volume [1] for the fluid energy. As in Section 7.3.2 [1], we decompose the
displacement vector ξ(r) in Fourier components, according to Eq. (7.78), and we
study the stability of the separate modes. For the present problem, the expression
for the fluid energy W simplifies to

W = 1
2

∫
(|Q|2 + αB · ξ∗ ×Q) dx , (14.3)

where we have normalisedW with respect to the area in the y−z plane. Following
the textbook of Schmidt [402], p. 141, we may simplify the algebra by using the
vector potential A ,

Q = ∇×A , A ≡ ξ ×B , (14.4)

so that

W = 1
2

∫ [
|∇ ×A|2 − αA∗ · ∇ ×A

]
dx . (14.5)

According to Section 6.4.4 [1], we may now minimize W subject to some conve-
nient normalization, for which we choose the helicity (see Section 4.3.4 [1]) of the
perturbations:

K ≡ 1
2

∫
A∗ · ∇ ×A dx = const . (14.6)

The proper way to minimize W subject to such a constraint is to minimize another
quadratic form, viz.

W̃ ≡W + λK = 1
2

∫ [
|∇ ×A|2 − (α− λ)A∗ · ∇ ×A

]
dx , (14.7)

where the constraint is absorbed by means of an undetermined Lagrange multiplier
λ that is to be determined together with A. Since

∇ ·
[
A∗ × (∇×A)

]
(A.12)= ∇×A∗ · ∇ ×A−A∗ · ∇ ×∇×A , (14.8)

we may integrate the expression for W̃ by parts:

W̃ = 1
2

[
A∗×(∇×A)·n

]x2

x1

+ 1
2

∫
A∗ ·
[
∇×∇×A−(α−λ)∇×A

]
dx . (14.9)

The boundary term vanishes by virtue of the boundary conditions B · n = 0 and
ξ∗ · n = 0 applied to A ≡ ξ ×B. Consequently, for arbitrary A∗, the quadratic
form W̃ is minimized by solutions of the Euler–Lagrange equation

∇×∇×A− (α− λ)∇×A = 0 . (14.10)
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This may be written as another force-free field equation for the perturbations:

∇×Q = α̃Q , α̃ ≡ α− λ . (14.11)

Equation (14.11) is an eigenvalue equation, where α̃ (and, hence, λ) is determined
by imposing the boundary condition n ·Q = 0 at x = x1 and x = x2 . Inserting
such a solution into the expression (14.9) for W̃ gives W̃ = 0 , so that

W = W̃ − λK = (α̃− α) 1
2

∫
A∗ · ∇ ×A dx

(14.10)=
α̃− α
α̃

1
2

∫
A∗ · ∇ ×∇×A dx

(14.8)=
α̃− α
α̃

1
2

∫
|∇ ×A|2 dx (14.4)=

α̃− α
α̃

1
2

∫
|Q|2 dx . (14.12)

Hence, W < 0 and the system appears to be unstable if the equation (14.11) has
an eigenvalue α̃ such that

0 < α̃ < α . (14.13)

It remains to determine the eigenvalue α̃.
We now have to study the Euler equation (14.11) in detail to find out whether

the condition (14.13) can be satisfied for the slab model. In this model, the Euler
equation may be reduced to an ordinary second order differential equation for the
normal component of Q, which may be solved analytically so that we find an
explicit stability criterion. To that end, write Eq. (14.11) in components,

ikyQz − ikzQy = α̃Qx ,

ikzQx −Qz ′ = α̃Qy ,

Qy
′ − ikyQx = α̃Qz . (14.14)

Note that only two of these three equations are independent since Q is a magnetic
field perturbation, so that

∇ ·Q = Q′
x + ikyQy + ikzQz = 0 . (14.15)

Hence, two variables suffice, for which we choose the normal components of the
magnetic field and the current:

Q ≡ −iQx , R ≡ i(∇×Q)x = kzQy − kyQz . (14.16)

Substituting the reverse expressions,

Qx = iQ , Qy = −(kyQ′ − kzR)/k2
0 , Qz = −(kzQ′ + kyR)/k2

0 ,

(14.17)
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into Eq. (14.14)(a) produces a simple relationship between R and Q,

R = −α̃Q , (14.18)

whereas the two other components (14.14)(b),(c) just reduce to the same, second
order, differential equation for Q:

Q′′ + (α̃2 − k2
0)Q = 0 , k2

0 ≡ k2
y + k2

z . (14.19)

This is the Euler equation we were looking for.
The solution of Eq. (14.19) which vanishes for x = x1 and x = x2 reads:

Q = C sin
√
α̃2 − k2

0x , (14.20)

where √
α̃2 − k2

0 = nπ/a , a ≡ x2 − x1 .

Hence, the instability criterion (14.13) is fulfilled for

α̃2 = k2
0 +

n2π2

a2
< α2 , or (k0/α)2 + (nπ/(αa))2 < 1 . (14.21)

This gives an unstable region in the k0/α − αa plane, as sketched in Fig. 14.2(a).
Moving to the right in the shaded area subsequently n = 1 , n = 2 , . . . become
unstable. The marginal modes (for which α̃ = α ) are distinguished by the number
of nodes, n − 1, of Q on the interval (x1, x2) (Fig. 14.2(b)). Notice that in the
long wavelength limit, k0 = 0 , every time αa increases with πa , i.e. every time
the magnetic field has changed its direction by 180◦, a mode with one more node
becomes unstable. This appears to be a perfectly reasonable result: the analysis in-
dicates the existence of long wavelength instabilities that are driven by the current,
which has to surpass a certain critical value given by αa = π .

(b) . . . which, however, does not make sense . . .

Let us double-check the result obtained by rederiving it from a formulation in terms
of the displacement ξ rather than the magnetic field perturbation Q . It is then
expedient to exploit the field line projection for ξ, which was also introduced in
Section 7.3.2 [1]:

ξ = ξex − iηe⊥ − iζe‖ , (14.22)

where e⊥ and e‖ were defined in Eq. (7.79) and the relationship with the Cartesian
components was given in Eq. (7.83) [1]. Using this projection, when computing
derivatives, recall that one should take care of the fact that these unit vectors are
x-dependent: ∂xe⊥ = −αe‖ , ∂xe‖ = −αe⊥ . (This, incidentally, shows that α is
proportional to the variation with height of the directional angle ϕ of the magnetic
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Fig. 14.2 Plane force-free field: (a) “stability” diagram; (b) marginal modes.

field shown in Fig. 7.9 [1]: α = ϕ′ .) Next, express the components of Q =
∇ × (ξ × B) in the components ξ, η and ζ of the displacement vector, where we
notice that the last component does not appear:

Qx = iFξ ,

Qy = − (Byξ)′ + kzBη = −Byξ′ − αBzξ + kzBη ,

Qz = − (Bzξ)′ − kyBη = −Bzξ′ + αByξ − kyBη , (14.23)

so that

Q ≡ − iQx = Fξ ,

R ≡ kzQy − kyQz = Gξ′ − αFξ + k2
0Bη , (14.24)
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where

F ≡ kyBy + kzBz and G ≡ kyBz − kzBy (14.25)

are the two projections of the horizontal wave vector having the properties

F ′ = αG and G′ = −αF . (14.26)

Using Eqs. (14.23), it is now straightforward to express the potential energy (14.3)
in terms of ξ and η:

W = 1
2

∫ x2

x1

[
|Qx|2 + |Qy|2 + |Qz|2 − αξ∗x(ByQz −BzQy)

− α(Bzξ∗y −Byξ∗z )Qx
]
dx

= 1
2

∫ x2

x1

[
F 2ξ2 + (αBξ − Fη)2 + (Bξ′ +Gη)2

− α2B2ξ2 + 2αBFξη
]
dx

= 1
2

∫ x2

x1

[
F 2(ξ2 + η2) + (Bξ′ +Gη)2

]
dx > 0 . (14.27)

Hence, the potential energy of the perturbations is positive definite so that we con-
clude that the slab is trivially stable! See Ref. [175].

We may obtain the minimizing perturbations by rearranging terms:

W = 1
2

∫ x2

x1

[
F 2(ξ′2/k2

0 + ξ2) + (k0Bη +Gξ′/k0)2
]
dx

so that W is minimized for perturbations that satisfy

k0Bη +Gξ′/k0 = 0 (14.28)

and

(F 2ξ′)′ − k2
0F

2ξ = 0 . (14.29)

One easily checks that the latter equation corresponds to Eq. (14.19) with Q = Fξ

for α̃ = α : the minimising equations are equivalent. There is no mistake in the
algebra!

(c) . . . and why.

To see what went wrong let us plot the eigenfunctions ξ corresponding to the eigen-
functions Q shown in Fig. 14.2(b). Writing F = k0B0 cos(αx − θ) , with θ as
defined in Fig. 14.1, we find:

ξ =
Q

F
=

1
k0B0

sin(nπx/a)
cos(αx− θ) , (14.30)
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Fig. 14.3 Plane force-free field: (a) marginal modes in terms of ξ ; (b) singularities
F = 0 of ξ in the shaded areas αa ≥ nπ (n = 1, 2, . . . ).

as plotted in Fig. 14.3(a). Hence, if a solution Q exists such that W as given in
Eq. (14.12) is negative, αa > π and ξ develops a singularity (Fig. 14.3(b)). For
every zero that is added in Q, at least one zero is added to the function F because
F oscillates faster than or at least as fast as Q . It is clear that these singularities
are of such a nature that the norm

‖ξ‖2 =
∫

(ξ2 + η2 + ζ2) ρ dx =
∫ [

ξ2 +G2ξ′2/(k4
0B

2)
]
ρ dx→∞ ,

where η from Eq. (14.28) and ζ = 0 have been substituted. Hence, the trial func-
tions Q used in deriving the stability criterion (14.21) do not correspond to physi-
cally permissible displacements ξ .

Fortunately, there is still a use for the nice stability diagrams obtained. Observe
that apparently a reservoir of energy is available that could drive instabilities if the
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associated displacement ξ only were realizable. Such is the case if we allow a small
amount of resistivity in the system so that the relation Q = Fξ of ideal MHD has
to be replaced by one that has extra terms proportional to the resistivity. These
terms limit the amplitude of the displacement ξ at the singularity (and, therefore,
also the perturbed current that is flowing there). As a result, the unstable energy
reservoir is tapped and resistive instabilities develop. Such instabilities are called
tearing modes. We will investigate these modes in detail in the next section and
prove that the stability diagram 14.2(a) applies for those modes.

In cylindrical geometry, the picture becomes more complicated yet. Then, ideal
MHD instabilities of force-free fields also develop. This is a subtle effect, due to
the additional magnetic curvature, where the magnetic field variable Q may just
oscillate a little faster than the function F in certain regions of the k0/α − αa

parameter plane. This was shown by Voslamber and Callebaut [470] by a care-
ful analysis taking proper care of the singularities. The corresponding calculation
of the growth rates and eigenfunctions was carried out by Goedbloed and Hage-
beuk [177] (see Figs. 9.17 and 9.18 [1]).

14.2 Resistive instabilities

14.2.1 Basic equations

We now present the resistive normal mode analysis of the plane slab. The starting
point is the nonlinear resistive MHD equations as given in Volume [1], Chapter 2,
Eqs. (2.126)–(2.129), which we here summarise for the convenience of the reader:

∂ρ

∂t
= −∇ · (ρv) , (14.31)

ρ
(∂v
∂t

+ v · ∇v
)

= −∇p+ ρg + j×B , j = ∇×B , (14.32)

∂p

∂t
= − v · ∇p− γp∇ · v + (γ − 1) η| j|2 , (14.33)

∂B
∂t

= −∇×E = ∇× (v ×B)−∇× (η j) . (14.34)

Note that resistivity enters through the Ohmic dissipation term in the pressure equa-
tion and through the resistive diffusion in the flux equation. In particular, the latter
effect is responsible for substantial modifications of the stability analysis.

We will linearise Eqs. (14.31)–(14.34) for small amplitude perturbations about
a static equilibrium. Strictly speaking, the assumption of static equilibrium is not
justified since resistivity causes the magnetic field to decay. However, since the
magnetic Reynolds number Rm is very large for situations of interest, this is a very
slow process operating on a time scale of the order of Rm · τA, where τA is the
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characteristic Alfvén time for ideal MHD phenomena. The resistive modes con-
sidered in this section will turn out to exponentiate on a much faster time scale,
proportional to a broken power of the magnetic Reynolds number, so that the back-
ground equilibrium may be considered static. (We here follow standard practice
and “write magnetic Reynolds number”, although “Lundquist number” would be
the more appropriate terminology since the background flow velocity is neglected
so that the equilibrium is properly characterized by the value of the Alfvén velocity;
see Volume [1], Section 4.4.1.)

Considering a plasma slab with background equilibrium quantities depending on
the transverse coordinate x only, we make the usual Ansatz

f(r, t) = f0(x) + f1(x)ei(kyy+kzz−ωt) , (14.35)

where f0(x) refers to equilibrium quantities and f1(x) to perturbations. The equi-
librium is described by the variables ρ0, p0 and B0, where we will suppress the
subscript 0 for convenience, and the perturbations are described by the variables
δ ≡ ρ1, v ≡ v1, π ≡ p1 and Q ≡ B1, so that there is no need for the subscript 1

either.
Assuming a constant resistivity η, the linearised evolution equations read:

∂δ

∂t
= −∇ · (ρv) , (14.36)

ρ
∂v
∂t

= −∇π + δg −B× (∇×Q) + (∇×B)×Q , (14.37)

∂π

∂t
= − v · ∇p− γp∇ · v + 2(γ − 1)η∇×B · ∇ ×Q , (14.38)

∂Q
∂t

= ∇× (v ×B) + η∇2Q . (14.39)

The resistive terms spoil the possibility of integrating the equations for δ, π and Q
to get expressions in terms of the displacement vector ξ alone, as could be done
in ideal MHD. We can still exploit the latter variable, but it will not be possible
to eliminate the magnetic field perturbation Q. Thus, the new feature of resistive
MHD is the distinction between fluid flow, described by ξ, and magnetic field
evolution, described by Q, since magnetic field and fluid do not necessarily move
together anymore.

We now introduce a projection based on the direction of inhomogeneity (x) and
the two directions in the horizontal plane defined with respect to the horizontal
wave vector k0 = (0, ky, kz):

u ≡ vx ,

v ≡ (∇× v)x = −i(kzvy − kyvz) ,
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w ≡ ∇ · v − vx′ = i(kyvy + kzvz) ,

Q ≡ − iQx ,

R ≡ i(∇×Q)x = i j1x = kzQy − kyQz . (14.40)

Here, u is the normal velocity, v is the normal vorticity, w is the horizontal part of
the compressibility, Q is the normal magnetic field perturbation and R is the per-
turbed normal current. In terms of these physical variables the eigenvalue problem
becomes

− iω δ = − (ρu)′ − ρw ,
−iρω u = − π′ − gδ + k−2

0 (FQ′ +GR)′ − FQ ,
−iρω v = −G′Q+ FR ,

−iρω w = k2
0π − F ′Q−GR ,

−iω π = − p′u− γp(u′ + w)− 2(γ − 1)η k−2
0

[
F ′(Q′′ − k2

0Q) +G′R′ ] ,
−iωQ = Fu+ η(Q′′ − k2

0Q) ,

−iωR = (Gu)′ − Fv +Gw + η(R′′ − k2
0R) , (14.41)

where k2
0 ≡ k2

y+k2
z , and F andG are the projections of the horizontal wave vector

k0 onto the magnetic field:

G ≡ ex · (k0 ×B) = kyBz − kzBy , F ≡ k0 ·B = kyBy + kzBz . (14.42)

Recall that the equilibrium is inhomogeneous through the quantities ρ(x), p(x),
By(x), Bz(x), so that F and G also depend on x. As usual, the prime denotes
differentiation with respect to x. The system (14.41) is suitable for numerical inte-
gration where the main difficulty is the presence of a complex eigenvalue spectrum.

Alternatively, one could introduce the components of the displacement vector ξ

again,

u ≡ −iωξ , v ≡ −iωσ , w ≡ −iωτ , (14.43)

and eliminate the variables δ, σ, τ and π to obtain a sixth order system of three
coupled second order differential equations for ξ, Q and R. The ideal MHD sec-
ond order differential equation (7.91) [1] for ξ would be contained as the limiting
case η → 0. We will not pursue this line here since it would involve too many
terms in an exposition that is already complicated enough if the mere essentials are
presented. This we intend to do.

An important simplification results from the assumption of incompressibility.
This is justified for the kind of resistive modes we will study, as can be checked af-
ter the solutions have been obtained. The incompressible limit is formally obtained
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from Eqs. (14.41) by taking the limits γ → ∞ and ∇ · v → 0 simultaneously in
such a way that the product γp∇·v and, hence, π remains finite but undetermined.
Consequently, equation (14.41)(e) for π should be dropped (so that the complicated
Ohmic dissipation term in square brackets also disappears from the problem) and
replaced by the constraint of incompressibility, ∇ · v = 0 . The latter implies that
w = −u′, so that the variable w is known in terms of u, and equation (14.41)(d)
for w can then be used to determine π. Furthermore, the variables δ, v, and w may
be expressed in terms of ξ ≡ u/(−iω), Q and R so that we obtain the following
sixth order sytem:

η
[
(ρω2ξ′)′ − k2

0(ρω
2 + ρ′g) ξ + F ′′Q

]
+ iωF (Q− Fξ) = 0 ,

η (Q′′ − k2
0Q) + iω (Q− Fξ) = 0 ,

η (R′′ − k2
0R) + iω (R−G′ξ)− iF

ρω
(FR−G′Q) = 0 . (14.44)

A pleasant surprise is that the variable R does not occur in the first pair of equa-
tions, so that we may drop the last equation and restrict the study to the fourth order
system for the variables ξ and Q alone.

Obtaining the incompressible ideal MHD equations from these equations by tak-
ing the limit η → 0 is tricky. First, we have to expand Eq. (14.44)(b) to first order,

Q = Fξ +
iη
ω

(Q′′ − k2
0Q) ≈ Fξ +

iη
ω

[
(Fξ)′′ − k2

0Fξ
]
, (14.45)

and then insert the result in Eq. (14.44)(a):[
(ρω2 − F 2) ξ′

]′ − k2
0(ρω

2 − F 2 + ρ′g)ξ = 0 , Q = Fξ . (14.46)

This agrees with the ideal MHD Eq. (7.91) of Volume [1], in the incompressible
limit γp → ∞, where field and fluid move together again. Our task now is to
analyse what happens when these equations are replaced by Eqs. (14.44) for the
resistive evolution and what is the role of the ideal MHD limit (14.46).

14.2.2 Tearing modes

We will now study the so-called tearing modes, which result in breaking and re-
joining of the magnetic field lines. Starting from the incompressible resistive MHD
equations (14.44), the following assumptions are appropriate:

– the analysis is restricted to eigenvalues corresponding to purely exponential instability
so that a real and positive eigenvalue parameter can be defined,

λ ≡ −iω > 0 ; (14.47)
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– it is assumed that the density ρ = const , which eliminates ideal MHD gravitational
instabilities, since ρ′g = 0 , so that the slab is stable in the ideal MHD description.

The modes are then described by the resistive MHD equations in the following
form:

η
[
λ2(ξ′′ − k2

0ξ)− (F ′′/ρ)Q
]
+ λ(F/ρ) (Q− Fξ) = 0 ,

η (Q′′ − k2
0Q)− λ (Q− Fξ) = 0 . (14.48)

Note that all terms in these equations are real now.
In a problem like this it is imperative to enumerate the degrees of freedom by

defining dimensionless parameters. One can then make various assumptions on
the smallness of those parameters to exploit them in asymptotic expansions. In the
present problem, the thickness of the slab a, the density ρ and the magnitude of
magnetic field at the mid plane B0 are taken as units of length, mass and time,
exploiting the definition of the Alfvén velocity, vA ≡ B0/

√
ρ , so that τA ≡ a/vA .

This implies that a, ρ and B0 should not be counted as free parameters since they
simply fix the dimensions and then disappear from the problem, only to return in
the end when actual dimensional numbers need to be computed for comparison
with observed quantities.

Our first assumption on parameters is that the wavelength in the horizontal plane
is comparable to the transverse size a of the plasma:

k0a ∼ 1 . (14.49)

This expresses the fact that tearing modes should be considered as large-scale
macroscopic MHD modes which do involve a small-scale resistive effect operating
in the normal (x) direction, as we will see, but it does not require localization or
small wavelengths in the transverse (y, z) directions. Next, as already mentioned,
we will exploit the magnetic Reynolds number1 as an ordering parameter:

(Rm)−1 ≡ η/(μ0avA)� 1 . (14.50)

The equilibrium decays on a diffusion time scale τD that is much longer than the
characteristic Alfvén time τA for ideal MHD. We wish to study resistive modes
that exponentiate much faster than the resistive diffusion time, but much slower
than the ideal MHD times:

(τD)−1 ≡ (Rm)−1vA/a � λ � vA/a ≡ (τA)−1 . (14.51)

1 For once, we have explicitly written the constant μ0 in the definition of Rm to refresh our memory, although
it is suppressed again in most of the rest of this chapter.
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This is possible if we can find modes with a growth rate λ that scales as a broken
power of the magnetic Reynolds number: λ ∼ (Rm)−ν vA/a , where 0 < ν < 1.
This will turn out to be the case. SinceRm is huge, this provides enough parameter
space for our asymptotic analysis.

With this ordering, for small η, the resistive equations (14.48) automatically
would lead to the ideal MHD equations,[

(λ2 + F 2/ρ) ξ′
]′ − k2

0(λ
2 + F 2/ρ) ξ = 0 , Q = Fξ , (14.52)

since the expansion (14.45) yields

Q ≈ Fξ + (η/λ)
[
(Fξ)′′ − k2

0Fξ
]
≈
[
1 +O(λτD)−1

]
Fξ ≈ Fξ . (14.53)

Here, the resistive correction of order (λτD)−1 ≡ η/(λa2) is negligible according
to the left part of the approximation (14.51) if ξ is assumed to have O(1) varia-
tions only. However, we know from our previous analysis of Section 14.1 that the
assumption of finite variation on ξ is not justified when ideal MHD singularities
F = 0 occur. Then (choosing the origin of the x-coordinate to coincide with the
singularity), ξ ideal ∼ 1/x → ∞ while the magnetic field variable Q remains fi-
nite. Hence, the resistive terms in Eq. (14.53) cannot be neglected in a small layer
surrounding the ideal MHD singularity where they limit the amplitude of ξ and the
related current density perturbation. Outside this layer, ideal MHD is appropriate.
Consequently, the problem may be analyzed by distinguishing three regions, viz.
two outer ideal MHD regions where F is not small, and one inner resistive layer
surrounding the point F = 0. The solutions of the three regions have to be matched
to each other so that there should exist overlap regions where the resistive as well
as the ideal solutions are valid.

The singularity F = 0 can occur anywhere on the interval x1 ≤ x ≤ x2 , but we
will position it at x = x0 = 0 for simplicity. This involves both a simplification
of notation (expansions in x rather than x − x0) and of some part of the analysis
(which distinguishes between modes that are even or odd with respect to x = 0).
Of course, these restrictions can easily be relaxed. Our choice of the zero point
does not limit the physics of the problem in any way, since we are free to shift the
x-axis to simplify the algebra.

(a) Outer ideal MHD regions

The outer ideal MHD regions cover most of the real axis from x = x1 = −1
2a to

x = x2 = 1
2a, where F �= 0, except for a small region around x = 0 where F

is small and resistive effects dominate. Obviously, the size of the resistive region
is determined by the resistivity, but in a way that has to be determined yet. In the
outer ideal MHD regions we may simplify the equations (14.52) even further by
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noting that

λ2

F 2/ρ
∼ (λa/vA)2 � 1 ,

according to the estimates (14.49) and the right part of the inequalities (14.51).
Hence, the marginal (λ = 0) ideal MHD equations are appropriate in the outer
layer:

(F 2ξ′)′ − k2
0F

2 ξ = 0 , Q = Fξ . (14.54)

This implies that the evolution of tearing modes is so slow that inertia is negligible
on the ideal MHD time scale. The associated boundary conditions are

ξ(x1) = ξ(x2) = 0 . (14.55)

In terms of Q, the basic differential equation (14.54) transforms into

Q′′ − (k2
0 + F ′′/F )Q = 0 . (14.56)

If there is no ideal MHD singularity (F �= 0 everywhere) Eq. (14.54) has no solu-
tions satisfying the boundary conditions (14.55), as we have seen in Section 14.1,
and hence there are no resistive instabilities in that case. To get resistive instabil-
ities we need a point F = 0 so that the ideal MHD solution ξ blows up and Q′ is
discontinuous at that point (dashed lines in Fig. 14.4).

Let us formally solve Eq. (14.54) in the two outer regions (x1,−ε) and (ε, x2),
where matching to the resistive layer solutions should take place at x = ±ε . The
main idea is that the singularity x = 0 is eliminated, but that the ideal MHD
solutions are valid close enough to this point to permit a singular expansion. Since
F ≈ F ′

0 x for |x| ∼ ε, two solutions are obtained, a large one, ξl , and a small one,
ξs , which may be continued up to the outer boundaries x = x1,2 . The solutions
in the two outer regions are distinguished by a superscript + for x > ε and −
for x < −ε. Consequently, the general solutions in the two outer regions may be
written as

ξ±(x) = A±ξ±l (x) +B±ξ±s (x) , (14.57)

where

ξl =
1
x

[ 1 + 1
2(k0x)2 + · · · ] , ξs = 1− 1

4(k0x)2 + · · · . (14.58)

The two ratios B+/A+ and B−/A− between the small and large contributions
are determined by the boundary conditions (14.55). Whereas close to the singu-
larity the large contributions dominate, for matching to the resistive inner layer
solutions the small contributions are essential as well. Matching will require a pre-
scribed mix of large and small solutions, as we will see. This is expressed most
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Fig. 14.4 Resistive (drawn) and ideal (dashed) MHD solutions at the ideal MHD
singularity F = 0.

clearly by the logarithmic derivatives of the magnetic field perturbation which are
completely determined by the solutions in the ideal regions:

1
Q

dQ

dx

∣∣∣∣ outer
x=ε↓0

≈ B+

A+
= −ξ

+
l (x2)
ξ+s (x2)

,
1
Q

dQ

dx

∣∣∣∣ outer
x=−ε↑0

≈ B−

A− = −ξ
−
l (x1)
ξ−s (x1)

.

(14.59)
These two quantities are all that the outer ideal MHD regions can provide and it
will turn out to be sufficient.

Notice that the two logarithmic derivatives (14.59) are not equal in the limit
ε→ 0 , so that a jump is obtained. This jump is permitted in ideal MHD and it cor-
responds to the occurrence of a surface current perturbation, which is extremely
stabilising. Neglecting this contribution is the physical cause of the erroneous in-
stability results obtained in Section 14.1. In resistive MHD, the jump is smoothed
through the resistive layer solutions, which will be computed next, and the insta-
bility results expressed by Fig. 14.2 will turn out to become applicable then.
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(b) Inner resistive layer

The resistive layer surrounds the ideal MHD singularity F = 0, which we have
positioned at x = 0. In this region, the function F may be approximated as

F ≡ k0 ·B ≈ F ′
0 x . (14.60)

We will call the width of the resistive layer δ. Obviously,

δ � a , (14.61)

because of the small value of the resistivity, and it is logical to expect it to scale
with a negative power of the magnetic Reynolds number. One of our aims is to
determine this power. Hence, we are in the peculiar situation of having to prescribe
boundary conditions at an unknown location. We will see that this problem is
solved by following the example of boundary layer analysis of fluid mechanics.

Note that matching to the outer ideal MHD solutions is considered to take place
at x = ±ε so that we formally need to impose

δ � ε� a . (14.62)

This can easily be arranged again by means of some broken power of the magnetic
Reynolds number, which we could choose after the scaling of δ with Rm has been
determined. The precise magnitude of ε should not matter, though, as long as the
approximation (14.60) is valid there.

In the resistive layer, the differential equations (14.48) hold. They may be further
simplified on the basis of the approximations (14.49), (14.51) and (14.61). To that
end, the orders of magnitude of the different terms are compared:∣∣∣∣k2

0 ξ

ξ′′

∣∣∣∣ ∼ δ2/a2 � 1 ,
∣∣∣∣η(F ′′/ρ)Q
λ(F/ρ)Q

∣∣∣∣ ∼ ∣∣∣∣ηk2
0 Q

λQ

∣∣∣∣ ∼ (Rm)−1vA/a

λ
� 1 .

Consequently, the resistive layer equations may be simplified to

η λ ξ′′ − (F 2/ρ) ξ = − (F/ρ)Q ,

η Q′′ − λQ = − λF ξ . (14.63)

It is to be noted that this significant simplification now only holds in the resistive
layer since the approximate ideal MHD equations (14.54) are no longer contained
as a limiting case (which was the case for the original pairs of equations (14.48)
and (14.52)). Consequently, we have lost the option of (numerically) integrating
the resistive equations all the way to the plasma boundaries at x = x1,2, i.e. we are
now forced to consider the matching problem.
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(c) Scaling and matching

Before we do this, we finally perform the promised scaling of the resistive layer
equations (14.63) exploiting three of the four dimensionless parameters that occur
in this problem, viz.

λa/vA , Rm ≡ avA/η , H ≡ F ′
0a/(k0B0) , K ≡ k0a . (14.64)

Note that K appears as a separate parameter in the outer ideal MHD equations
(14.54). By means of these parameters all variables may be rescaled:

s ≡
[
RmKH

]1/3
(x/a) , λ̄ ≡

[
Rm/(K2H2)

]1/3
(λa/vA) ,

Φ ≡
[
Rm/(K2H2)

]−1/3
(ξ/a) , Ψ ≡ Q/B0 . (14.65)

The explicit dependence on the parametersRm, K andH then disappears and only
the scaled eigenvalue λ̄ appears in the resistive equations:

λ̄
d2Φ
ds2
− s2 Φ = − sΨ ,

d2Ψ
ds2
− λ̄Ψ = − λ̄ sΦ , or

d2Ψ
ds2

= −λ̄2 1
s

d2Φ
ds2

. (14.66)

The problem has now been reduced to the solution of a fourth order system of
ODEs with only one parameter (λ̄). This system has to be solved on an interval in
terms of the stretched coordinate s which corresponds to a very narrow region in
physical space. Also, notice that the tendency of the original variable ξ to blow up
in the limit of small resistivity has been absorbed in the normalization of the scaled
variable Φ.

� Fourth order differential equation The equations (14.66) may be written explicitly as
a fourth order equation in terms of Φ alone:

λ̄s2
d4Φ
ds4
− 2λ̄s

d3Φ
ds3

+ (2λ̄− λ̄2s2 − s4) d
2Φ
ds2
− 2s3

dΦ
ds

= 0 . (14.67)

Notice that the lowest order term with Φ is missing so that one of the four solutions is a
constant. Since this simplification is not essential (for other resistive modes it does not
occur, Section 14.2.3), we will not base our analysis on it. Equation (14.67) may be inves-
tigated with respect to singular behavior by means of the usual series expansion methods
[243], [33]. One discovers that the point s = 0 has become a regular point (of course, this
was the whole point of replacing the ideal MHD equations by the resistive ones) and the
points s = ±∞ are irregular singular points. The latter permit a singular expansion which
is to be matched asymptotically to the outer ideal MHD solutions. It is useful to consider
the three formal expansions in the resistive region (about s = 0, s = ∞ and s = −∞) to
clarify the behavior of the solutions and the kind of boundary conditions needed. Once this
has been established, Eq. (14.67) can be solved by whatever method is convenient (numer-
ical or approximate analytical).
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By straightforward substitution, we find the following expansions about s = 0:

Φ = Φ0(s) =
4∑
i=1

C0
i Φ

0
i , Ψ = Ψ0(s) =

4∑
i=1

C0
i Ψ

0
i ,

Φ0
1 = 1 , Ψ0

1 = s ,

Φ0
2 = s+

1
20λ̄

s5 + · · · , Ψ0
2 = − 1

12
λ̄ s4 + · · · ,

Φ0
3 = s3 +

3λ̄
20

s5 + · · · , Ψ0
3 = −6λ̄+ · · · ,

Φ0
4 = s4 +

λ̄

15
s6 + · · · , Ψ0

4 = −12λ̄ s+ · · · . (14.68)

As expected, all solutions are regular near s = 0 , and they are either odd or even, consistent
with the reflection symmetry about s = 0 of the resistive equations (14.66) or (14.67).

The behavior at the outer edges is considerably more complicated, as shown by the
following expansions for s→∞ and s→ −∞ (indicated by the superscripts + and −):

Φ = Φ±(s) =
4∑
i=1

C±
i Φ±

i , Ψ = Ψ±(s) =
4∑
i=1

C±
i Ψ±

i ,

Φ±
1 = 1 , Ψ±

1 = sΦ±
1 ,

Φ±
2 =

1
s

(
1− λ̄2

3s2
+ · · ·

)
, Ψ±

2 ≈ sΦ±
2 ,

Φ±
3 = es

2/(2
√
λ̄) 1
s
|s| 12+

1
2 λ̄

√
λ̄
(
1 +

α±

s2
+ · · ·

)
, Ψ±

3 ≈ −
λ̄2

s
Φ±

3 ,

Φ±
4 = e−s

2/(2
√
λ̄) |s|− 1

2−1
2 λ̄

√
λ̄
(
1 +

β±

s2
+ · · ·

)
, Ψ±

4 ≈ −
λ̄2

s
Φ±

4 . (14.69)

The coefficients α± and β± are known, in principle, but they are not important. Clearly,
at the outer edges of the resistive layer, there are two pairs of solutions, Φ±

1 and Φ±
2 ,

which exhibit the ideal MHD relationship Ψ ≈ sΦ, and two pairs, Φ±
3 and Φ±

4 , which do
not. Consequently, the first two solutions can be used to match to the outer ideal MHD
solutions, and the latter two should not play a role. For the solutions Φ±

4 this is automati-
cally the case since they are exponentially small there. The two solutions Φ±

3 , though, are
exponentially unbounded and should be excluded by imposing the boundary conditions
of regularity, so that C−

3 = C+
3 = 0. What remains is the other boundary conditions

of matching of the logarithmic derivatives of the magnetic field perturbation to the outer
ideal MHD expressions given in Eq. (14.59). One easily checks that these expressions just
involve the two solutions Φ±

1 and Φ±
2 : (Ψ′/Ψ)− = C−

1 /C
−
2 and (Ψ′/Ψ)+ = C+

1 /C
+
2 .

Notice that the two exponentially small solutions Φ±
4 have not been excluded; they just do

not contribute to the boundary conditions directly. Hence, everything now counts correctly:
we have two regularity conditions and two conditions on the logarithmic derivatives, i.e.
four boundary conditions on a fourth order ODE.

Of course, the three expansions (14.68) and (14.69) all refer to one and the same solution
of the fourth order ODE (14.67), i.e. we may write

Φ =
4∑
i=1

C−
i Φ−

i =
4∑
i=1

C0
i Φ

0
i =

4∑
i=1

C+
i Φ+

i . (14.70)
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Therefore, the three sets of fundamental solutions {Φ−
i }, {Φ0

i } and {Φ+
i } possess a linear

relationship to each other which could be found explicitly, if desired, by analytic continu-
ation or by straightforward numerical integration of Eq. (14.67). Consequently, the three
sets of constants {C−

i }, {C0
i } and {C+

i } are linearly dependent as well:

C−
i =

4∑
j=1

γi,j C
0
j , C0

i =
4∑
j=1

δi,j C
+
j , (14.71)

where the coefficients γi,j and δi,j are then known, in principle. The point is that one set
of four constants is sufficient to fix the solution, but these four can not coincide with any
one of the three separate sets since boundary conditions at different locations are involved.
For example, from the present analysis, it should be clear that these four constants could
be C−

4 , C−
1 /C

−
2 , C+

4 and C+
1 /C

+
2 . �

In conclusion, appropriate boundary conditions to be imposed on the resistive
layer equations (14.66) are:

Φ
∣∣∣∣ inner
s→−∞

regular ,
1
Ψ
dΨ
ds

∣∣∣∣ inner
s→−∞

≈
(x
s

) 1
Q

dQ

dx

∣∣∣∣outer
x↑0

,

Φ
∣∣∣∣ inner
s→∞

regular ,
1
Ψ
dΨ
ds

∣∣∣∣ inner
s→∞

≈
(x
s

) 1
Q

dQ

dx

∣∣∣∣outer
x↓0

, (14.72)

which translate into the following conditions on the constants:

C−
3 = 0 , C−

1 /C
−
2 = B−/A− ,

C+
3 = 0 , C+

1 /C
+
2 = B+/A+ . (14.73)

Alternatively, since we have arranged the singularity to be located in the middle
of the interval, we can restrict the analysis to even and odd modes about the mid-
plane. In particular, we can study modes that are odd in Φ and even in Ψ since they
are the first ones to become unstable. The appropriate boundary conditions for this
system read:

Φ(0) = 0 , Ψ′(0) = 0 ,

Φ
∣∣∣∣ inner
s→∞

regular ,
1
Ψ
dΨ
ds

∣∣∣∣ inner
s→∞

≈
(x
s

) 1
Q

dQ

dx

∣∣∣∣outer
x↓0

, (14.74)

which translates into the following conditions on the constants:

C0
1 = 0 , C0

4 = 0 ,

C+
3 = 0 , C+

1 /C
+
2 = B+/A+ . (14.75)

Notice that the factor (x/s) just represents the different normalizations of the inner
and outer regions according to Eq. (14.65).

We could now solve Eqs. (14.66). Unfortunately, this would have to be done
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numerically, since the system is still not elementary enough to allow for analytical
expressions. Therefore, one additional step will be taken to obtain closed answers
justifying the scaling assumptions.

(d) Approximate solution

From a study of the numerical results, Furth, Killeen and Rosenbluth in their clas-
sical paper on the resistive instabilities [152] proposed the so-called “constant Ψ”
approximation to obtain explicit solutions. The idea is that the function Φ is the one
which misbehaves in ideal MHD and, consequently, exhibits large variations in the
limit of small resistivity, but the magnetic field variable Ψ only exhibits moderate
variations. Its behavior only counts to produce the correct numerical magnitude
of the derivative to connect to the outer solutions through the boundary conditions
(14.72). If Φ were known, that part of the information could be obtained with
high accuracy by just integrating the second form of Eq. (14.66)(b). On the other
hand, the correct behavior of Φ can be obtained from Eq. (14.66)(a) without much
influence of the magnetic field contribution on the right hand side: just putting
Ψ ≈ Ψ0 = const will do. This approximation turns out to produce results that are
quite close to the numerical values. Once it has been made, the rest of the analysis
is straightforward.

In the “constant Ψ” approximation, the variables can be scaled once more:

s̄ ≡ λ̄−1/4 s , Φ̄ ≡ λ̄1/4 Φ/Ψ0 , Ψ̄ ≡ Ψ/Ψ0 , (14.76)

so that the eigenvalue λ̄ is also eliminated from the ODE for Φ, and the equations
(14.66) transform into

d2Φ̄
ds̄2
− s̄2 Φ̄ = − s̄ Ψ̄ ≈ −s̄ ,
d2Ψ̄
ds̄2

= − λ̄3/2 1
s̄

d2Φ̄
ds̄2

. (14.77)

In other words: we obtain an inhomogeneous second order ODE for Φ̄, whereas the
logarithmic derivative of Ψ̄, i.e. Ψ̄′, may be obtained by integrating Eq. (14.77)(b)
once. We will now exploit the symmetry of the problem, i.e. we assume Φ̄ to be
odd, by using the boundary conditions (14.74) which, for the present variables,
become

Φ̄(0) = 0 , Ψ̄′(0) = 0 ,

Φ̄
∣∣∣
s̄→∞ regular , Ψ̄′

∣∣∣
s̄→∞ ≈ const

[
= (x/s̄)Q′/Q

∣∣∣
x↓0

]
, (14.78)

where the constant is just the logarithmic derivative of the magnetic field of the
outer ideal MHD solutions.
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The solution of the ODE (14.77)(a) for Φ̄, subject to the boundary conditions
(14.78), can be represented in terms of a definite integral over an auxiliary variable
u:

Φ̄ = 1
2 s̄

∫ 1

0
(1− u2)−1/4 e−

1
2 s̄

2u d u . (14.79)

One easily checks the correctness of this expression by substitution into the differ-
ential equation, whereas the behavior for small and large s̄ demonstrates satisfac-
tion of the boundary conditions:

Φ̄(s̄) ≈ C

2
√
π
s̄ , Ψ̄′(s̄) ≈ λ̄3/2s̄ (s̄� 1) ,

Φ̄(s̄) ≈ 1
s̄
, Ψ̄′(s̄) ≈ 1

2Cλ̄
3/2 (s̄	 1) , (14.80)

where the constant

C =
√

2π
∫ 1

0

√
u (1− u2)−1/4 d u = 2πΓ(3

4)/Γ(1
4) = 2.1236 . . . (14.81)

results from an integration over the auxiliary variable.
The actual identification of Ψ̄′ |s̄→∞ with the logarithmic derivative of the outer

ideal MHD solutions, according to the boundary condition (14.78)(b), provides the
dispersion equation for the computation of the growth rate of the tearing modes. We
will rewrite this condition in terms of the contributions of both outer boundaries:

dΨ̄
ds̄

∣∣∣∣ inner
s̄→∞

− dΨ̄
ds̄

∣∣∣∣ inner
s̄→−∞

= − λ̄3/2
∫ ∞

−∞
d s̄

1
s̄

d2Φ̄
ds̄2

= C λ̄3/2 =
(
x/a

s̄

)
Δ′ ,

(14.82)

where Δ′ is the jump of the logarithmic derivative of the magnetic field perturba-
tion of the outside ideal MHD solution,

Δ′ ≡ a

Q

(
dQ

dx

∣∣∣∣outer
x↓0
− dQ

dx

∣∣∣∣outer
x↑0

)
, (14.83)

which is determined by the solutions of Eq. (14.56).
Substituting the scaling factors from the definitions (14.65) and (14.76) back

into Eq. (14.82) then results in the explicit expression for the growth rate of the
tearing mode:

λ = R−3/5
m (KH)2/5

(
Δ′

C

)4/5

vA/a , (14.84)

which justifies our original assumption of broken powers of the magnetic Reynolds
number. An estimate of the resistive layer width is obtained from the relation
s ∼ 1, which gives:

δ ∼ R−2/5
m (KH)−2/5

(
Δ′

C

)1/5

a , (14.85)



14.2 Resistive instabilities 149

which also conforms to our assumptions.
The tearing mode requires Δ′ to be positive so that the outer ideal MHD solu-

tions determine its stability. It should be noted that the growth rate λ of Eq. (14.84)
depends on the dimensionless parametersK andH both through the explicit power
(KH)2/5 and through the implicit dependence Δ′ = Δ′(H,K). This may be il-
lustrated by the force free magnetic field of Section 14.1, where the value of Δ′ can
be computed easily. In that case (taking θ = π/2 , so that the singularity occurs at

x = 0 and F = k0B0 sinαx ), Q± = ∓D sin
√
α2 − k2

0 (x∓ 1
2a), so that

Δ′ = − 2a
√
α2 − k2

0 cot
(

1
2a
√
α2 − k2

0

)
= − 2

√
H2 −K2 cot

(
1
2

√
H2 −K2

)
. (14.86)

Its value is positive, as required for tearing instability, when (αa)2 − (k0a)2 ≡
H2 − K2 > (nπ)2. This agrees with the stability diagrams of Section 14.1 so
that this analysis has finally received its proper re-interpretation now in the context
of resistive MHD: the plane force-free field is unstable with respect to long wave-
length tearing instabilities. The expressions (14.84) and (14.86) clearly show that
tearing modes are long wavelength instabilities (K ∼ 1 and |K| < |H|) driven by
the current, as expressed by the parameter H .

14.2.3 Resistive interchange modes

A completely different kind of resistive mode is the resistive gravitational inter-
change mode. The driving force of this instability may be expressed by the dimen-
sionless parameter

G ≡ ρ′ga2/B2
0 , (14.87)

which was neglected when transforming Eq. (14.44) to Eq. (14.48). We will not
enter the detailed analysis of this mode, but just give some of the final results in
order to illustrate the wide range of possible outcomes of a boundary layer analysis.

First of all, it should be remarked that the stability criterion for the corresponding
ideal MHD gravitational interchanges is given by Eq. (7.199) in the incompressible
limit (γp→∞):

ρ′g ≤ 1
4B

2ϕ′2 , i.e. G ≤ 1
4H

2 . (14.88)

This criterion is completely analogous to the well-known Suydam criterion where
a pressure gradient driven instability is balanced by the shear of the magnetic field
lines. Similarly, the gravitational interchanges are driven by a density gradient
(heavy fluid on top of a lighter fluid), but possibly stabilised by the shear term H .
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Hence, the same parameter H enters as in the tearing mode analysis, but with an
entirely different result: tearing instabilities are driven by the current, interchanges
are stabilised by shear which is also created by the current.

However, stabilisation by shear of the magnetic field lines is another ideal MHD
property that is lost when resistivity is introduced. The stability criterion for resis-
tive interchange modes simply becomes

G ≤ 0 , (14.89)

i.e. only lighter fluid on top of heavier fluid allowed! By a similar boundary layer
analysis as for the tearing modes, the growth rate is found to be given by

λ ∼ R−1/3
m

(
KG

H

)2/3

vA/a , (14.90)

whereas the resistive layer width, in this case, is given by

δ ∼ R−1/3
m

(
G

K2H4

)1/6

a . (14.91)

Hence, resistive interchanges are no longer stabilised by magnetic shear (the pa-
rameter H), but their growth rate is strongly diminished with the −1/3 power of
the magnetic Reynolds number according to Eq. (14.90).

14.3 Resistive spectrum

14.3.1 Resistive wall mode

The basic mechanism of resistive instability due to magnetic flux reconnection is
also operating in an entirely different location than inside the plasma, viz. in the
conducting wall that is supposed to stabilize the external MHD instabilities. In
particular, if operating parameters of fusion experiments are pushed up to obtain
higher values of beta, current-driven external instabilities frequently interfere, and
they are usually stabilized by the presence of a conducting wall. Apart from the fact
that a conducting wall close to a plasma is not very desirable in a fusion reactor,
the conductivity itself turns out to be a problem.

Consider an external kink mode which is stabilized by a conducting wall, but
which would be unstable without that wall. For simplicity, we analyze this mode
for a flat current distribution in the “straight tokamak” approximation, appropriate
for low-beta plasmas. From the expression of the growth rate given by Eq. (9.99) of
Volume [1], we find for a wall position normalized to the plasma radius, w ≡ b/a,
and mode numbers n = −1 and m > 0:

ω̄2 ≡ ω2

ε2τ2
A

=
2(q −m) [q − (m− 1 + w−2|m|)]

q2(1− w−2|m|)
. (14.92)
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Here, ε is the inverse aspect ratio of the slender tokamak torus that is represented
by a periodic straight cylinder of length 2πR0 and plasma radius a, and τA is the
characteristic Alfvén time across the plasma:

ε ≡ a

R0
� 1 , τA ≡ vA

a
=

B0

a
√
μ0ρ0

. (14.93)

Considering the external m = 2 kink mode with a wall close to the plasma, only a
narrow instability range 1 + w−4 < q < 2 remains and the mode is stable in the
wide range 1 < q < 1 + w−4, but violently unstable when the wall is taken away.
Let us consider what happens in that range when the wall is not taken away, but the
finite resistivity of it is taken into account.

The expression (14.92) for the ideal MHD growth rate is found by solving the
ODE for the radial displacement ξ, obtained from the Hain–Lüst equation in the
low-beta “straight tokamak” approximation,{ r

m2

[
ω̄2−(n+m/q)2

]
(rξ)′

}′−[ω̄2−(n+m/q)2
]
ξ = 0 (0 ≤ r ≤ 1) , (14.94)

and the ODE for the radial perturbation Q̂i of the magnetic field in the vacuum,[ r
m2

(rQ̂i)′
]′ − Q̂i = 0 (1 ≤ r ≤ w) , (14.95)

joining them by applying the BC at the plasma–vacuum interface,

ω̄2 − (n+m/q)2

m2(n+m/q)
(rξ)′

ξ
+

2
mq

= −n+m/q

m2

(rQ̂i)′

Q̂i

(r = 1) , (14.96)

and applying either one of the following BCs on the outside:

Q̂i = 0 , for r =

⎧⎨⎩
w (infinitely conducting wall)

∞ (no wall)
. (14.97)

For constant current density in the plasma, the safety factor q(r) = const, so that
the factor in square brackets in the ODE (14.94) becomes constant, and we obtain
the following simple solutions for ξ and rQ̂i:

rξ = A1r
|m| , rQ̂i = A2(r|m| + Cr−|m|) . (14.98)

Substitution into the BC (14.96) yields the dispersion equation (14.92).
The BC (14.96) at the plasma surface is obtained by dividing the two plasma–

vacuum interface conditions derived in Section 6.6.1 [1]. Note that possible prob-
lems with a vanishing denominator are absent here since ξ(r = 1) �= 0 by the
definition of an external mode. The obvious advantage of this procedure is that
the amplitudes A1 and A2 disappear from the problem, so that only the factor C
remains. If desired, one could assume a more realistic current profile and solve
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the ODE (14.94), but the equation for the determination of growth rate would be
implicit. This will change the magnitude of the growth rate of the resistive wall
mode, but not the formal scaling of the expression that we will derive.

The problem of the loss of wall stabilization of external kink modes when the
resistivity of the wall is taken into account was first discussed by Pfirsch and
Tasso [371]. They proved that an MHD unstable configuration cannot be stabi-
lized by the introduction of resistive walls, i.e. with respect to stability it does not
make a difference whether or not a resistive wall is present. Of course, the crucial
question then becomes whether the growth rate of the ensuing resistive wall mode
(RWM) is compatible with plasma confinement on the characteristic time scale
needed for nuclear fusion. This problem was addressed by Goedbloed et al. [182],
who solved the dispersion equation of resistive wall modes for a high-beta screw
pinch (a toroidal device differing from a tokamak by the presence of a stabilizing
layer of force-free currents in a tenuous outer plasma replacing the “vacuum”). The
outcome was positive for the high-beta device, considered promising at the time,
but rather marginal for tokamaks. In this section, we will follow that paper but re-
place the Bessel functions, needed to represent perturbations of high-beta pinches,
by the much simpler representation in terms of powers of r, appropriate for the
low-beta tokamak approximation. This changes the numerical magnitude of the
growth rates, but not the qualitative spectral picture presented in Fig. 14.5.

Obviously, the difference between a perfectly conducting wall and a resistive
wall resides in the BC that is applied at the wall. Instead of the usual conducting
wall BC, n · Q̂ = 0, which guarantees that no flux leaves the volume enclosed by
the wall, we should now apply the following conditions:

[[n · Q̂]] = 0

[[n · ∇Q̂]] = −i(μ0ω/η
∗)n · Q̂

⎫⎪⎬⎪⎭ (at r = w) , (14.99)

n · Q̂→ 0 (for r →∞) . (14.100)

The resistive wall condition (14.99)(b) is found by integrating the equation for the
magnetic field perturbation across a thin wall of thickness δ and resistivity η, and
taking the limits δ → 0 and η → 0 such that the surface resistivity η∗ ≡ η/δ

remains finite (in the same way as the procedure described in Section 4.5 [1] to
obtain jump conditions for plasma discontinuities).

It is expedient to introduce an abbreviation for the characteristic time scale asso-
ciated with resistive diffusion of the magnetic field perturbation through the wall:

τD ≡ μ0b/η
∗ . (14.101)

The pertinent resistive wall BC, replacing the original BC (14.97), is obtained by
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dividing the two expressions (14.99) and inserting τD :

(rQ̂i)′

Q̂i

=
(rQ̂e)′

Q̂e

+ iτDω (at r = w) . (14.102)

Here, the exterior solution Q̂e should obey the BC (14.100), i.e.

Q̂e → 0 (r →∞) , (14.103)

so that

rQ̂e = A3r
−|m| , (14.104)

The full eigenvalue problem now becomes to solve the ODEs (14.94) and (14.95)
for ξ(r) and Q̂i, connect them by applying the plasma–vacuum BC (14.96), solve
the ODE analogous to (14.95) for Q̂e, subject it to the BC (14.103) at infinity, and
finally connect Q̂i and Q̂e by applying the resistive wall BC (14.102).

It remains to substitute the expressions (14.98) and (14.104) for ξ, Q̂i and Q̂e

into the BCs (14.96) and (14.102). This gives

ω̄2 − (n+m/q)2

|m|(n+m/q)
+

2
mq

= − n+m/q

|m|
1− C
1 + C

(r = 1) , (14.105)

|m|1− Cw
−2|m|

1 + Cw−2|m| = − |m|+ iτDω (at r = w) , (14.106)

which, upon elimination of C, yields the dispe rsion equation for resistive wall
modes:

ω̄2 − (n+m/q)2 + 2(sgn(m)/q)(n+m/q)

= (n+m/q)2
2|m| − (1 + w−2|m|)iτDω
2|m| − (1− w−2|m|)iτDω

, (14.107)

or, in expanded cubic form,

iτDω
( iω
ετA

)2 −D( iω
ετA

)2
+ E(iτDω)− F = 0 ,

D ≡ 2|m|
1− w−2|m| , E ≡ 2(n+m/q)

1− w−2|m|
[
n+m/q − sgn(m)

q
(1− w−2|m|)

]
,

F ≡ 4|m|(n+m/q)
1− w−2|m|

[
n+m/q − sgn(m)

q

]
. (14.108)

From this expression, when the resistivity of the wall is increased, from η∗ = 0
to η∗ = ∞, the spectrum of eigenvalues of the external waves and instabilities
qualitatively changes as indicated in Fig. 14.5:
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Fig. 14.5 Transition of wall-stabilized external kink modes to unstable and damped
kink modes by increasing the resistivity of the wall: (a) for η∗ = 0, the two kink
modes are wall stabilized, (b) for small η∗, the kink modes become damped and a
purely growing resistive wall mode pops out of the origin, (c) for η∗ = η∗crit, the
damped kink modes coalesce and become purely imaginary, (d) for η∗ > η∗crit, one
of the damped modes moves off to −i∞, (e) for η∗ = ∞, the unstable kink mode
and its complex conjugate is obtained. (From Goedbloed et al. [182].)

(a) for vanishing resistivity of the wall, η∗ ∼ 1/τD = 0, from the first and third term, we
obtain the two stable kink oscillations described by Eq. (14.92):

ω̄2 = E ≡ ω̄2
w > 0 ; (14.109)

(b) for small, but non-vanishing, resistivity, the two stable kink modes become resistively
damped, and a new mode, the resistive wall mode, pops out of the origin:

ω1,2 ≈ ±ετAE − 1
2 (i/τD)(D − F/E) , iτDω3 ≈ F/E ; (14.110)

(c) increasing the resistivity still further, the real part of the stable oscillations vanishes
for a certain critical value η∗ = η∗crit, so that a degenerate stable oscillation together
with a rapidly growing resistive wall mode is obtained;

(d) for very large η∗, the two degenerate modes split apart, one moves off to −i∞ and
the other one becomes the complex conjugate partner of the unstable kink mode in the
absence of a wall;

(e) finally, for η∗ → ∞, from the second and fourth term, we obtain the unstable kink
mode and its conjugate partner described by Eq. (14.92) in the limit w →∞:

ω̄2 = F/D ≡ ω̄2
∞ < 0 . (14.111)

Clearly, the crucial expression above is the imaginary ω3 given by Eq. (14.110),
which is the growth rate of the resistive wall mode for small resistivity:

ωrwm ≈ − i
τD

F

E
= − i

τD

2|m|
1− w−2|m|

ω̄2∞
ω̄2

w

. (14.112)
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Because of our starting assumption, the two factors ω̄2∞ and ω̄2
w have opposite

sign so that the mode is unstable. Hence, with respect to stability, a resistive wall
cannot change a mode from unstable to stable, but it does decrease the growth rate
in proportion to the conductivity of the wall.

It is now just of matter of inserting numbers to find out whether the growth rate
can be made small enough to be of no concern for fusion. Of course, for that
purpose, realistic current profiles and a proper description of the toroidal geometry
need to be taken into account. Several ways of eliminating the resistive wall mode
for future fusion devices have been investigated. We just mention the consideration
of RF stabilization [176], plasma rotation [57, 39, 199], and active feedback control
[138, 137] to slow down the modes. The fact that there is a lot of ongoing research
on this topic shows that the answer to the question is far from comforting.

14.3.2 Spectrum of homogeneous plasma

We will now consider the influence of resistivity of the plasma itself, starting with
the stable part of the spectrum, in particular of the Alfvén waves. As we will see,
similar spectral structures as in the resistive wall mode occur. However, in this
case, there is no formal justification of the neglect of the resistive decay of the
background equilibrium since the frequencies of the waves will be modified by a
damping that may operate on a time scale comparable to that of resistive diffusion.
Nevertheless, we will follow standard practice and neglect this effect, pending an
overall theory that incorporates both resistive diffusion of the background and re-
sistive decay of the waves.

First, let us study the case when the background equilibrium is completely ho-
mogeneous. In that case, Eqs. (14.44) for incompressible plasmas transform into

η ρω2(ξ′′ − k2
0ξ)− iωF (Q− Fξ) = 0 ,

η (Q′′ − k2
0Q) + iω (Q− Fξ) = 0 . (14.113)

In ideal MHD, this reduces to

(ω2 − ω2
A)(ξ′′ − k2

0ξ) = 0 , (14.114)

so that ±ωA represents a continuum of two infinitely degenerate eigenvalues.
Now, we may also assume harmonic dependence in the x-direction, so that

d/dx = ikx. Introducing the resistive parameter

η̃ ≡ ηk2

2ωA
, k2 ≡ k2

x + k2
y + k2

z . (14.115)
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(a)

(a)′

(b)

Fig. 14.6 Linear ideal versus resistive MHD spectra for a uniform, compressible
plasma. The ideal (purely stable) results are indicated above the two panels, which
combine results for η = 0.001 (filled circles) and η = 0.005 (diamonds). Note the
difference in the horizontal axis (oscillation frequency): the bottom panel (b) shows
most clearly the fast mode sequence, while the top panel (a) zooms in on Alfvén
and slow modes. Dashed boxes indicate the range of a zoomed view above. The
insert (a)′ illustrates the anti-Sturmian sequence of ideal MHD slow modes.
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the dispersion equation may be written as

ω2 + 2iη̃ ωAω − ω2
A = 0 , (14.116)

with the solution

ω = ωA

(
±
√

1− η̃2 − iη̃
)
. (14.117)

For varying values of η̃, the modes are lying on a semi-circle in the lower half
plane, starting from the real axis at ω = ±ωA (η̃ = 0), intersecting the nega-
tive imaginary axis at ω = −iωA (η̃ = 1), and then moving along the negative
imaginary axis to ω = 0 and ω = −i∞ (η̃ →∞).

The analysis above concentrated on the Alfvén modes for a homogeneous, in-
compressible plasma, and showed analytically that resistivity introduces specific
curves (semi-circles) in the damped frequency half-plane on which the modes re-
side. The spacing of the resistive Alfvén eigenmodes on these curves is influenced
by the resistivity in accord with Eq. (14.115), but the radius of the semi-circle is
independent of the resistivity η.

In Fig. 14.6, we show the effect of finite resistivity on the entire MHD spec-
trum consisting of fast, Alfvén and slow modes of a homogeneous, compressible
plasma. Using numerical techniques discussed more extensively in Chapter 15, an
overview of all modes with mode numbers ky = 0, kz = 1, for a uniform layer
of density ρ = 1, magnetic field B = (0, 0, 1) and β = 0.25 (with γ = 5/3)
is computed easily. The figure combines the spectrum obtained under ideal MHD
η = 0 conditions, together with its modification when the resistivity parameter has
a constant value η = 0.001 or η = 0.005. Note that, in ideal MHD, the homoge-
neous plasma slab has an infinite Sturmian sequence of fast modes accumulating
to infinity, a degenerate Alfvén frequency ωA and an anti-Sturmian sequence of
slow modes accumulating to the (constant) slow frequency ωS. The latter is shown
in more detail in the top insert of the figure. This behavior was explained previ-
ously in Chapter 7 [1] and also shown in Fig. 7.8. When resistivity is included,
the bottom part of Fig. 14.6 shows that the fast mode sequence shifts from purely
oscillatory to damped, where the resistivity does influence the precise location of
the damped fast mode sequence in the complex plane. As expected, the higher
the mode frequency in the Sturmian sequence, the more it is damped. The top
panel demonstrates clearly that both the Alfvén and the slow modes relocate to
semi-circles in the damped half-plane (and the negative imaginary axis), and these
semi-circle locations remain uninfluenced by resistivity. However, the spacing of
the individual resistive Alfvén or slow modes on these curves is affected by resis-
tivity changes. This complements and agrees with the above analytical results for
the resistive Alfvén modes in the incompressible case.
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14.3.3 Spectrum of inhomogeneous plasma

For inhomogeneous plasmas, the resistive spectrum should be some kind of modi-
fication of the continuous spectrum of ideal MHD. Resistivity changes the order of
the system so that the singularities due to the vanishing of the coefficients in front
of the highest derivatives disappear. Hence, one should expect the continua to split
up into discrete modes. This is indeed what happens. However, it happens in a
rather unexpected fashion, which is already suggested by the case of the homoge-
neous plasma discussed in the previous section. There, the continuum frequencies,
which were infinitely degenerate in ideal MHD, relocated to sequences of discrete
resistive eigenmodes on semi-circles and the negative imaginary axis in the stable
half-plane. As a mathematical analysis for the resistive spectrum of an inhomoge-
neous plasma becomes rather formidable, we here restrict ourselves to discussing
exemplary spectra computed numerically. This has the advantage that no simpli-
fying assumptions on, e.g., incompressibility, or non-overlapping continua have to
be made.

A relevant example revisits the force-free equilibrium from Eq. (14.2) analyzed
in Section 14.1. While most of the analysis presented there used incompressible
conditions, the main conclusions on stability against resistive tearing modes as
governed by criteria in Eq. (14.21) or Eq. (14.86) can be expected to hold in the
compressible case as well. When considering a plasma of constant density ρ = 1,
β = 0.15 and magnetic field B = (0, sin(αx), cos(αx)) on x ∈ [−0.5, 0.5] with
specific heat ratio γ = 5/3, the tearing mode stability criterion is violated for the
choice ky = 0.49, kz = 0, when α = 4.73884. For this combination of wave
numbers and equilibrium parameters, the Alfvén and slow continua all go through
zero at x = 0, and contain internal extrema. These overlapping continuum ranges
are shown in the top panel of Fig. 14.7. The bottom panel shows the resistive MHD
spectrum for a resistivity of η = 0.0001. Only the Alfvén and slow modes are seen
in this frequency range, and one recognizes the following.

• The ideal, stable continuum ranges are replaced by sequences of discrete resistive
eigenmodes which lie on specific curves in the stable half-plane. Repeating the com-
putation for differing values of η influences the spacing of the modes on these curves,
but not the curves themselves.

• For the case of the overlapping continua shown in the figure, the curves still vaguely
resemble semi-circles, as for the homogeneous case in Fig. 14.6, but complicated by
branches which split off in almost triangular patterns. The tips of the triangles ap-
proach the stable real axis at oscillation frequencies that correspond to an internal
extremum, an end value (at x = ±0.5) or a zero value of the ideal continua.

• While the ideal continua are thus dramatically transformed into an intricate structure of
discrete modes in the stable half-plane, the unstable tearing mode is still prominently
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tearing

Fig. 14.7 Typical Alfvén and slow magneto-sonic parts of the resistive MHD spec-
trum for a force-free slab. Note the (isolated) unstable tearing mode. The ideal
continuous spectra are indicated above (oscillation frequency versus x-location in
the slab), and show the distinct connection between their end point (x = ±0.5) and
internal extremal values with the curves on which resistive modes are found.

present with its growth rate in agreement with the scaling given by Eq. (14.84) for
varying resistivity. This latter point is demonstrated in Fig. 14.8, where the theoretical
predictions are compared with numerically obtained growth rates.

The latter conclusion underlines the fact that instabilities form the most robust part
of the MHD spectrum (when going from ideal to resistive conditions), and that the
concepts of σ-stability (Chapter 6) for static plasmas and ε-stability (Chapter 12)
for stationary plasmas can be expected to remain of practical use.

In addition to the unstable tearing mode and the resistive discrete eigenmodes
on curves that are the counterpart of the ideal continua, Fig. 14.7 also shows some
more isolated modes which appear within the triangular sections of the curves. A
better example is discussed in Chapter 15, Fig. 15.11, where (half of) the resis-
tive sub-spectrum of Alfvén and slow modes is shown (rotated over 90 degrees)
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(  a  ) (  b  )

Fig. 14.8 Linear resistive MHD results for the tearing mode in a force-free slab:
(a) growth rate as a function of η for ky = 1.5 and all other parameters as in
Fig. 14.7; (b) predicted versus computed growth rate variation at fixed η = 10−6.

for a cylindrical plasma equilibrium and mode numbers with non-overlapping,
well-separated ideal Alfvén and slow continuum ranges. The isolated mode in
the triangular section of the Alfvén sub-spectrum in Fig. 15.11 has been identi-
fied as an ideal quasi-mode, and these locally damped (due to local resonance with
the continuum frequencies) global modes form the most robust part of the stable
frequency spectrum. They represent the natural oscillation modes of the system
and explain how perfect coupling between a driver and its excited plasma loops
can be achieved (see Chapter 11 [1]). As mentioned there, these (ideal) quasi-
modes demonstrate a damping rate which becomes independent of resistivity for
large Reynolds numbers (which distinguishes them from the resistive modes on
the curves). A recent study [464] has investigated their intricate connection with
the resistive eigenmodes on the curves, by varying the governing equilibrium pa-
rameters.

Finally, we may wonder how the combined ingredients of resistivity and equi-
librium flow manifest themselves in this tearing-unstable, force-free slab. For the
equilibrium from Figs. 14.7–14.8, we can conclude that in the static case, maximal
growth occurs for modes with ky = 1.5. To investigate the effect of equilibrium
flow on this mode, we now add a linear flow profile vy(x) = 0.15x, leading to
Doppler shifted frequency ranges Ω±

A,S. With this choice of flow profile, the spec-
trum still contains the tearing instability, and the non-trivial effect of flow on the
linear MHD spectrum is illustrated in Fig. 14.9. The discrete modes seen in the
damped half-plane are again found on curves, which still show a clear link with
the extremal and edge values of the Doppler shifted continua. The computational
result also shows the purely oscillatory Eulerian entropy continuum modes, as well
as evidence for more curves appearing in the frequency range of the local Doppler
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Fig. 14.9 Typical Alfvén and slow magneto-sonic parts of the resistive MHD spec-
trum for a force-free slab with a linear flow profile. Note the (isolated) unstable
tearing mode. The (Doppler-shifted) ideal continuous spectra are indicated above
together with the local Doppler shift, and show the distinct connection between
their end point (x = ±0.5) and internal extremal values with the curves on which
resistive modes are found.

shift Ω0(x). It should be emphasized that the combined effects of equilibrium flow,
magnetic shear and finite resistivity on the full MHD spectrum are not fully under-
stood yet, and future studies using MHD spectroscopy for these configurations are
called for. By varying the equilibrium flow profile, one can then investigate subtle
effects on global, unstable modes: the tearing mode in this force-free field con-
figuration can either be suppressed or rendered more unstable, depending on the
precise flow strength and profile.

In closing this section, it is appropriate to mention that extensive research has
been devoted in hydrodynamics to the similar problem of the effect of viscosity
on the spectrum of waves and instabilities. In local WKB solutions of the Orr–
Sommerfeld equation, an important role is played by the Stokes lines in the com-
plex ω plane (see, e.g. Drazin and Reid [124], Section 27.3). Eigenvalues asso-
ciated with wildly oscillating eigenfunctions are found on particular curves, like
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those of Figs. 14.6, 14.7, 14.9. These techniques have been transferred to magne-
tohydrodynamics (see, e.g., Pao & Kerner [360], Riedel [391] and Lifschitz [308],
Section 7.15). However, in contrast to the resistive instabilities, like tearing modes,
the role of the stable, damped, part of the spectrum remains rather unclear. Some
relatively recent research ties this up to the concept of pseudo-spectrum (see Borba
et al. [61]), developed by Trefethen [446] for hydrodynamics. It is beyond the
scope of this book to describe these developments in detail.

14.4 Reconnection

We have thus far concentrated on how resistivity modifies the linear MHD spec-
trum, pointing out the existence of various unstable tearing-type modes, involving
reconnection. However, reconnection plays an important role in nearly all dynamic
phenomena in space and laboratory plasmas, where it manifests itself in intrinsi-
cally nonlinear evolutions as well. Magnetic reconnection rightfully deserves fun-
damental study on its own, a fact reflected in excellent modern textbooks on the
subject (e.g. by Priest and Forbes [387] and by Biskamp [46]). In what follows, we
restrict ourselves to discussing its role in the temporal evolution of a very simple,
planar configuration, the so-called Harris sheet. This configuration has played a
central role in several collaborative modeling “challenges”, such as the “Geospace
Environmental Modeling (GEM) Magnetic Reconnection Challenge” [42] and the
“Newton Challenge” [43]. In both these challenges, the nonlinear evolution of the
2D system was computed and compared with a large variety of codes: ranging from
conventional resistive MHD, over various extended MHD models, to fully particle
based, kinetic treatments. In Section 14.4.4, we briefly summarize the important
findings of this multi-code approach, but first discuss what can be concluded from
standard resistive MHD modeling alone.

14.4.1 Reconnection in 2D Harris sheet

(a) Linear stability properties The Harris sheet configuration is a planar MHD
equilibrium with a horizontal magnetic field given by

Bx(y) = B0 tanh(y/λB) . (14.118)

The corresponding current layer thus has a thickness measured by 2λB . One further
assumes a uniform temperature T = T0 and a density profile given by

ρ(y) = ρ0 cosh−2(y/λB) + ρ∞ . (14.119)

When exploiting a scaling where B0 = 1, ρ0 = 1 and 2λB = 1, all velocities
become normalized to the Alfvén speed, and time is measured in Alfvén crossing
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times of the initial current sheet width. From pressure balance, one then finds
T0 = 0.5, and the reference equilibrium configuration takes ρ∞/ρ0 = 0.2 and
a ratio of specific heats fixed at γ = 5/3. The problem is then fully specified
when supplemented with the domain size and the employed boundary conditions.
The standard case takes −Lx/2 < x < +Lx/2 and −Ly/2 < y < +Ly/2 with
Lx = 25.6 and Ly = 12.8. The simulations use periodic boundary conditions
horizontally, while at y = ±Ly/2 perfectly conducting, impenetrable walls are
usually assumed. In the GEM challenge, this initial equilibrium is perturbed by an
additional magnetic perturbation specified as

B1x(x, y) = − ψ1
π

Ly
cos
(2πx
Lx

)
sin
(πy
Ly

)
,

B1y(x, y) = + ψ1
2π
Lx

sin
(2πx
Lx

)
cos(

πy

Ly
) . (14.120)

In the original study, one adopts an amplitude ψ1 = 0.1, which is deliberately taken
so large that nonlinearity dominates instantly. When we restrict the discussion to
the case of uniform resistivity, the only remaining parameter is then the value of
the magnetic Reynolds number, as quantified by its dimensionless inverse η. In
what follows, we will first point out the linear stability properties for this choice
of parameters, to make a direct link with our foregoing discussion of the tearing
mode. Then, we will discuss its nonlinear evolution: not unexpectedly, a decisive
parameter will turn out to be the value of the resistivity η, as it can lead to radically
different reconnection scenarios.

We first present in Fig. 14.10 the numerically determined eigenfunctions for
the (most unstable) linear tearing mode of this reference configuration, when tak-
ing η = 10−4. The linear mode is assumed to be purely two-dimensional, and
adopts a Fourier dependence exp(ikxx) with kx = 2π/Lx, so that its horizontal
wavelength exactly fits the chosen box size. The growth rate λ of the exponential
growth exp(λt) for this mode has the same dependence on the resistivity η and on
the wave number kx, as shown by Fig. 14.8. (Note that the direction of inhomo-
geneity is now taken as the y-direction, in contrast to the discussion in the previ-
ous sections.) As can be deduced from these plots, the tearing mode shows the
characteristic magnetic field perturbations discussed earlier, with the component
B1y(y) to be compared with Q as sketched in Fig. 14.4. The density eigenfunc-
tion clearly shows that compressibility effects can no longer be neglected in this
case, while the tearing mode also manifests a distinct temperature variation across
the resistive inner layer. Varying the growth rate versus wave number at constant
η = 10−4 shows that this mode attains its maximal growth (like the tearing mode
of Fig. 14.8) at a somewhat shorter wavelength than that preferred by the horizontal
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Fig. 14.10 Linear resistive MHD results for the Harris sheet equilibrium exploited
in the GEM challenge.

box size Lx = 25.6. Finally, the variation of the growth rate with resistivity con-
firms the analytic scaling behavior λ ∼ η3/5, although convincingly only for values
of the corresponding magnetic Reynolds number beyond 104. It must be stressed
that linear MHD codes do possess the required accuracy to compute eigenmodes at
realistic Reynolds numbers of order 109 or more. As explained in Chapter 15, this
requires the use of a sufficiently accurate numerical representation, if needed com-
bined with grid accumulation, and aptly chosen generalized eigenvalue solvers. In
contrast, for the nonlinear simulations discussed next, direct numerical simulations
that achieve magnetic Reynolds numbers of 104 are still at the limit of many of
the high resolution methods exploited to date (such as the shock-capturing, finite
volume methods described in more detail in Chapter 19).

(b) Nonlinear evolution Although the reference Harris sheet equilibrium exploited
for the nonlinear simulations is tearing-unstable, the large amplitude perturbation
used in Eq. (14.120) imposes an initial magnetic island perturbation with a width
comparable to the current layer. This is mainly motivated by the GEM challenge’s
aim to compare nonlinear reconnection rates found from both fluid and kinetic
models. For purely uniform resistivity, the original resistive MHD simulations
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Fig. 14.11 Nonlinear evolution of the Harris sheet equilibrium, perturbed in accord
with the GEM challenge, for uniform resistivity with η = 0.005. Shown is the
out-of-plane current distribution at t = 100 and t = 200.

from Birn and Hesse [44] already demonstrated pronounced differences in the evo-
lution when varying η from 0.005 down to 0.001. Their fairly low resolution sim-
ulations followed the current sheet dynamics for several hundreds of Alfvén cross-
ing times. At their highest resistivity value η = 0.005, the initial current sheet
collapses centrally to form an elongated, narrow dissipative layer connecting the
two halves of the magnetic island located at the periodic sides. This island grad-
ually grows in size, at a slow rate set by the near-steady reconnection occurring
through the Y -shaped endpoints of the elongated current layer. This rate can be
computed analytically from a consideration of the stationary (∂/∂t = 0) resistive
MHD equations across a diffusion region of macroscopic length 2L and width 2l,
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e.g. observing that mass conservation demands Lvi = lvo, where vi and vo de-
note the (vertical) inflow and (lateral) outflow velocities, respectively. This was
originally done by Sweet and further analyzed by Parker [363], and the resulting
so-called Sweet–Parker reconnection layer is characterized by a very slow inflow
speed vi ∼ √ηvA, an Alfvénic outflow velocity vo ∼ vA, and a current sheet width
related to the length L and resistivity value by l ≈ √ηL. Fig. 14.11 shows the
evolution of the perturbed Harris sheet when taking η = 0.005, at two consecu-
tive times. The simulation here employs automated grid-adaptivity to achieve an
effective resolution of 1920 × 1920, and essentially recovers the original results
from [44]. During the entire simulation, a single dominant island grows in size,
as mediated by the near-steady reconnection occurring across the central current
layer.

When the magnetic Reynolds number is increased, the same Harris sheet config-
uration can demonstrate pronouncedly different evolutions. Although the original
results by Birn and Hesse [44] already hinted at this possibility by including a lower
η = 0.001 case as well, only more recent work by Lapenta [296] has convinc-
ingly demonstrated the complexity attainable by (visco-)resistive MHD evolutions
at the larger, physically more realistic, magnetic Reynolds numbers. Figure 14.12
presents the evolution of the identical configuration as simulated in Fig. 14.11, for
η = 0.001 (a fivefold increase in the magnetic Reynolds number). Now, the central
current sheet still collapses to initiate the slow reconnection process, but in addi-
tion forms a central, secondary island, which grows to macroscopic dimensions.
This was already found in [44], and interpreted as due to growing linearly unstable
eigenmodes of smaller wavelength. (This secondary tearing is not seen at smaller
magnetic Reynolds numbers as the initial current then dissipates much faster.) This
secondary island eventually undergoes a sudden merger with the larger island struc-
ture, an effect attributable to the so-called coalescence instability mediated by the
mutual attraction of parallel current filaments. Continuing the simulation further
shows the renewed appearance of a smaller island structure in the central current
layer, which later on is again seen to coalesce. This process already indicates the
transition to a new, highly non-steady, reconnection regime that is characterized by
sudden tearing-type disruptions of the current layer.

As first pointed out by Lapenta [296], even lower resistivity values where η =
10−4 show a dramatic changeover from the original Sweet–Parker reconnection
regime to one where the collapsed current layer spontaneously disrupts chaoti-
cally in repeated island chains. The resulting reconnection rate in the self-feeding,
turbulent reconnection phase is dramatically increased beyond the slow Sweet–
Parker rate. Figure 14.13 again shows a representative snapshot of the evolution,
this time characterized by almost randomly appearing, small island chains, which
again show sudden mergers with the larger islands due to the coalescence instabil-
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Fig. 14.12 Nonlinear evolution of the Harris sheet equilibrium, perturbed in ac-
cord with the GEM challenge, for uniform resistivity with η = 0.001. Shown are
schlieren plots of the density at consecutive times.

ity. He attributes the onset of the resulting fast reconnection regime to the forma-
tion of closed circulation patterns centered on the multiple reconnection sites, self-
feeding at X-type points. In Fig. 14.13, the sites where this fast reconnection oc-
curs demonstrate a clear resemblance to that obtained in the other well-known, sta-
tionary Petschek reconnection model, involving slow MHD shocks and co-spatial
current sheets found in an X-type configuration. In the next subsection, this sta-
tionary Petschek reconnection process is briefly discussed. The self-feeding, tur-
bulent reconnection found at sufficiently low values of η is highly non-stationary,
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Fig. 14.13 Nonlinear evolution of the Harris sheet equilibrium, perturbed in accord
with the GEM challenge, for uniform resistivity with η = 0.0001. Shown is a
schlieren plot of the density at t = 140.

but physically very relevant since it occurs on Alfvénic time scales, and by nature
distributes the reconnection over a macroscopic region.

14.4.2 Petschek reconnection

The slow reconnection rate obtained in the stationary Sweet–Parker regime is in
stark contrast with that found in violent solar flares, or the one realized in sev-
eral laboratory reconnection experiments. To overcome this shortcoming of the
modeling based on stationary resistive MHD, Petschek [370] proposed a viable al-
ternative involving the formation of slow shock fronts across which most of the
energy conversion takes places. The central diffusion region is in the Petschek
model reduced in size as compared to the elongated current layer associated with
the Sweet–Parker regime, and four standing shock waves emerge from it in an
overall X-type configuration.

Tóth et al. [443] applied their resistive MHD, Versatile Advection Code (see
Section 19.3.2) to study Petschek-type reconnection of magnetic field lines. Fig-
ure 14.14 shows two snapshots of one of their simulations. Initially, there is a
Harris sheet equilibrium with vx = vy = Bx = 0 and By = tanh(x/L) with L
the width of the initial current layer. This initial state spontaneously transits to a
configuration containing a localized dissipative layer (left picture) by imposing a
spatially non-uniform, anomalous resistivity centered about the origin. A pair of
slow mode shocks propagate away from the reconnection layer, eventually form-
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Fig. 14.14 Magnetic field lines, velocity field (arrows), and current density jz
(grey-scale) for two snapshots of a magnetic reconnection problem which evolves to
a stationary Petschek solution. Only the upper right quarter of the X-type structure
is shown because of the symmetry. (From Tóth et al. [443].)

ing a standing X configuration. The material crossing those shocks accelerates to
Alfvénic velocities and gets heated in the process. The figure shows how the con-
figuration eventually evolves to a steady state Petschek reconnection regime. While
most computations assume non-uniform resistivity, it has been shown that at nearly
uniform resistivity a stationary configuration can be obtained numerically [28]. At
the same time, this classical stationary Petschek regime is just one realization of
the various fast reconnection mechanisms known to date. For a discussion of these,
we refer the interested reader to Priest and Forbes [387] and Biskamp [46].

14.4.3 Kelvin–Helmholtz induced tearing instabilities

The Harris sheet configuration discussed thus far clearly demonstrates the surpris-
ing complexity for planar resistive MHD evolutions. With various tearing-type
instabilities already present for static equilibria, one can anticipate even more com-
plex scenarios for stationary equilibria (the topic of the previous Chapters 12 and
13) containing initial current sheets. Since the linear resistive MHD spectrum of
planar, stationary configurations is still actively being researched, we end our dis-
cussion of resistive MHD reconnection with an example of tearing-type disrup-
tions induced by pure Kelvin–Helmholtz instabilities. In Keppens et al. [267], a
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Fig. 14.15 Evolution of the density for a Kelvin–Helmholtz unstable shear flow for
an initially uniform (left) versus a reversed (right) flow-aligned magnetic field. In
the presence of an initial narrow current layer (right panels), the Kelvin–Helmholtz
mode triggers tearing-type instabilities at the vortex periphery. (From [267]).

numerical survey of a planar shear flow vx = v0 tanh(y/a), embedded in uniform
plasma conditions, was performed. At the high initial plasma beta β = 120.2, the
configuration is known to be Kelvin–Helmholtz unstable for subsonic flow condi-
tions v0 < c =

√
γp0/ρ0, with a weak stabilizing influence on the growth rate

by the tension of the flow-aligned magnetic field. The authors compared the lin-
ear Kelvin–Helmholtz growth rates, as well as the nonlinear evolution of the sys-
tem, for a uni-directional as well as a “reversed” magnetic field at t = 0. The
reversed case discontinuously changes the direction of the magnetic field at the
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y = 0 mid-plane, and represents the limit of a co-spatial magnetic Harris sheet
Bx = B0 tanh(y/b) for the limit b→ 0. At sufficiently high resolution, combined
with low values of the uniform resistivity, the reversed case demonstrated the dis-
tinct possibility of sudden tearing-type events. Small-scale magnetic islands can
appear suddenly in the current sheets that are amplified by the Kelvin–Helmholtz
mode development. The vortical flow accompanying the Kelvin–Helmholtz mode
warps the initial field in spiral patterns at the vortex periphery, and a case which
contrasts the evolution of a uniform versus a reversed field configuration is shown
in Fig. 14.15. The density “islands” coincide with magnetic islands, and their sud-
den appearance allows a rapid transition to magneto-turbulent flow conditions.

This example shows that the nonlinear dynamics of flowing, current-carrying,
plasmas is a topic that deserves further study within a purely resistive MHD con-
text. Even their linear stability properties have not been charted to the amount of
detail obtained for static equilibria. Moreover, reconnection in more complicated
3D configurations is even more intricate, with a staggering increase in topologi-
cal possibilities for reconnecting anti-parallel field lines. Chapter 8 of Priest and
Forbes [387] provides a readable account of its possible manifestations in 3D.

14.4.4 Extended MHD and reconnection

As mentioned earlier on, the 2D Harris sheet configuration has been used as a
benchmark configuration in both the GEM and the Newton challenge projects to
identify the essential physics required to properly model collisionless magnetic re-
connection. Whereas the GEM challenge adds the fairly large perturbation given
by Eq. (14.120) to bring the system to a nonlinear reconnection regime, the New-
ton challenge differs in the way this nonlinear regime gets accessed. Rather than
imposing a perturbation in the current sheet at t = 0, it gradually moves the field
lines at y = ±Ly/2 inwards at a prescribed velocity. This inflow is at most 10%
of the Alfvén velocity and decays beyond about 60 Alfvén crossings, so it gently
forces the central reconnection. Both collaborative challenges used a large variety
of models to simulate the evolution, with codes ranging from resistive MHD to full
particle (kinetic) treatments. The findings of both these efforts were rather similar,
and the reconnection rates obtained from different models are shown in Fig. 14.16.
We can summarize their results as follows.

• The reconnection rate found in conventional resistive MHD simulations was signifi-
cantly smaller than that in any simulation which allows a minimal decoupling of the
electron and ion dynamics. However, the resistivity values adopted (and those effec-
tively reached by the numerics) for uniform resistivity models were typically higher
than η = 0.001, so that the eventual transition to the chaotic, fast reconnection regime
as shown in Fig. 14.13 was not appreciated fully.
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Fig. 14.16 Reconnection rates as obtained for the GEM challenge [42] (left panel)
and Newton challenge [43] (right panel) simulations.

• All treatments that consider at least the effect of the Hall term in a generalized Ohm’s
law show that reconnection occurs fast (with Alfvénic inflow rates). This reconnec-
tion rate is surprisingly similar between Hall-MHD, hybrid, or full particle models.
The latter could indicate that reconnection is insensitive to the details of the electron
dynamics and the dissipation mechanism.

• In order to raise the reconnection rate from resistive MHD computations to the faster
rate found from the more advanced models, one can adopt anomalously raised, local-
ized, resistivity prescriptions.

These conclusions from both 2D magnetic reconnection studies then call for suit-
able extensions of the standard MHD model. The simplest of such models is that of
Hall-MHD, which can be regarded as a straightforward generalization of the single
fluid MHD description. It includes the effect of the Hall current in the generalized
Ohm’s law, and brings in whistler type waves, which have a faster phase speed at
shorter wavelengths or higher frequencies. The Hall-MHD model thereby enables
a faster reconnection than obtained in pure resistive MHD. Extended MHD models
of increasing physical complexity can be rigorously derived along the lines given
in Chapter 3 [1], where the derivation of the MHD equations from kinetic theory
was discussed. In so doing, one can gradually relax the inherent assumptions of
the single fluid MHD description, allowing a descent in the length and time scale
hierarchy. Recalling these hierarchies from Eq. (3.143) [1], we have

λMHD ≡ |∇|−1 ∼ a 	 Ri

[
	 δe 	 Re 	 λD

]
,

τMHD ≡ |∂/∂t|−1 ∼ a/vA 	 Ω−1
i

[
	 ω−1

p ∼ Ω−1
e

]
, (14.121)
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where all symbols have their usual meaning: a and vA are the typical MHD length
scale and Alfvén velocity, Ri and Re denote the ion and electron gyro-radii, δe is
the electron skin depth, λD the Debye length, Ωi and Ωe denote the ion and electron
gyro-frequencies, while the intermediate plasma frequency is ωp. One must then
similarly invoke a kind of maximal ordering (Section 3.4.1 [1]) to derive various
extended MHD descriptions, valid up to a pre-chosen length and time scale. Ob-
viously, each extended model must adopt a suitable closure strategy and somehow
parameterize the effect of the higher order moments of the distribution function,
i.e. enter the realm of modern transport theory. Since the computational effort and
techniques can also differ significantly from one extended MHD model to the next
(with particle in cell or PIC treatments usually prevailing at the kinetic levels, while
finite volume or finite difference methods reign at fluid-like levels), this is also the
domain of many advanced coding efforts. Ultimately, one would like to develop
adaptive physics solvers, where not only the employed (grid or particle) resolu-
tion changes dynamically, but also the used model differs on different parts of the
computational domain.

� Generalized Ohm’s law and Hall-MHD As a concrete example of an extended MHD
model, we here “derive” the Hall-MHD model and later on discuss how it modifies the
familiar Alfvén wave dynamics. Our starting point will be an intermediate set of single
fluid equations, Eqs. (3.135), (3.148)–(3.150) [1], rigorously derived from kinetic theory
and repeated here for convenience:

∂ρ

∂t
+∇ · (ρv) = 0 , (14.122)

ρ
∂v
∂t

+ ρv · ∇v +∇p− τE− j×B = 0 , (14.123)

−μ
(mi

Ze

)2 1
ρ

[ ∂j
∂t

+∇ · (jv + vj)
]
− mi

Ze

1
ρ

[
(1− μ) j×B− Z − μ

Z + 1
∇p
]

+ E + v ×B = ηj , (14.124)
∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1) η|j|2 . (14.125)

We recall that the first equation (14.122) denotes total mass conservation where ρ =
neme +nimi, the second (14.123) is the total momentum equation where ρv = nemeue +
nimiui, obtained as a mass-weighted combination of both electron and ion momentum
equations, the third Eq. (14.124) is the generalized Ohm’s law, while Eq. (14.125) is the
heat balance equation for the total pressure p = pe + pi. In the latter, we already neglected
pressure anisotropies (no ion/electron viscosities) so that we are left with a scalar pressure.
We also implicitly assumed an interest in time scales beyond the temperature equilibration
time scale (identical temperature for ions and electrons), adopted quasi-neutrality such
that ne = Zni (hence the charge density vanishes τ = 0), while the ion–electron momen-
tum transfer due to collisions has been quantified by means of a scalar resistivity η. All
other symbols have their usual meaning, with the ratio μ = Zme/mi of mass over charge
appearing as a small parameter. Note that electron and ion pressures are to a good approx-
imation given by pe = Zp/(1 + Z) and pi = p/(1 + Z). The generalized Ohm’s law
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Eq. (14.124) was obtained as a charge-weighted average of the ion and electron momen-
tum equations and it can be used to consistently extend the ideal or resistive MHD model.
For these standard MHD descriptions, the electric field is calculated from the simple form
E + v ×B = ηj. This is then used in combination with the pre-Maxwell equations

j = μ−1
0 ∇×B ,

∂B
∂t

+∇×E = 0 , ∇ ·B = 0 . (14.126)

When we exploit the smallness of the mass over charge ratio μ, we can alternatively write

E = −
(
v − j

ene

)
×B + ηj− ∇pe

ene
+

me

e2ne

[ ∂j
∂t

+∇ · (jv + vj)
]

= − ue ×B + ηj− ∇pe

ene
+

me

e2ne

[ ∂j
∂t

+∇ · (jv + vj)
]
. (14.127)

The Hall current (ene)−1j ×B contribution to the electric field breaks the frozen-in con-
dition of the ideal MHD induction equation, in a collisionless manner. Hence, even when
only the first term in Eq. (14.127) is taken along, field lines are no longer forced to follow
the flow due to decoupled ion–electron dynamics, in a way which is separate from the ion–
electron collisional effects encoded in the scalar resistivity. One can incorporate various
effects beyond the resistive MHD model, by computing the electric field from this general-
ized Ohm’s law and inserting the result in Eq. (14.126)(b). The extra terms in Eq. (14.127)
can be omitted when electron pressure is not important (pe = 0) and electron inertia can
be neglected. In practice, one may also find Hall-MHD models where anisotropic pres-
sure effects are incorporated, or one partially accounts for electron inertia, noting that this
generalized Ohm’s law is to be seen as a form of the electron momentum equation. �

� Hall-MHD and ion whistler waves The most basic Hall-MHD model merely takes
the first term in Eq. (14.127) along, and then notes that the remaining equations contain
essentially ion dynamics information where ρ = nimi while ne = Zni, and the smallness
of μ allows to write v = ui and ue = v−j/ene. When assuming negligible resistivity, η =
0, the main modification from the ideal MHD description can be appreciated immediately
from analyzing the linear wave modes of a static uniform plasma. When we linearize
the governing equations about a cold plasma state p0 = 0 with density ρ0, and assume
a uniform background field B0 = B0ez , the dispersion relation can be computed in the
usual fashion. When we restrict the analysis to plane waves ei(k·r−ωt) with a wave vector
purely parallel to the magnetic field k = k‖ez , one finds(

ω2 − ω2
A

)2
= (ω4

A/Ω
2
i )ω

2 . (14.128)

In this equation, the Alfvén frequency is the usual ω2
A = k2

‖v
2
A, while the ion gyro-

frequency Ωi = ZeB0/mi. Note that, formally, the limit (Ωi)−1 → 0 boils down to
omitting the right hand side term, and yields the ideal MHD result with both fast and
Alfvén waves at the Alfvén frequency. The modification induced by Hall-MHD is the fact
that both waves are now dispersive, i.e. their phase speed vph = ω/k‖ depends on the
wave number. Note that the long wavelength limit yields the ideal MHD Alfvén frequency,
while at short wavelengths one finds vph ∼ k‖v2

A/Ωi. The shortest wavelengths thus travel
fastest (which means trouble for computational approaches), or one may also conclude that
vph ∼

√
ω. The highest frequencies arrive first and the wave thus has a descending pitch

on arrival, hence the name “whistler”. �
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14.5 Literature and exercises

Notes on literature

Resistive instabilities

– The threat of resistive instabilities to plasma confinement for fusion was realized
very early. Two seminal papers on the subject already appeared in 1963: ‘Finite
resistivity instabilities of a sheet pinch’ by Furth, Killeen & Rosenbluth [152] and
‘On the stability of hydromagnetic systems with dissipation’ by Coppi [92].

– Most textbooks on plasma physics have chapters on resistive instabilities, e.g. Theory
of Toroidally Confined Plasmas (Chapter 5) by White [483]; Plasma Physics (Chap-
ter 17) by Sturrock [426]; Introduction to Plasma Physics (Chapter 20) by Goldston
& Rutherford [185]; Fundamentals of Plasma Physics (Chapter 12) by Bellan [32].

Resistive spectrum

– The subject of MHD spectral theory of dissipative plasmas has not developed yet to
the textbook level. A start can be found, though, in Section 7.15 of Magnetohydrody-
namics and Spectral Theory by Lifschitz [308].

– The subject of resistive MHD instabilities has been investigated by too many au-
thors to even attempt to give a representative sample. However, fundamental analyt-
ical studies by Pao & Kerner [360], by Riedel [391], and by Borba et al. [61], and
systematic numerical studies by Kerner et al. on cylindrical plasmas [274], quasi-
modes [378], and large-scale computing for tokamaks [272], and similar studies by
McMillan et al. [329] come close to the viewpoint of the present book.

Reconnection

– The subject of reconnection is central in the exposition of the sequence of the three
books Nonlinear Magnetohydrodynamics [45], Magnetic Reconnection in Plasmas
[46], and Magnetohydrodynamic Turbulence [47] by Biskamp.

– Magnetic Reconnection; MHD Theory and Applications by Priest & Forbes [387]
provides the fundamentals of the subject, including reconnection in 3D, and gives
many applications to solar and astrophysical plasmas, finishing with cosmic particle
acceleration.

Exercises

[ 14.1 ] Ideal MHD versus resistive MHD

The difference between ideal and resistive MHD is that one takes resistivity into account
(where η is usually assumed to be small).

– What is the main consequence of this?
– Why can we not use the same strategy for analyzing the stability of resistive plasmas

as for ideal plasmas?

[ 14.2 ] Tearing modes

In this chapter, a detailed analysis of tearing modes is presented.
– Explain why those modes do not appear in ideal plasmas.
– What essential condition is needed to make sure that a tearing mode may appear?
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– The analysis of tearing modes is carried out in three regions. Specify for each region
what kind of assumptions has been used and which equations have to be solved.

[ 14.3 ] Resistive spectrum of a homogeneous incompressible plasma

The resistive spectrum of a homogeneous incompressible plasma is discussed in Sec-
tion 14.3. In this exercise, you derive the equations presented in that section and you make
a plot of the resistive spectrum. Consider a plasma slab between two perfect conducting
plates at a distance L.

– Start from the resistive equations (14.44) and reduce them for a homogeneous plasma.
– In a homogeneous plasma, the displacement field component ξ can be written as
ξ(x, y, z; t) = ξ̂(kx, ky, kz;ω) exp[i(kxx+ kyy + kzz − ωt)]. Explain why you can
make this assumption. What are the boundary conditions on the walls?

– Derive the resistive equations using the assumption of the previous question.
– Write the derived equations in matrix form and derive the dispersion equation.
– Solve this dispersion equation.
– Look at the solutions of the dispersion equation and note that there is one special

solution. Which one is it and why is it special?
– Plot both solutions of the dispersion equation in the complex ω-plane using your

favorite plotting program. What kind of scaling can be used to plot the solutions?

[ 14.4 ] Resistive spectrum of a homogeneous compressible plasma

Figure 14.6 shows the resistive spectrum of a homogeneous compressible plasma. This
spectrum has been created with one of the numerical methods discussed in Chapter 15.
The dispersion equation can also be derived as in the previous exercise.

– Start from the resistive equations (14.41) and reduce them for a homogeneous plasma
representing perturbations ξ(x, y, z; t) as in Exercise [14.3].

– Write the equations in matrix form.
– Show that the resulting dispersion equation can be written as

ω
[
ω2 − k2

‖b
2 + iηk2ω

][
ω4 − k2(b2 + c2)ω2 + k2k2

‖b
2c2

+ iηk2ω(ω2 − k2c2)
]

= 0 ,

where b2 ≡ B2/ρ and c2 ≡ γp/ρ are the squares of the Alfvén and the sound speed.
– Show that this dispersion equation reduces to Eq. (14.116) in the incompressible limit.
– Take the limit of vanishing resistivity and discuss the resulting solutions.
– Reproduce the plots of Fig. 14.6 using your favorite plotting program. Make sure that

you can use Laguerre’s method (see Numerical recipes [385], in IDL use FZ ROOTS,
in Matlab use ROOTS1) to compute the roots of the fourth order polynomial. What
kind of boundary conditions should be used?

[ 14.5 ] Ion whistler waves

Derive the dispersion relation for the ion whistler waves for an ideal Hall-MHD description
of a cold uniform plasma. Complete the discussion of the wave modes with a categorization
of the marginal modes at ω = 0. (You know that there will be three more waves in
addition to the four given by Eq. (14.128), so be careful to distinguish spurious modes
from physically meaningful degenerate solutions!)
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Computational linear MHD

Computational magnetohydrodynamics is a very active research field due to the
increasing demand for quantitative results for realistic magnetic configurations on
the one hand and the availability of ever more computer power on the other [373].
Many MHD phenomena can not be described by analytical methods in all of their
complexity although simplified analytical models have led to indispensable insight
into the fundamental physics of various magnetohydrodynamic processes. The in-
tricate geometry of present tokamaks, for instance, forces theory to resort to com-
puter simulations as the mathematics is not fully tractable anymore. The fast in-
crease of computer speed and memory allows simulations with ever more “physics”
in the equations and taking into account the full 3D geometrical effects.

While the governing ideal MHD equations form a set of nonlinear, hyperbolic,
partial differential equations, we already encountered many magneto-fluid phe-
nomena which are adequately modeled by means of the linearized MHD equa-
tions. In this chapter, we concentrate mostly on computational approaches for
linear MHD problems, and introduce several basic numerical concepts and tech-
niques along the way. We give a brief overview of the most frequently encountered
spatial discretizations to translate any problem expressed as a (set of) differen-
tial equation(s) into a discrete linear algebraic problem, and discuss commonly
used strategies for solving the resulting linear systems and generalized eigenvalue
problems. Representative applications cover MHD spectroscopic computations for
diagnosing eigenoscillations and stability of given, possibly pre-computed, MHD
equilibria, as well as steady-state and time dependent solutions to externally driven
MHD configurations. Both ideal and non-ideal linear MHD problems are encoun-
tered. We focus on robust and widely used methods and review several indicative
results in order to demonstrate their typical use and power.

In Section 15.1, the different spatial discretization techniques that are most com-
mon in linear MHD are discussed and illustrated by means of a generic model
steady-state problem. The application of these techniques to solve representa-
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tive linear MHD boundary value problems is illustrated in Section 15.2. In Sec-
tion 15.3, we discuss the linear algebraic methods used to solve the linear systems
obtained after spatial discretization. The direct and iterative linear system solvers
are applied in Section 15.4 to solve some illustrative linear MHD initial value prob-
lems. Finally, in Section 15.5, we sum up the criteria to select a numerical method
for solving a specific linear MHD problem.

15.1 Spatial discretization techniques

Even after linearization, the MHD equations remain a fairly complicated set of,
generally time-dependent, partial differential equations. To introduce the basic
concepts connected to spatial discretization techniques, we consider a generic one-
dimensional model problem. This is related to the Sturm–Liouville equation, which
is a second-order linear differential equation of the form

− d

dx

[
p(x)

du(x)
dx

]
+ q(x)u(x) = λw(x)u(x) , (15.1)

where the coefficient functions p(x) and q(x) and the weight function w(x) are
given and real, and λ is one of the eigenvalues to be computed, together with the
associated unknown solution u(x). In general, the boundary conditions originate
from specific physical problems and they are usually chosen to guarantee reality
of the eigenvalues. The self-adjoint form of the equation is closely related to the
quadratic forms that may be constructed from it, and that are used to prove that
reality. A central topic is the construction of suitable function spaces of orthogonal
eigenfunctions. One of the issuing attractions is the so-called Sturmian mono-
tonicity property of the eigenvalues λi in terms of the number of nodes of those
eigenfunctions ui(x).

This classical problem occurs in many parts of physics, in particular it has been
instrumental in unraveling the spectra of elementary quantum mechanical systems.
Also, in the study of the eigenvalues of the MHD spectrum of one-dimensional
equilibria, like a gravitating slab or cylindrical plasma, a second order differential
equation occurs, as we have seen in Chapters 7 and 9 of Volume [1], which is not in
Sturm–Liouville form, but, nevertheless exhibits similar monotonicity properties,
like Sturmian or anti-Sturmian behavior of the eigenvalues. Although the coeffi-
cients of the differential equation have a much more involved dependence on the
eigenvalue parameter, similarly powerful oscillation theorems could be formulated
and proven. They could even be extended to stationary configurations, with com-
plex eigenvalues, as discussed in the Chapters 12 and 13 of the present volume.
This shows that the basic theory of the Sturm–Liouville equation, and its general-
izations, have wide applicability.
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In the present chapter, the different discretization methods will be illustrated for
the related inhomogeneous problem

− d

dx

[
p(x)

du(x)
dx

]
+ q(x)u(x) = f(x) , (15.2)

on the finite closed interval [0, 1], again with the functions p(x), q(x) and f(x)
given and real, but without an eigenvalue parameter for the time being. The solu-
tion u(x) will be subjected to the following boundary conditions. At x = 0 the
function value is assumed to be known,

u(0) = 0 , (15.3)

which represents a boundary condition of the “Dirichlet” type, and at x = 1 we
will impose

αu(1) + β
du

dx
(1) = F , (15.4)

which is a more general, inhomogeneous, boundary condition involving both u and
du/dx. The quantities α, β and F are given constants. Notice that the function f
in the RHS of Eq. (15.2) depends on x, which makes the problem non-trivial, even
when p(x) and q(x) are constant functions.

Physically, the above problem might correspond to the displacement of a string
or a magnetic field line with variable density that is fixed at one end (x = 0)
and neither fixed nor completely free at the other end (e.g. connected to a spring),
or to the distribution of the temperature of a gas or a plasma which is kept at a
fixed temperature at one end (x = 0) and heated at the other end (x = 1). Note
that Eq. (15.2) and the boundary conditions (15.3) and (15.4) represent a steady-
state problem, and not an initial value problem. In more spatial dimensions, it
will correspond to an elliptic boundary-value problem, e.g. governed by Laplace’s
equation. Initial value problems will be discussed in Section 15.4.

The differential form of Eq. (15.2) inherently assumes that (first and) second
order derivatives of u(x) exist on the domain [0, 1]. Associated with the differential
form, the function u(x) must obey the integral form∫ 1

0

[
− d

dx

(
p(x)

du(x)
dx

)
+ q(x)u(x)− f(x)

]
dx = 0 . (15.5)

For our model problem, this reduces to[
−p(x)du(x)

dx

]1
0
+
∫ 1

0
[q(x)u(x)− f(x)] dx = 0 , (15.6)

thus requiring less regularity of the sought function u(x).
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15.1.1 Basic concepts for discrete representations

To solve the two-point boundary-value problem posed by Eq. (15.2) and the bound-
ary conditions (15.3) and (15.4) numerically, we will need to make a choice for
the numerical representation of the unknown function u(x). When the functions
p′(x)/p(x) and q(x)/p(x) are analytic in all x ∈ [0, 1], the sought exact solution
u(x) is mathematically well-behaved and defined on the entire continuous interval
[0, 1]. However, a computational approach always needs to represent u(x) dis-
cretely, i.e. involving a finite number of unknowns. We will indicate the discrete
representation for u(x) involving N unknowns with ûN (x). As will be explained
in following sections, depending on the chosen representation, these unknowns
may directly relate to function values u(xi) at a finite set of particular pre-chosen
points xi ∈ [0, 1], with i = 1, . . . , N (note that in x0 = 0 we have u(0) = 0 due
to boundary condition (15.3)), or to the average values of u(x) in N sub-intervals
of [0, 1], or even to more general expansion coefficients used in finite function se-
ries representations (e.g. a Fourier series). Either way, the discretization function
ûN (x) is an approximation of u(x).

In order to quantify how good this approximation is, we need to define a norm
so that we can measure the “distance” between the two functions. Several choices
are possible here. For example, for quadratically integrable functions on a domain
[a, b], the L2-norm quantifying the distance between functions f and g is

‖f − g‖2 ≡
( ∫ b

a
[f(x)− g(x)]2 dx

/
(b− a)

)1/2
. (15.7)

This L2-norm is especially useful for linear problems because Fourier analysis is
often used for these problems, and Parseval’s relation says that a function and its
Fourier transform have the same L2-norm. Frequently encountered norms, written
for a finite dimensional vector u = {ui}, with i = 1, . . . , N , are the Lp-norm and
the L∞-norm defined as

‖u‖p ≡
(

1
N

N∑
i=1

|ui|p
)1/p

and ‖u‖∞ ≡ maxi|ui| , (15.8)

respectively, where p = 1 and p = 2 are the most popular L1-norm and L2-norm
in their discrete form. The concept of “convergence” of a numerical solution is
then always connected to a certain norm. The series {ûN (x)}N→∞ converges to
the function u(x) in the L2-norm when

lim
N→∞

‖u(x)− ûN (x)‖2 = 0 . (15.9)

Note that this involves the global truncation error, i.e. the difference between the
exact solution u(x) and the approximation ûN (x) over the entire domain. Although
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the global truncation error is important, it will typically be easier to quantify the
so-called local truncation error Ei between a local function value (or derivative)
such as u(xi) ≡ ui (or du/dx(xi) ≡ u′i ) and the local approximation ûN (xi), i.e.
Ei = ui − ûN (xi). Knowledge of the local truncation error will often enable an
estimate of the maximal global error.

Another important cause of errors in numerical solutions is the fact that com-
puters calculate with a finite number of decimals while real numbers usually have
infinitely many decimals. This yields a round-off error Ri:

Ri = ûN (xi)− Ui , (15.10)

whereUi denotes the actually calculated value with the given method. The absolute
value of the total error made in calculating ui is given by

|ui − Ui| = |ui − ûN (xi) + ûN (xi)− Ui|
≤ |ui − ûN (xi)|+ |ûN (xi)− Ui| ≤ |Ei|+ |Ri| . (15.11)

The total error on the function value ui is thus limited by the sum of the absolute
values of the local truncation error and the round-off error. In the context of spatio-
temporal problems, it will therefore be important to use a method where truncation
errors do not grow unbounded, as discussed further in this chapter.

Another frequently encountered measure of the quality of the approximation is
the residual, which is the equation to be solved as evaluated for the approximation.
For our model Eq. (15.2) this means

r̂N (x) ≡ − d

dx

[
p(x)

dûN

dx

]
+ q(x)ûN − f(x) . (15.12)

This residual r̂N (x) can be quantified even when the exact solution is not available.
A numerical scheme is said to be consistent when this residual vanishes in the limit
N → ∞ for all x, i.e. when the approximation ûN (x) converges for all x to the
exact solution u(x).

Other criteria that are useful in evaluating and selecting numerical schemes are
efficiency, accuracy and stability. The latter two criteria are related to the require-
ment that the deviation of the computed values from the exact solution of the dif-
ferential equation is small. The criterion accuracy is concerned with the global and
local truncation errors and the round-off errors discussed above. Usually, round-
off errors may be ignored in comparison with the truncation errors if the scheme
is stable. Numerical stability is concerned with error propagation. As a matter of
fact, even if truncation and round-off errors are small, a numerical scheme will be
of little value for time-dependent problems when the small errors grow rapidly in
time. In Section 15.4 we will provide a quantitative measure for both accuracy
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and stability by means of a linear dispersion analysis of some of the numerical
schemes discussed in this chapter. Last but not least, the criterion efficiency is con-
cerned with optimizing the costs, in terms of CPU time and computer memory, for
a given quality of the simulation model.

15.1.2 Finite difference methods

The finite difference approximation is the most widely used computational method.
In the finite difference method (FDM), the continuous domain of the independent
variable x is replaced by a finite number of discrete points, the grid points or mesh
points. The grid points can be equidistant, as in Fig. 15.1, where we subdivided the
domain [0, 1] into N intervals of the same width (introducing N + 1 grid points),
but they can also be accumulated in places where a higher resolution is required.
All dependent functions g(x) on the continuous domain are then approximated by
their local values {gi} on the mesh, gi ≡ g(xi) with i = 0, . . . , N .

ii-110 x N-1

0 1Δx

Nxxx xx

Fig. 15.1 Discrete representation of the domain [0, 1] by N + 1 equidistant grid
points: xi = iΔx with Δx = 1/N .

The representation of the local derivatives is based on truncated Taylor series
expansions. For example, when ui denotes the value of the variable u in grid point
xi, the value of u in grid point xi+1 is given by

ui+1 = ui + u′iΔx+ 1
2u

′′
i (Δx)

2 +O(Δx)3 . (15.13)

Hence, up to first-order accuracy in Δx ≡ xi+1 − xi , we have

ui+1 = ui + u′iΔx . (15.14)

Solving Eq. (15.14) for the first order derivative u′i in xi yields

u′i = (ui+1 − ui)/Δx+O(Δx) , (15.15)

which is a first-order forward difference expression for the derivative. Similarly, a
Taylor series expansion for ui−1 about ui yields a first-order backward difference
expression, and by subtracting the two Taylor series expansions, one gets

u′i = 1
2(ui+1 − ui−1)/Δx+O(Δx)2 , (15.16)

which is a second-order central difference expression for the first derivative.
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� Exercise Show that the expression

u′i =
[

1
2α (ui+1 − ui−1) + 1

4 (1− α) (ui+2 − ui−2)
]
/Δx

yields a fourth-order approximation when α = 4/3. �

Upon substitution of Eq. (15.16) into Eq. (15.13) one obtains a second-order
accurate expression for the second derivative u′′i of u in xi, as the third order term
in the Taylor series in Eq. (15.13) cancels out:

u′′i = (ui+1 − 2ui + ui−1)/(Δx)2 +O(Δx)2 . (15.17)

Expressions for higher derivatives of u can be found in a similar way. Hence, finite
difference approximations are simple to derive and easy to code on regular meshes.

� Exercise Show that the formula given by Eq. (15.17) can be interpreted as the forward
difference of the first derivative, when backward differences are used to discretely evaluate
these first derivatives. �

The FDM applied to Eq. (15.2) replaces the differential equation by its finite
difference representation in all mesh points. For all interior mesh points xi with
i �= 0 or i �= N , use of the central difference formulas (15.16)–(15.17) leads
obviously to a representation with a second order local truncation error. For this
model problem, the only complication to guarantee the same second order accuracy
for the full solution on the grid is a corresponding second order treatment of the
boundary points x0 = 0 and xN = 1. The boundary condition (15.3) is easily
imposed: it corresponds directly to u0 = 0. However, condition (15.4) involves
the first order derivative in xN = 1, so we need to derive a second order backward
difference expression for use in this right boundary condition.

While it is possible to do this by suitably combining Taylor expansions for ui,
ui−1 and ui−2 as above, an alternative and equivalent method to derive such ex-
pressions is based on local polynomial fits. In the case at hand, where we seek a
second order backward difference expression for u′i, we envision a locally linear
dependence for u′ which corresponds to a quadratic formula for u. Hence, for grid
point xN = 1, we write locally x = xN+y, and assume that u(x) can be expressed
by a second-order polynomial, namely:

u(xN + y) = a0 + a1y + a2y
2 ⇒ u′(xN + y) = a1 + 2a2y . (15.18)

Applying this expression to the last three grid points xN , xN−1 (= xN −Δx), and
xN−2 (= xN − 2Δx) yields:

uN = a0 ,

uN−1 = a0 − a1Δx+ a2(Δx)2 ,

uN−2 = a0 − a1(2Δx) + a2(2Δx)2 . (15.19)
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Solving these three equations for the wanted u′(xN ) = a1 gives the expression:

u′N = a1 = 1
2

(
3uN − 4uN−1 + uN−2

)
/Δx+O(Δx)2 . (15.20)

This formula can be used to impose the boundary condition (15.4) in a second
order treatment of the model problem. Note that the second order central difference
discretization of our model problem described by Eq. (15.2) leads to an algebraic
system with a tridiagonal coefficient matrix. Once solved, the representation {ui}
is clearly an incomplete description of u(x) for x ∈ [0, 1], but the function u(x)
can be approximated at any point of the interval by, e.g., using a second order,
linear interpolation between adjacent grid points. Thus, when x lies in the interval
[xi, xi+1] we have:

u(x) ≈ û(x) =
(

x− xi
xi+1 − xi

)
ui+1 +

(
xi+1 − x
xi+1 − xi

)
ui . (15.21)

� Exercise Derive a second-order forward difference expression for u′N using the polyno-
mial fit method to find

u′N = 1
2 (−uN+2 + 4uN+1 − 3uN )/Δx+O(Δx)2 . (15.22)

Also, derive a second-order one-sided difference expression for the second derivative u′′i ,
which requires a polynomial for u(xi + y) which is cubic in y, and find

u′′i = (−ui+3 + 4ui+2 − 5ui+1 + 2ui)/(Δx)2 +O(Δx)2 . (15.23)

Note that this second order formula involves four grid points. The number of grid points
needed to evaluate derivatives discretely is referred to as the “stencil” of the method. The
stencil of formula (15.23) thus includes grid point xi and three grid points to its right. �

For use in multi-dimensional problems (as in most MHD applications), finite
difference expressions for partial derivatives in any spatial direction are given by
similar expressions. Expressions for mixed derivatives can easily be derived, e.g.
by considering that

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
.

If we write the occurring x-derivative as a central difference of the y-derivatives
according to Eq. (15.16), and also use this central difference expression for the
latter y-derivatives, we derive a second order accurate expression for the mixed
derivative as:(

∂2u

∂x∂y

)
i,j

=
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4ΔxΔy
+O((Δx)2, (Δy)2) .
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Generalizations to higher order Achieving higher than second order accuracy
with the FDM is conceptually simple, but normally comes at the price of han-
dling wider stencils. This also means that boundary treatments need particular
attention to achieve the same overall order of accuracy. Fourth order central fi-
nite difference formulas for the first and second derivative involve up to five grid
points, so that adjacent to boundaries both one-sided and semi-one-sided formulas
are needed. These formulas can again most directly be obtained by means of the
local polynomial fit method. Representative O(Δx)4 formulas are

u′i = 1
12(−ui+2 + 8ui+1 − 8ui−1 + ui−2)/Δx ,

u′i = 1
12(ui+3 − 6ui+2 + 18ui+1 − 10ui − 3ui−1)/Δx ,

u′i = 1
12(−3ui+4 + 16ui+3 − 36ui+2 + 48ui+1 − 25ui)/Δx ,

u′′i = 1
12(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2)/(Δx)2 ,

u′′i = 1
12(ui+4 − 6ui+3 + 14ui+2 − 4ui+1 − 15ui + 10ui−1)/(Δx)2 ,

u′′i = 1
12(−10ui+5 + 61ui+4 − 156ui+3 + 214ui+2 − 154ui+1 + 45ui)/(Δx)2 .

(15.24)

� Exercise Derive these formulas and also derive the equivalent formulas at the other
boundary of the computational domain, i.e. at x = 1. Your result should be consistent
with replacing indices i± ∗ ↔ i∓ ∗ and Δx↔ −Δx. �

An alternative means to achieve higher order accuracy within the finite differ-
ence framework, while maintaining a compact stencil, is to exploit so-called com-
pact or implicit FD schemes. The basic idea is to exploit the local values for the
derivatives u′i and u′′i as additional unknowns, and complement the equations to
solve with implicit formulas linking these additional unknowns to the local func-
tion values in discrete expressions with the desired accuracy, as e.g. in

1
2(u′i + u′i+1) = (ui+1 − ui)/Δx+O(Δx)2, (15.25)

which is easily found from combining the central second order formula (15.16) for
u′i with the backwards formula (15.20) for u′i+1. Fourth order expressions are

1
6(u′i+1 + 4u′i + u′i−1) = 1

2(ui+1 − ui−1)/Δx+O(Δx)4,

1
12(u′′i+1 + 10u′′i + u′′i−1) = (ui+1 − 2ui + ui−1)/(Δx)2 +O(Δx)4. (15.26)

The above examples yield, for the second order relation (15.25) and for the fourth
order relations (15.26), a bidiagonal and two tridiagonal systems in the derivatives,
respectively, to be solved together with the discretized equation. Since these sys-
tems effectively couple all grid points, no explicit relation can be written for u′i in
terms of neighboring function values ui alone, hence their implicit nature.
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A more detailed description of FDM concepts can e.g. be found in Hirsch [226],
Chapter 4. The most attractive feature of finite differences is that it can be very easy
to implement them. A negative point is the quality of the approximation between
grid points, which is poor in the FDM. This problem can be solved by considering
a finite element approach which focuses more on the approximation to the solution
of the differential equation rather than on the equation itself.

15.1.3 Finite element method

In the finite element method (FEM), the dependent variables are approximated by a
finite set of local piecewise polynomials. A good introduction to the finite element
method can be found in Strang and Fix [424]. Consider again the problem posed by
Eq. (15.2) and the boundary conditions (15.3) and (15.4). The domain D = [0, 1]
can be divided into a finite number of equally (as in Fig. 15.1) or unequally sized
sub-domains [xi−1, xi] for i = 1, . . . , N which are this time called the “elements”
connecting the “nodes” xi. The solution u(x) is then approximated by a linear
combination of basis functions which are local piecewise polynomials on the sub-
intervals [xi−1, xi+1] and taken to vanish outside these finite intervals, hence the
name “finite” elements. The basis functions are in turn constructed from element
shape functions of a local coordinate ξ, typically defined on the standard interval
of the local coordinate ξ ∈ [−1, 1]. There are two linear finite element shape
functions, corresponding to the two degrees of freedom in a linear profile, fixed by
requiring a unit value at one node and a zero value at the other node:

N1(ξ) = 1
2(1− ξ) and N2(ξ) = 1

2(1 + ξ) . (15.27)

These shape functions are combined into the “tent” functions hi(x) depicted in
Fig. 15.2, which form the linear basis functions to approximate:

u(x) ≈ û(x) =
N∑
i=0

uihi(x) . (15.28)

The approximate solution û can be interpreted as belonging to the function space
spanned by the linear finite element basis functions hi given by

hi(x) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

xi+1 − x
xi+1 − xi for xi ≤ x ≤ xi+1,

0 elsewhere.

(15.29)

Approximations to derivatives are obtained by differentiating Eq. (15.28). Note
that these linear elements are such that the coefficients in the expansion (15.28)
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directly relate to local grid point values ui. Obviously, other interpolation schemes
are possible, based on other shape functions. For instance, the approximation û
can be obtained by considering piecewise constant shape functions. In this case,
the FDM can be considered as a special case of the FEM approach. Other choices
include piecewise quadratic and/or cubic shape functions, to be discussed below.

N-1 Nxi+1ix0 1 i-1

0 h h hh h i-1 i i+1 N

x xx x x

Fig. 15.2 Linear finite elements.

In any case, a linear system of algebraic equations for the coefficients {ui}
is obtained by requiring that N + 1 weighted integrals of the residual given in
Eq. (15.12), i.e. the equation to solve evaluated for the approximation û, are zero.
For the model problem defined on the domain D = [0, 1], the N + 1 weighted
integrals of the residual are∫ 1

0
wl

[(
− d

dx
p(x)

d

dx
+ q(x)

)
û(x)− f(x)

]
dx = 0 , l = 0, 1, . . . N .

(15.30)
The still unspecified weight functions are denoted by wl. In general, the func-
tion space consisting of all linear combinations of the basis functions {hi; i =
0, 1, . . . N} is finite. Hence, the function û(x) defined by Eq. (15.28) may not be
equal to the exact solution u(x) in all points of the interval [0, 1]. Convergence
requires completeness of the function space of the basis functions and of the space
of the weight functions, i.e. as N increases, the approximation (15.28) must be-
come better and the residual must vanish in the limit N →∞. The form (15.30) is
called the weighted residual formulation and, with a certain choice for the weight
functions, this formulation yields an approximate solution for each finite N .

In the finite element method, the weight functions are often chosen to be equal to
the basis functions themselves, i.e. wl = hl, such that the residual r(x) is made or-
thogonal, in the sense of an inner product defined by the integral

∫ 1
0 hl(x) r(x) dx,

to the function space of the basis functions. The method is then called the Galerkin
method. For the model problem (15.2) this yields∫ 1

0
hl

[(
− d

dx
p(x)

d

dx
+ q(x)

)
û(x)− f(x)

]
dx = 0 , l = 0, 1, . . . N, (15.31)
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where û is given by Eq. (15.28). Hence, we have a linear algebraic system ofN+1
equations for the N + 1 unknowns {ui}i=0,1,...N .

The integrals occurring in the Galerkin method can often be simplified by per-
forming integrations by parts on the integrands with the highest order derivatives.
For problem (15.2) we could proceed with the Galerkin method (15.31) as follows:

−
[
hl p(x)

dû

dx

]1
0
+
∫ 1

0

dhl
dx

p(x)
dû

dx
dx+

∫ 1

0
hl(x)[q(x)û− f(x)] dx = 0 ,

l = 0, 1, . . . N . (15.32)

The integration by parts results in a different formulation of the problem, which
allows solutions which are less “smooth” in the sense that they have to be con-
tinuously differentiable to a lower degree. Indeed, due to the integration by parts
the derivatives that occur in the expression are of a lower order. Therefore, this
formulation is called the weak formulation of the problem. For the weak form
(15.32), this means that functions with discontinuous first derivative are allowed,
whereas in the original differential form (15.2) the first order derivatives have to be
continuous and differentiable. In this sense, the weak formulation is closer to the
integral form of the equations, and this is of interest to numerically represent more
irregular, physically realizable, solutions.

The boundary terms generated by the integrations by parts can often be used to
impose the boundary conditions. Boundary conditions that can enter the equations
in this way are called natural boundary conditions. For example, for our model
problem (15.2) this yields for the boundary condition (15.4), with linear elements:

−
[
hlp(x)

dû

dx

]1
0

= δlNhN (1)p(1)
(
α

β
hN (1)uN − F

β

)
, l = 0, 1, . . . N ,

(15.33)
since hN is the only basis function different from zero in x = xN = 1 and h0 has to
be left out to satisfy boundary condition (15.3), as we will see below. The first term
in the RHS of (15.33) yields a contribution to the coefficient matrix of the system,
called the “stiffness matrix” in FEM terminology, while the second term defines
a “source” term. The other boundary conditions, such as condition (15.3) of our
model problem, have to be imposed explicitly and are called essential boundary
conditions. This is done by limiting the space of basis functions to those basis
functions that satisfy these boundary conditions. For boundary condition (15.3) of
our model problem this means that all basis functions that are non-zero in x = 0
have to be left out, i.e. h0 has to be left out in the case of linear elements.

� Exercise Consider model problem (15.2) with p(x) ≡ 1 and f(x) ≡ 0 and show that the
Galerkin method in combination with linear finite elements reduces to the standard second
order finite difference scheme when the trapezoidal rule

∫ b
a
f(x)dx ≈ 1

2 (b−a)[f(a)+f(b)]
is used and partial integration is performed on the term with the second derivative. �
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Construction of the system matrix For the model problem (15.2), the system of
equations for the coefficients {ui}Ni=0 is obtained upon substitution of expansion
(15.28) for û in the “weak” form (15.32):

−hlδlN p dû
dx

∣∣∣∣
1
+

N∑
i=0

[∫ 1

0

(dhl
dx

dhi
dx

p+ hlqhi
)
dx

]
ui =

N∑
i=0

[∫ 1

0
hlfdx

]
,

l = 0, 1, . . . N , (15.34)

where the boundary condition (15.4) still has to be substituted in the first (surface)
term. For simple functions p(x), q(x) and f(x), the integrals can be calculated by
hand, and many are actually vanishing due to the chosen finite elements. In gen-
eral, however, the coefficient functions of the differential equation(s) can be com-
plicated functions of x and the finite elements themselves can be taken as higher
order polynomials too. The integrals are then calculated by numerical integration
or “quadrature” formulas, which themselves need to reach a particular order of
accuracy to guarantee the overall accuracy of the solution. Gaussian quadrature
formulas for integration on the standard interval ξ ∈ [−1, 1] involve the judicious
choice of n weights wi and the locations of n integration points ξi such that all
polynomials of degree 2n− 1 are evaluated exactly by the discrete formula∫ 1

−1
f(ξ)dξ =

n∑
i=1

wif(ξi). (15.35)

Table 15.1 gives the positions of the evaluation points ξi and the weights wi for this
Gaussian integration up to n = 4.

Table 15.1 Weights and evaluation points in double precision accuracy for
n-point Gaussian quadrature. (From Abramowitz and Stegun [3].)

The most practical way to construct the coefficient matrix in an actual imple-
mentation is then by performing a loop over the elements [xi−1, xi] instead of over
the intervals [xi−1, xi+1]. This seems more complicated at first sight but it turns
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Fig. 15.3 The sub-matrix resulting from integrations over the element [xi−1, xi]
with linear finite elements. The position of the sub-matrices resulting from the
neighboring elements [xi−2, xi−1] and [xi, xi+1] are indicated with dashed boxes.
Notice that each diagonal entry gets contributions from two neighboring elements.

out to be the easiest way to program the coefficient matrix, simply because the in-
tegration can be done in exactly the same way (i.e. with the same subroutine) for all
linear element shape functions which constitute the basis functions. In the interval
[xi−1, xi] only the linear basis functions hi−1 and hi are non-zero. This yields four
combinations (hi−1 hi−1, hi−1 hi, hi hi−1 and hi hi) that are all four computed in
the same step (Fig. 15.3). The contribution of the neighboring elements is added in
the next step of the loop. As a result, each row of the coefficient matrix, except for
the first one and the last one, are computed in two subsequent steps.

Generalizations to higher order So far we have only discussed linear finite ele-
ments. With linear elements the FEM is equivalent to the FDM (see one of the
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Fig. 15.4 Quadratic (left) and cubic “Hermite” (right) finite elements.

exercises above) so that there seem to be no advantages that justify the use of this
more complex method. However, a local polynomial fit of a function u(x) becomes
more accurate when higher order polynomials are used. Hence, it is quite natural
to consider higher order finite elements. Piecewise quadratic elements yield a bet-
ter approximation. One can e.g. add the midpoint xi− 1

2
(or ξ = 0 on the standard

interval ξ ∈ [−1, 1]) as an extra node internal to the element. Three quadratic ele-
ment shape functions can be defined to attain a unit value in one node and zero at
both other nodes, namely

N1(ξ) = −1
2ξ(1− ξ), N2(ξ) = 1− ξ2, N3(ξ) = 1

2ξ(1 + ξ) . (15.36)

These can be combined into two basis functions for the quadratic finite elements:

Q1
i (x) ≡

⎧⎨⎩
4(x− xi−1)(xi − x)

(xi − xi−1)2
for xi−1 ≤ x ≤ xi,

0 elsewhere,
(15.37)

and

Q2
i (x) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2x− xi − xi−1) (x− xi−1)

(xi − xi−1)2
for xi−1 ≤ x ≤ xi,

(2x− xi+1 − xi) (x− xi+1)
(xi+1 − xi)2 for xi ≤ x ≤ xi+1,

0 elsewhere.

(15.38)

The expansion used to approximate u(x) with quadratic elements is written as

u(x) ≈ û(x) =
N∑
i=0

[
Q1
i (x)ui1 +Q2

i (x)ui2
]
. (15.39)

Note that the expansion coefficients now correspond to local function values ui =
ui2 and some non-trivial relation between ui1, ui2 and the local approximations
to derivatives u′i (in fact, ui1 is the approximated function value at the midpoint
(xi−1 + xi)/2). The derivatives of these quadratic elements, however, are not
continuous at the nodes (see the schematic representation of Fig. 15.4).
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With two cubic elements per interval one can also make the derivatives contin-
uous at the nodes and approximate both the original differential equation and its
derivative. In this way a higher accuracy can be achieved (fourth-order for the cu-
bic elements [424]) and derivatives of higher order can be approximated without
abandoning the local nature of the elements, so that the system matrix remains
compact. This should be compared with the higher order expressions for the FDM
method, which typically require wider stencils and, hence, more computer storage.
The approximation of u(x) with cubic Hermite elements is written as

u(x) ≈ û(x) =
N∑
i=0

[
C1
i (x)ui1 + C2

i (x)ui2
]
. (15.40)

The basis functions for cubic Hermite elements C1
i (x) and C2

i (x) are defined by

C1
i (x) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( x− xi−1

xi − xi−1

)2(
3− 2

x− xi−1

xi − xi−1

)
for xi−1 ≤ x ≤ xi,( xi+1 − x

xi+1 − xi
)2(

3− 2
xi+1 − x
xi+1 − xi

)
for xi ≤ x ≤ xi+1,

0 elsewhere,

(15.41)

and

C2
i (x) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(x− xi)

( x− xi−1

xi − xi−1

)2
for xi−1 ≤ x ≤ xi,

(x− xi)
( xi+1 − x
xi+1 − xi

)2
for xi ≤ x ≤ xi+1,

0 elsewhere.

(15.42)

Now, the expansion coefficients in (15.40) directly correspond to local function
values ui = ui1 and derivatives u′i = ui2. These Hermite cubic elements are built
up from the four shape functions

N1(ξ) = 1
4(1− ξ)2(2 + ξ), N2(ξ) = 1

4(1− ξ)2(1 + ξ),

N3(ξ) = 1
4(1 + ξ)2(2− ξ), N4(ξ) = −1

4(1 + ξ)2(1− ξ) . (15.43)

The four degrees of freedom in a cubic formulation have then been fixed by requir-
ing a double zero at one node, and either a unit value and zero derivative or a zero
value and unit derivative at the other node. The four shape functions combine to
the two basis functions C1

i and C2
i per node and yield 4× 4 combinations in each

element [xi−1, xi] so that the “stiffness” matrix gets a block–tridiagonal structure
with sub-blocks of size 2 × 2 (see Fig. 15.5). Thus, with this better approxima-
tion for our 1D model problem, we obtain a system of 2(N + 1) equations with a
“sparse” banded coefficient matrix: only the diagonal and the first three upper and
lower diagonals contain non-zero entries.
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Fig. 15.5 The sub-matrix resulting from the integrations over the subinterval
[xi−1, xi] with cubic “Hermite” finite elements.

Multi-dimensional techniques and MHD applications The finite element tech-
nique can be generalized to more than one spatial dimension. In two dimensions,
linear elements become “pyramids” (generalized “tent” functions) e.g. as shown
schematically on a triangular grid in Fig. 15.6. Moreover, the “elements” can have
curved sides which yields a more accurate representation of domains with curved
boundaries (cf. Section 16.3.3 where two-dimensional equilibria determined with
isoparametric mapping are discussed). Therefore, the finite element method is very
popular as it combines high accuracy with high flexibility. As a matter of fact, the
superiority of the FEM with respect to the FDM becomes more apparent the more
irregular the grid is and the more curved the boundaries are. In MHD, where we
have to deal with systems of equations and both scalar and vector quantities, it be-
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1

Fig. 15.6 Example of a two-dimensional linear finite element (“tent function”) on
an irregular triangular grid as discretization of an irregular domain.

comes possible to use a different kind (linear, quadratic, . . . ) of element for each
unknown function. As we will see in Section 15.1.5, this hybrid choice will be
necessary for the three components of vector quantities, in order to avoid “spectral
pollution” in the computations of linear eigenmodes [9].

Finite elements are typically used for discretization in the direction normal to the
flux surfaces in many linear and nonlinear MHD codes. For 1D slab or cylindri-
cal equilibrium configurations, the spatial dependence of the linear perturbations
about the equilibrium state in the symmetry directions is handled trivially by select-
ing one Fourier mode pair at the time. The non-trivial normal direction is treated
with the FEM method in 1D MHD spectral codes such as LEDA (large-scale eigen-
value solver for the dissipative Alfvén spectrum) [274] for stability analysis of 1D
slab or cylindrical plasma models, or its extension LEDAFLOW to stationary 1D
equilibria with external gravity, suitable for MHD spectroscopic studies of strat-
ified atmospheres, astrophysical jets or 1D accretion disk models [353]. Also,
the same technique returns for diagnosing the linear dynamics of 2D MHD equi-
libria, with translational or axi-symmetric invariance. Linear MHD codes in this
category that exploit FEM for treating the direction normal to the flux surfaces
are e.g. POLLUX (program on line-tied loops under excitation) [205] for the study
of line-tied coronal loop configurations; MARS (magnetohydrodynamic resistive
spectrum) [313], NOVA (non-variational code) [88] and CASTOR (complex Alfvén
spectrum of toroidal plasmas) [272] for both ideal and non-ideal MHD spectral
analysis of tokamak plasmas. Examples of earlier tokamak spectral codes based
on the ideal MHD variational formulation are ERATO [198] and PEST (Prince-
ton equilibrium, stability and transport package) [194]. The FEM method is also
heavily used in nonlinear MHD computations, in particular to accurately compute
the 2D MHD equilibria themselves. Examples include tokamak equilibrium codes
like CHEASE (cubic Hermite element axi-symmetric static equilibrium) [320, 321]
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and HELENA [238], or more general axi-symmetric stationary MHD equilibrium
solvers such as FINESSE (finite element solver for stationary equilibria) [29]. In
these MHD equilibrium solvers, one typically uses 2D finite elements for handling
both the normal and poloidal direction.

Comparing finite differences and finite elements The finite difference and finite
element methods are compared in Table 15.2 and Fig. 15.7. The details of this
test case are explained in the Exercise section at the end of this chapter and, in
particular, in Exercise 15.9. It involves the solution of the problem

− (1 + x2)u′′(x)− 2xu′(x) + 2u(x) = f(x) (15.44)

on the interval [0, 1] with boundary conditions u(0) = u(1) = 0. For the case
shown, the true solution is u(x) = x4(1 − x)4, which actually then defines the
function f(x), as explained in the Exercises.

Table 15.2 Infinity norm ||ucomputed − utrue||, where utrue is the vector of
true values at the M − 1 mesh points of the error at the mesh points for

various methods and numbers M of interior mesh points.

Note the observed convergence rate r as we increase the resolution: if the error
drops by a factor of 10r, when the number of grid points is increased by a factor of
10, the observed convergence rate is r. From Table 15.2, it is clear that the conver-
gence rates for this smooth test function are close to the theoretical convergence
rates r = 1 and r = 2 for the first and second order finite difference implementa-
tions, respectively, and for the finite element implementation based on linear finite
elements (for which r = 2). Notice that the quadratic finite element approximation
(which actually exploits a combination of linear and quadratic elements) has r = 4,
which is better than the r = 3 we might expect. This is called super-convergence
and happens because we only measured the error at the mesh points, whereas the
r = 3 result was for the average value of the error over the entire interval.



196 Computational linear MHD

Fig. 15.7 The error for various methods and for 999 interior mesh points.

15.1.4 Spectral methods

Since the FDM essentially works with local function values and the FEM with
local polynomial representations, both the FDM and the FEM are very useful for
approaching very localized solutions. This is of great practical value for MHD ap-
plications, and one can optimally benefit from this in combination with irregular
grids, using accumulation of the mesh points in the region(s) where the solution is
expected to have large gradients. Often, however, the solution is not localized at all
in one or more spatial directions. Also, the solution may be periodic in one or more
spatial directions, e.g. in the toroidal and poloidal directions in a tokamak. In such
cases the spectral method provides a valuable alternative. The spectral method is
in some sense very similar to the finite element method. The important difference
is that the shape functions used to approximate the solution are now “global” func-
tions. These are functions that are non-zero on the whole domain, i.e. the same
domain as the differential operator itself. There are several possibilities, and the
most convenient choices involve “orthonormal” functions, such as Legendre and
Chebyshev polynomials on [−1,+1] and {sinnx}∞n=1 on the interval [0, π].

Fourier harmonics are the most well-known choice for the global expansion
functions. They are used for linear MHD problems with periodic boundary condi-
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tions. Every truncation of the Fourier series of the solution yields an approxima-
tion. Hence, for a function u(x) on a finite domain [0, L], we may write

u(x) ≈ û(x) =
N−1∑
k=0

ûkei k2πx/L . (15.45)

Since every term used in the RHS expansion is periodic, û(x = 0) = û(x = L).
In the case when the exact solution does not obey this relation (e.g. in our model
problem (15.2) when β �= 0 or F �= 0 in the RHS boundary condition (15.4)), other
global functions should be used, or, when the equation is linear, one can split the
problem and first solve the homogeneous equation with inhomogeneous BCs and
then the inhomogeneous equation with homogeneous BCs. The same periodicity is
then typically implied for any function appearing in the equation to be solved, like
the functions p(x) and q(x) in Eq. (15.2). The procedure to obtain a linear system
for the N complex-valued expansion coefficients ûk closely follows the procedure
explained for the FEMs. In the Fourier representation, derivatives with respect to
x turn into multiplications with factors i k 2π/L, as a result of differentiating the
basis functions ei k2πx/L and replacing the equations by their projections onto the
basis functions (as in the Galerkin method and the weak form). In the complex
notation used in (15.45), one has to multiply with the complex conjugates of the
shape functions, i.e. e−i l2πx/L, and then use the orthogonality relation

1
L

∫ L

0
ei (k−l)2πx/L dx = δkl (15.46)

to obtain the weak Galerkin form of the equations.
For our model problem (15.2), the additional functions like q are then written as

q(x) =
∑N−1
m=0 q̂m exp(im2πx/L), and likewise for p and f . This in turn yields

contributions of the corresponding terms to the kth row of the coefficient matrix,
e.g. the second LHS term in Eq. (15.2):

row k ⇒ 1
L

∫ L

0
e−ik2πx/L

N−1∑
m=0

N−1∑
l=0

q̂mûlei (m+l)2πx/L dx =
N−1∑
l=0

q̂k−lûl , (15.47)

due to the orthogonality relation (15.46) of the Fourier modes, making the integral
vanish except when m = k − l. Notice that, due to the x-dependence of the
coefficient function q(x), there still is a summation in Eq. (15.47), which means
that all the ûl-components couple. This summation is the discrete convolution of
both Fourier series, and its presence makes the coefficient matrix resulting from
the weak formulation a full matrix, in contrast to the sparse coefficient matrices in
the FDM and FEM.

For periodic functions with all their derivatives periodic as well, the truncated
Fourier series can be shown to yield exponential convergence, i.e. convergence
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faster than any algebraic power (N−p). This so-called spectral or infinite-order
accuracy makes the spectral approach the method of choice for periodic problems.
Its advantage lies in its tendency to make minimal or no phase errors. For non-
linear incompressible flow simulations focusing on transitions to turbulent flows it
is unrivaled in accuracy.

Fourier expansion coefficients and local function values In the expansion
(15.45), it seems that we now have N complex valued unknown Fourier coeffi-
cients, while in the discussion of the FDM and the FEM we always considered
only N real-valued degrees of freedom. At the same time, the expansion is meant
to approximate the real function u(x) on the finite domain [0, L]. The relation be-
tween the Fourier coefficients and local function values uj on an equidistant grid
xj = jΔx for j = 0, . . . , N with fixed grid spacing Δx = L/N (as shown in
Fig. 15.1 for L = 1) is then as follows. First, the periodicity implies u0 = uN ,
so that we have only N possibly different function values uj to determine. In-
troducing the N th root of unity w = ei 2π/N , local function values uj form the
discrete Fourier transform (DFT) of the Fourier coefficients uj =

∑N−1
k=0 ûkw

j k.
Reversely, the expansion coefficients themselves are the inverse DFT of the local
function values:

ûk =
1
N

N−1∑
j=0

uj
(
w−1
)j k

. (15.48)

Since we also havewm = wm+nN for all (positive or negative) integer valuesm,n,
several symmetry properties between the N complex Fourier components can be
obtained from the knowledge that the function u(x) we are approximating is real,
so that uj = u∗j . Indeed, it is straightforward to deduce, using the orthogonality
relation (15.46), that

û0 = û∗0 =
1
N

N−1∑
j=0

uj , (15.49)

relating the first (real) Fourier coefficient to the arithmetic mean of the local func-
tion values. Similarly, one finds a symmetry about N/2 as

ûk = û∗N−k , (15.50)

meaning that indeed only N real numbers are to be determined, consistent with the
equivalent number of real local function values uj , with j = 0, . . . , N −1. Finally,
the same observation is true between positive and negative indices, namely

ûk = û∗−k , (15.51)
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which is the reason for restricting the sum to positive indices only in (15.45). Note
that these relations also play a role for evaluating the discrete convolution term in
(15.47), which we can write as

N−1∑
l=0

f̂k−lûl ⇒
k∑
l=0

f̂k−lûl +
N−1∑
l=k+1

f̂∗l−kûl . (15.52)

Finally, once the Fourier coefficients are determined as solutions of the resulting
linear system, the local function values uj are most efficiently computed using a
fast Fourier transform algorithm, which computes the N DFTs in order N log2N

operations. This relies on the following split in even and odd terms of the DFT
formula uj =

∑N−1
k=0 ûke

i 2π jk/N for the special case where N = 2s:

uj =
N/2−1∑
m=0

û2mei 2π jm/(N/2) + ei 2π j/N
N/2−1∑
m=0

û2m+1ei 2π jm/(N/2) . (15.53)

Each occurring sum is itself recognized as a DFT, yielding a recursive algorithm
of order N log2N .

The periodicity of the Fourier modes can be a disadvantage when the solution
is not periodic. The obtained approximation is then poor at the boundaries, where
“Gibbs” phenomena occur: the Fourier series of a piecewise continuously differen-
tiable periodic function behaves peculiarly as a result of the fact that the nth partial
sum of the Fourier series has large oscillations near the jump, and often the maxi-
mum of the partial sum is higher than that of the function itself (cf. Section 19.1.3).
For non-periodic problems on a finite domain [−1, 1], one can take the orthonormal
Legendre polynomials as global expansion functions. These Legendre polynomials
are given by

Pn(x) =
1
2n

n/2∑
l=0

(−1)l
(2n− 2l)!

l! (n− l)! (n− 2l)!
xn−2l , n = 0, 1, 2, . . . (15.54)

These functions obey the orthogonality relation∫ 1

−1
Pm(x)Pn(x) dx =

2
2n+ 1

δmn , (15.55)

and any function u(x) on the domain [−1, 1] can be approximated by truncating its
Legendre series given by

u(x) =
∞∑
k=0

Pk(x)
2k + 1

2

∫ 1

−1
u(x′)Pk(x′) dx′ ≡

∞∑
k=0

ũkPk(x) . (15.56)

For any arbitrary continuous function u(x) (or even quadratically integrable u,
under additional assumptions, see e.g. Wang and Guo [473]), the completeness
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of the set of Legendre polynomials guarantees that this series converges to u(x)
for any point x ∈ [−1, 1]. As for the Fourier series, equations for the expansion
coefficients ũk for any finite approximation û(x) =

∑N−1
k=0 ũkPk(x) are derived

from the weak form, using Eq. (15.55).
In a completely analogous fashion, one could use Chebyshev polynomials in-

stead, which are defined as⎧⎨⎩
T0(x) = 1 ,

Tn(x) = n
2

∑n/2
l=0(−1)l (n− l − 1)!

l! (n− 2l)! (2x)n−2l , n = 1, 2, . . . ,
(15.57)

with corresponding orthogonality relations (involving a weight function):

∫ 1

−1
Tm(x)Tn(x)

1√
1− x2

dx =

⎧⎪⎨⎪⎩
0 n �= m,

π/2 n = m > 0 ,
π n = m = 0 .

(15.58)

These Chebyshev polynomials obey the recursion formula Tn+1(x) = 2xTn(x)−
Tn−1(x) for n ≥ 1, with T0(x) = 1 and T1(x) = x. These polynomials are, e.g.,
used in the SPECLS (spectral compressible linear stability) code for linear HD and
MHD stability computations. This Chebyshev collocation code was first developed
for compressible hydrodynamic linear eigenvalue problems for one-dimensional
stationary planar shear flows by Macaraeg et al. [322], and subsequently extended
to the compressible MHD case by Dahlburg and Einaudi [102].

Non-Galerkin spectral approaches In the description of the spectral methods, we
only mentioned the Galerkin approach where the weight functions in the weighted
residual (15.30) are taken identical to the global expansion functions. In this
spectral Galerkin approach, essential boundary conditions exclude those expansion
functions not obeying the boundary conditions from the set of expansion functions
used, similar to what we discussed for dealing with essential boundary conditions
in the FEM Galerkin method. There are two other popular variants of the spectral
methods, namely the collocation approach and the tau approach. The spectral col-
location technique uses as weight functions in (15.30) the delta function δ(x− xi)
in a suitably chosen set of collocation points xi. Hence, the collocation approach
uses again local function values, and the global expansion functions are used only
to evaluate local derivatives. In the spectral tau method, one can handle e.g. non-
periodic boundary conditions too, viz. by allowing also weight functions which do
not individually satisfy the boundary conditions. In essence, the boundary condi-
tions themselves then need to be expressed in a weighted residual form as well. A
thorough discussion of spectral methods is the textbook by Canuto et al. [75].
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15.1.5 Mixed representations

Different discretization techniques are often combined in MHD calculations, as we
need to deal with up to three spatial dimensions and eight scalar fields (two vectors
and two scalars). If we consider linear perturbations about an MHD equilibrium,
the equilibrium introduces preferred directions inside and normal to its magnetic
flux surfaces. The direction normal to the magnetic flux surfaces is then usually
discretized by a finite difference or a finite element method because the solutions
are often localized due to singular or nearly singular behavior in this direction. In
addition, these two methods have the advantage that they allow mesh accumulation
in boundary layers or other regions where the solutions vary rapidly, e.g. the res-
onant layers created by resonant heating (cf. Chapter 11 [1]). On the other hand,
for the two periodic coordinates in a tokamak, spectral methods are widely used.
Below, we make some additional observations about certain discretization combi-
nations for linear MHD computations. In particular, we discuss some exemplary
combinations of FDM and FEM discretizations with (pseudo-)spectral methods
and their consequences for the discrete spatial representations used for the three
components of the occurring vector quantities (velocity and magnetic field).

i−1

j−1 j

i+1i

physical domain

r r

integer mesh r

half integer mesh r

N0

j

i

Fig. 15.8 An example of a staggered mesh, consisting of an equidistant integer
mesh ri, and a half-integer mesh rj = ri+ 1

2
.

Assuming for simplicity a cylindrical coordinate system for a generic periodic
tubular flux configuration, Fourier representations in the directions about and along
the “loop” or “flux rope” axis can be exploited for all quantities. The radial depen-
dence may then be handled by a finite difference approach. As explained in what
follows, solenoidal magnetic fields can be ensured on the numerical level by ex-
ploiting a staggered mesh, essentially using different grid point locations for differ-
ent vector components. In the simplest case of an equidistant base grid ri = iΔr
for i = 0, 1, . . . , N , whereN intervals divide the loop radius rN = NΔr, one uses
as an additional radial grid the half-integer locations rj ≡ ri+ 1

2
= (ri + ri+1)/2,

as shown in Fig. 15.8. The main advantage is that the first order forward difference
formula for u′i given by Eq. (15.16) can be interpreted as a second order central
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difference formula for u′j = u′
i+ 1

2

. This second order formula now involves only

ui and ui+1. To handle boundary conditions on this half-integer mesh, one extends
this mesh with ghost cells appearing outside the domain [0, rN ] (corresponding to
r− 1

2
and rN+ 1

2
). For the three components of the magnetic field vector, one can

then choose to represent the radial field component Br on the integer mesh, while
the Bθ and Bz components are linked to the half-integer mesh. In combination
with the Fourier representation used in their (θ, z) dependence, the following dis-
crete formula for ∇ · B = 0 is obtained for each Fourier mode pair (m,n) from
exp[i (mθ + 2π n/L)] (where L is the loop length) on the half-integer mesh:

(∇ · B̂)j = 0 =
1

rjΔr

(
ri+1B̂r,i+1 − riB̂r,i

)
+

im
rj
B̂θ,j +

i2πn
L

B̂z,j . (15.59)

This can be seen as a bi-diagonal system for the Fourier coefficients B̂r,i, once B̂θ,j
and B̂z,j are known. This procedure to determine the radial magnetic field compo-
nent can then replace the discretized radial component of the induction equation.
Additionally, one can guarantee the analytical identity ∇ · (∇×B) = 0 in its
discrete equivalent by taking

(∇× B̂)r,i =
im
2ri

(B̂z,j + B̂z,j−1)− iπn
L

(B̂θ,j + B̂θ,j−1) ,

(∇× B̂)θ,j =
iπ n
L

(B̂r,i+1 + B̂r,i)− 1
2Δr

(B̂z,j+1 − B̂z,j−1) ,

(∇× B̂)z,j =
1

2rjΔr

[
ri+1(B̂θ,j+1 + B̂θ,j)− ri(B̂θ,j + B̂θ,j−1)

]
− im

2rj
(B̂r,i+1 + B̂r,i) . (15.60)

This is obviously desirable physically as well, and boils down to using simple
second order linear interpolation between the two staggered grids.

Another, somewhat related, issue is relevant for all MHD eigenvalue computa-
tions. For detailed numerical diagnosis of the stability of a particular MHD equi-
librium, it is of course desirable that the numerical eigenvalues converge to correct
physical eigenvalues when the exploited number of grid points is increased. How-
ever, both finite difference and finite element discretizations of eigenvalue prob-
lems may exhibit “spectral pollution”, where unphysical, “polluting”, eigenvalues
belong to either strongly distorted, or simply spuriously introduced branches of
the discrete equivalent of the dispersion relation. Briefly put, avoiding spectral
pollution entails the physical requirement that the chosen discretization for the
eigenfunctions should be able to satisfy constraints like

∇ · v = 0 , (15.61)

∇ ·B = 0 , (15.62)
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in every point, i.e. also in the entire continuous interval between subsequent mesh
points. In the case of a FE representation, it is easily seen how this necessitates the
use of elements of a different order for the three different velocity components (and
similarly for the magnetic vector field). Suppose a cylindrical coordinate system
is used and the radial variation is represented by FE while Fourier modes handle
the periodic directions. The radial derivative on the radial velocity in the constraint
(15.61) forces the use of finite elements for this component of one order higher
than for the other velocity components. This combination is then termed a “con-
forming” FE discretization. Of course, the MHD equations do not impose these
constraints, but some eigenmodes “choose” to satisfy them. Hence, to get uni-
form convergence of the entire computed spectrum, i.e. for every eigenvalue, one
should be able to satisfy constraints like Eqs. (15.61) and (15.62). An analysis of
“spectral pollution” occurring in simple model eigenvalue problems for both FD
and FE discretizations can be found in Ref. [314], where remedies involve the use
of staggered representations for FD schemes, or the use of a “finite hybrid element
method” [196]. The latter involves the choice of different order FE representa-
tions for vector components and their derivatives as occurring in the corresponding
weak forms. The precise mixture of FE orders must be such that each term in the
weak form can have the same functional dependence, e.g. mixing piecewise linear
and piecewise constant elements to get an overall piecewise constant dependence.
More on “spectral pollution” can be found in the papers [9, 390], and an extensive
discussion is given in the book [197], treating finite element methods as used in
linear MHD spectral solvers (in particular, ERATO).

For linear MHD eigenvalue computations, ideal spectral solvers can exploit the
variational formulation in terms of the Lagrangian displacement vector ξ. Avoid-
ing spectral pollution in FE methodology then entails the use of different order
elements for its components to ensure one can discretely obey ∇ · ξ = 0. Exam-
ples of such codes for tokamak spectroscopic studies are PEST and ERATO. The
PEST code Fourier analyzes the poloidal angle variation, and uses a conforming
linear and piecewise constant FE mixture in the direction normal to the flux sur-
faces. ERATO uses 2D hybrid FE discretizations in the poloidal cross-section, and
exploits the finite hybrid element approach again mixing constant and linear finite
shape functions. Also in cases where the three components of the linearized veloc-
ity field and magnetic field vector (or the vector potential) are handled with a FEM
representation (in at least one spatial direction), the use of mixed FEM representa-
tions has become a standard practice. For example, the MARS code uses Fourier
modes in the poloidal direction and mixes constant and linear finite elements in the
radial flux coordinate. CASTOR again handles the poloidal angle in Fourier repre-
sentation, and uses conforming quadratic and cubic FE representations in the flux
coordinate direction.



204 Computational linear MHD

15.2 Linear MHD: boundary value problems

We now specify the discussion to the linearized MHD equations. We will explain
how a choice of spatial discretization for all occurring variables, together with an
assumed time-dependence, turns the mathematical problem into a boundary value
problem. First, steady state calculations of externally driven dissipative plasmas
are discussed. Next, the corresponding eigenvalue problems are solved as an alter-
native and complementary approach. In both cases, a linear system of equations
containing a large number of unknowns is obtained. Solution strategies for this lin-
ear algebraic problem are discussed separately in Section 15.3. A third approach,
viz. the determination of the full time-accurate solution of the initial value problem,
will be treated in Section 15.4 as this involves also the discretization of time.

15.2.1 Linearized MHD equations

Linearized MHD studies the dynamic response of a plasma, initially in equilib-
rium, to “small” perturbations. The equations are linearized around the equilib-
rium, which is usually assumed to be static. This latter assumption is not essential
for the numerical methods discussed, and we have encountered examples of lin-
ear MHD phenomena for stationary equilibria as well. For the static equilibrium
case, when we also include the effect of finite resistivity on the linear response, the
linearized resistive MHD equations can be written in the following dimensionless
form, where the indices 0 refer to equilibrium quantities and the indices 1 refer to
perturbed quantities:

∂ρ1

∂t
= −∇ · (ρ0v1) , (15.63)

ρ0
∂v1

∂t
= −∇(ρ0T1 + ρ1T0) + (∇×B0)× (∇×A1)

−B0 × (∇×∇×A1) , (15.64)

ρ0
∂T1

∂t
= − ρ0v1 · ∇T0 − (γ − 1)ρ0T0∇ · v1

+ 2η(γ − 1)(∇×B0) · (∇×∇×A1) , (15.65)

∂A1

∂t
= −B0 × v1 − η∇×∇×A1 . (15.66)

The temperature T is used instead of the pressure p = ρT , and the vector potential
A1 has been used instead of B1 itself: B1 = ∇ ×A1. As a result, the magnetic
field is guaranteed to be “divergence-free”, i.e. ∇ · B1 is always zero.1 Gravity

1 While ∇·∇×A1 = 0 is obviously true analytically, in a numerical approach it requires that also the discrete
equivalent of the divergence and curl operators behave in this fashion! Remark further that the vector potential
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is ignored for now, as it does not influence the numerics significantly (at least for
external gravitational fields). Dissipative effects, however, do affect the choice of
discretization method for both space and time dependencies. Electrical resistivity
is taken into account to illustrate how. In one-dimensional configurations, i.e. con-
figurations in which the equilibrium quantities depend on one spatial coordinate
only, the equilibrium force balance ∇p0 = j0 × B0 corresponds to an ordinary
differential equation which can be solved easily. We have seen examples of this in
Chapters 7 and 9 [1] and here we will assume that the equilibrium is known.

In three spatial dimensions the system (15.63)–(15.66) consists of eight partial
differential equations for eight unknowns (v1 and A1 each have three components).
Interchanging LHS and RHS, the system (15.63)–(15.66) can be written symboli-
cally in the form

Lu = R
∂u
∂t
, (15.67)

when we introduce the state vector u. In cylindrical coordinates, this vector can be
taken simply as

uT = (ρ1, v1r, v1θ, v1z, T1, A1r, A1θ, A1z) . (15.68)

However, other possibilities for u may e.g. exploit projections of the velocity per-
turbation on the three orthogonal directions of the local field line triad. In any
case, the operators L and R contain equilibrium quantities and spatial differential
operators. With the state vector as in Eq. (15.68), the R operator is diagonal and
can be read off from the LHS of the system (15.63)–(15.66). The derivative with
respect to time is written explicitly in the form (15.67) because it plays a key role
in the distinction between three types of problem. This relates to the three possibil-
ities of having (i) a prescribed time-dependence (as e.g. in steady, externally driven
problems); (ii) an exponential or oscillatory time-dependence, with growth rates or
frequencies to be computed as physically realizable eigenfrequencies for the given
equilibrium (i.e. eigenvalue problems); or (iii) an unknown time-dependence, to
be determined along with the spatial dependence of the solution. In many cases,
these three possibilities correspond to three different numerical approaches to the
same problem which yield complementary information (see also Section 6.3.1 [1],
but notice that we discuss them here in different order). Since cases (i) and (ii)
can be interpreted as boundary value problems, where in essence only the spatial
dependence of linear perturbations is left to determine, we will discuss them first
in the following sections.

A1 is only determined up to an arbitrary gauge ∇Φ. This freedom can be used to set the potential Φ (or a
specific component of A1) equal to zero.
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15.2.2 Steady solutions to linearly driven problems

Many dynamical systems evolve to a steady state and one is often not interested
in the temporal evolution but just in the eventual steady state itself. For parameter
studies of the efficiency of the plasma–driver coupling, time dependent computer
simulations are much too CPU intensive. The steady-state approach yields the
stationary state at once (“in one time step” so to speak). This makes very exten-
sive parameter studies possible, at the price of skipping almost all information on
the time scales of the heating process. We already encountered an analytically
tractable example in Section 11.1 [1] of a periodically driven dissipative system
where the steady-state was of particular interest. There we analyzed a semi-infinite
plasma slab adjacent to a vacuum in which an external antenna (surface current) in-
duces periodic perturbations which are resonantly absorbed. We assumed that the
system had evolved to a steady state in which all physical quantities oscillate har-
monically with the frequency ωd imposed by the external source. Representative
numerical results of the steady-state approach have been encountered previously
as well: steady-state quantifications of solar p-mode absorption by sunspots taken
from [190] were given in Figs. 11.15 and 11.16 [1]. The parameter scans shown
in those figures were performed numerically, using the generic approach explained
below. An example is the parametric study of the efficiency of the plasma–driver
coupling in MHD wave heating schemes for solar coronal loops by means of reso-
nant absorption. In the same spirit, impedance scans of the response of a tokamak
plasma to an external “antenna” current can be performed in a systematic fash-
ion. In the context of MHD spectroscopy for laboratory plasmas, such computer
simulated impedance scans must be compared to measured ones, in turn yielding
information on the internal profiles of the equilibrium quantities.

In computational linear MHD, the steady state of a problem involving a driving
frequency ωd can easily be determined by assuming it has been reached already.
In practice this is done by imposing the time behavior ∼ exp(−iωdt) in the equa-
tions, i.e. by replacing the time derivative by a multiplication with −iωd. After
discretization of all spatial dependencies of all eight components of the state vec-
tor u in Eq. (15.68), using any of the discrete representations introduced in Section
15.1, we need to apply the appropriate method to translate the set of linear PDEs
(15.67) into a linear system for all the expansion coefficients. Indicating the corre-
sponding vector of unknowns with x, the system (15.67) then reduces to

(A + iωdB)x = f , (15.69)

where A and B are now algebraic matrices. The RHS vector f results from impos-
ing the boundary conditions related to the external driving source (see later).

As a concrete example, we consider a combination of model configurations II
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and III of Section 4.6 [1]: a static cylindrical equilibrium plasma in which the equi-
librium quantities only depend on the radial coordinate r, surrounded by a vacuum
and a perfectly conducting wall at r = rw. The plasma is perturbed by a periodic
(AC) current in a helical coil in the vacuum region (at r = ra, with rp < ra < rw).
This is the cylindrical equivalent of the slab configuration studied analytically in
Chapter 11 [1] (apart from the conducting wall). The linear dynamics of this system
is described by Eqs. (15.63)–(15.66) with appropriate boundary conditions. With
a mono-periodic driving current, the dissipative system will reach a steady state
after a finite time. In order to determine this steady state, we assume all perturbed
quantities have a time behavior of the form exp(−iωdt), with ωd the frequency of
the “antenna”. In the late 1970s and early 1980s, this configuration was often con-
sidered with periodic boundary conditions in the longitudinal z-direction as a first
approximation of a tokamak. We will describe the system in the common cylindri-
cal coordinates. Due to the one-dimensional nature of the equilibrium, the θ and
z-dependence of the perturbed quantities is handled trivially in a Fourier fashion,
with in this case only one Fourier mode to consider for each of these coordinates,
hence ei (mθ+k z). In the radial direction, two kinds of finite element are used to
avoid spectral pollution. Here, this is accomplished by choosing finite elements of
one order higher for the (suitably scaled) components v1r, A1θ and A1z than for
the other ones since these components appear differentiated in the r-direction in
discrete expressions for ∇ · v1 and ∇ ×A1. For their scaled counterparts v̄1, Ā2

and Ā3 cubic Hermite finite elements are used, while ρ̄, v̄2, v̄3, T̄ and Ā1 are ap-
proximated by quadratic finite elements. As explained in Section 15.1.3, we then
typically use two finite elements per grid point in the expansion, making the total
number of unknowns 2 × 8 × N , with N the number of radial grid points. In the
Galerkin procedure, the discretization (15.39) or (15.40) is inserted in the system
(15.63)–(15.66), and the weak form of this system is obtained by multiplying it
with each of the 2 × 8 × N finite elements and integrating over the plasma vol-
ume [424]. The application of the Galerkin procedure then yields the algebraic
system (15.69). The matrices appearing in (15.69) are block-tridiagonal matrices
with sub-blocks of dimension 16× 16. Furthermore, A is a non-Hermitian matrix,
and B is a positive-definite matrix.2

In order to obtain a well-defined problem with a unique solution, boundary con-
ditions need to be specified. As in the similar slab problem studied in Chapter 11
[1], the vacuum solution can be determined analytically. In cylindrical geometry,
however, the vacuum solution is obtained in terms of modified Bessel functions.

2 A complex square matrix A = (aij) is called Hermitian when it is equal to its conjugate transpose, i.e.
AH = (a∗ji) = A. For a real matrix, this reduces to a symmetric matrix. A complex matrix A is positive

definite when, for all non-zero complex column vectors x, we have xHAx > 0.
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Fig. 15.9 Boundary conditions needed to obtain a unique solution of the steady
state of a periodic cylindrical plasma that is driven externally by a current J∗

d in an
external helical coil at r = ra.

The system (15.63)–(15.66) is of order six in r (due to the dissipative terms) while
the modified Bessel equation describing the vacuum solutions in each of the regions
rp ≤ r ≤ ra and ra ≤ r ≤ rw is of order two. Hence, ten boundary conditions
are needed for a unique solution. These boundary conditions are summarized in
Fig. 15.9. The two regularity conditions at the magnetic axis are imposed by drop-
ping the finite elements that do not satisfy them in the space of shape functions.
Hence, these boundary conditions are treated as essential boundary conditions (cf.
Section 15.1.3). The boundary conditions at the plasma–vacuum interface become
natural [239] in a very similar way to that in the model problem considered in
Section 15.1: they are imposed by exploiting the surface terms that arise upon inte-
grating by parts, i.e. by formulating the problem in the weak form. This eventually
yields a linear system of the form

(A′ + iωd B)x = f ′, (15.70)

with A′ and f ′ a slight modification of A and f , respectively, both resulting from
imposing the natural boundary conditions. As explained above, the coefficient
matrix A′+iωd B is of order 16N . While this can become quite large, it is a sparse
block tridiagonal matrix, which can be stored in band storage mode, saving a lot of
computer memory.

Fig. 15.10, taken from [376], shows the result of a numerically obtained param-
eter scan for the 1D driven plasma configuration from Fig. 15.9. As a function of
the driving frequency (indicated with ωp in the figure), the fractional absorption fa

measures the ratio of the Ohmically dissipated energy to the total energy emitted by
the antenna. The equilibrium in the plasma region was characterized by a parabolic
axial current density, a constant axial magnetic field component and uniform den-
sity. For a magnetic Reynolds number of Rm = 108, and mode numbers of the
helical antenna surface current (m,n) = (2, 1) in an exp(imθ + inkz) Fourier
dependence, the scan revealed the existence of an optimal driving frequency with
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Fig. 15.10 Fractional absorption fa versus driving frequency ωp of the driven
plasma—vacuum–antenna–wall system of Fig. 15.9. This steady-state computation
identified the possibility for perfect coupling (at driving frequency ωp = 0.1911),
where all energy supplied is converted into heat. (From Poedts et al. [376].)

perfect coupling, i.e. fa = 1, or 100%. The possibility to explore numerically in
a systematic fashion the effect of equilibrium parameters, perturbation parameters
(driving frequency and its mode numbers) and model parameters such as the resis-
tivity has helped us to realize how the presence of resistively damped, collective
“quasi”-modes located in the frequency range of the Alfvén continuum can play a
prominent role in the energetics of driven magnetic loop configurations.

15.2.3 MHD eigenvalue problems

In the normal mode approach, more information on the linear dynamics is obtained
by computing the spectrum of all eigenoscillations. Imposing an a priori unknown
time dependence of the form exp(λt), with λ ≡ −iω, results, in a similar fashion as
explained for the driven case (Eq. (15.69)), in the discrete equivalent of Eq. (15.67)
for the general eigenvalue problem:

(A− λB)x = 0. (15.71)

The possibly complex eigenvalue λ now needs to be determined as part of the
solution procedure and x corresponds to the discrete representation of the eigen-
vector. Quite a variety of algorithms exists for the solution of such large-scale
eigenvalue problems [268]. In Section 15.3 below, we briefly discuss the QR
algorithm, inverse vector iteration, and the more modern Krylov-subspace based
Jacobi–Davidson technique.

This eigenvalue formulation is an efficient approach to determine growth rates of
instabilities. In addition, it allows one to explore the stable part of the spectrum and
to study e.g. continuum damping of quasi-modes such as encountered in Fig. 10.16
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Fig. 15.11 Typical Alfvén and slow magneto-sonic parts of the resistive MHD spec-
trum, with a quasi-mode in the triangle; λ ≡ −iω. (From Poedts and Kerner [378].)

of Chapter 10 [1]. Also in the previous volume, an example for a cylindrical plasma
showing all three (slow, Alfvén and fast) mode types and the possibility of unstable
interchanges is depicted in Fig. 9.11 [1]. Note that when we use the same spatial
discretization technique as for the corresponding driven problem, e.g. a FEM and
its weak Galerkin formulation of the resistive MHD eigenvalue problem, this leads
to a complex non-Hermitian matrix eigenvalue problem (15.71) with the matrices
A and B of course exactly the same as considered before in the driven problem. It
is of interest to note that in the non-ideal MHD eigenvalue solvers based on these
FEM discretizations, realistically low values of the resistivity coefficient η can be
handled accurately, confirming predictions of growth rate dependence as fractional
powers of η for analytically tractable unstable modes.

In Fig. 15.11 part of the resistive MHD spectrum (including a so-called ideal
MHD quasi mode) is shown for η = 5 × 10−5, as calculated by Poedts and
Kerner [378]. These authors determined the full resistive MHD spectrum of a
periodic cylindrical plasma column with the QR method, which will be discussed
below, using 51 grid points in the radial direction. The static equilibrium consid-
ered in this calculation consisted of a finite length “periodic cylinder” with aspect
ratio 10, limited by a perfectly conducting wall and with a constant plasma den-
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sity and a parabolic current density profile. The weakly damped discrete resistive
eigenmodes lie on typical curves in the complex plane. The resistive Alfvén eigen-
modes lie on the upper λ-shaped curve with a bifurcation point where two branches
approach the ends of the ideal Alfvén continuum. The ideal Alfvén continuum,
ranging from λ = (0, 0.15) to λ = (0, 0.25) in this case, is also indicated on the
plot. Decreasing the value of the plasma resistivity results in an upward shift of
the resistive eigenmodes along the same curves so that the density of the eigen-
modes on these curves increases. The weakly damped eigenmode with frequency
situated in the triangle formed by the ideal Alfvén continuum and the two legs of
the λ-shaped curve with resistive Alfvén eigenmodes in the complex plane, corre-
sponds to an “ideal quasi mode”. The oscillatory part of the frequency of this ideal
quasi-mode is precisely 0.191, consistent with the result in Fig. 15.10. This weakly
damped global mode manifests itself as the natural oscillation of the plasma and
explains the temporal evolution of the driven system, as discussed in Chapter 11
[1]. The complex frequencies in the lower part of Fig. 15.11, near the origin, belong
to the slow magneto-sonic sub-spectrum which does not couple to the Alfvén sub-
spectrum in first order. Notice the discrepancy in time scales between the Alfvén
modes and the slow magneto-sonic modes. The fast magneto-sonic modes have
much higher frequencies and are not shown in the plot.

15.2.4 Extended MHD examples

The significant advantage of a numerical approach over an analytical one for com-
puting the linear eigenmodes of an ideal MHD equilibrium configuration is the
relative ease of including more physical effects in the description of the linear dy-
namics. To illustrate this observation, we discuss three examples of eigenvalue
computations of essentially 1D MHD equilibria which use a different spatial dis-
cretization method for the non-trivial direction.

(a) Magneto-thermal instabilities for solar coronal arcades Our first example is
taken from Van der Linden, Goossens and Hood [460], containing an MHD eigen-
value computation for a solar coronal “arcade” configuration. The 1D equilibrium
taken for the “arcade” is rather rudimentary and is actually a pure z-pinch field
with B0 = (r/(1 + r2))Bceθ and with a constant temperature throughout (iso-
thermal). The “arcade” is then the top half of the cylinder when it is oriented such
that its symmetry axis is the magnetic neutral line of the overarching arcade field
lines. However, the eigenvalue computation includes various non-adiabatic effects
of importance in the solar coronal environment, in particular optically thin radia-
tive losses and a parameterized coronal heating prescription. This implies that both
a source and sink of internal energy is included, appearing as a term −(γ − 1)ρL
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Fig. 15.12 Unstable part of the MHD spectrum for m = 0 and k = 1 perturbations
of a z-pinch “solar arcade model”. Discrete thermal instabilities labeled with Tn
(where n is the number of radial nodes of the eigenfunction) coalesce from a certain
n onwards with unstable pinching modes In to form overstable magneto-thermal
mode pairs; s ≡ −iω. (From Van der Linden et al. [460].)

on the RHS of the governing nonlinear equation for the temperature evolution:

ρ
∂T

∂t
= −ρv ·∇T − (γ− 1)p∇·v− (γ− 1)ρL+(γ− 1)∇· (κ · ∇T ) . (15.72)

The function L(ρ, T ) represents the energy gain–loss per unit mass, due to non-
adiabatic processes other than those due to thermal conduction. The thermal con-
duction itself will be anisotropic in strongly magnetized plasmas, hence the ap-
pearance of the tensorial conductivity coefficient κ.

For the internal energy losses due to optically thin radiation, a dependency
of the form ∼ ρ2Tα is appropriate, with the precise proportionality coefficient
as well as the fractional temperature dependence α varying for different temper-
ature ranges. Writing ρL = χρ2Tα − ρ h, in which h denotes the unknown
“coronal heating” per unit mass, the equilibrium itself is then assumed to obey
ρ0L(ρ0, T0) = ∇ · (κ0 · ∇T0). In Ref. [460], the z-pinch equilibrium was used to
compare the analytic predictions obtained for unstable magnetic and thermal con-
densation modes using WKB techniques to those found by means of a numerical
eigenvalue solution. The numerical analysis used the same (mixed order) FEM dis-
cretization discussed in Section 15.2.2 for the radial variation of the eigenfunctions,
with a fixed Fourier dependence exp i(mθ + kz). Boundary conditions impose a
regularity condition at the axis, while a fixed perfectly conducting wall was adopted
at the cylinder radius for simplicity.

For m = 0 eigenmodes, which are axi-symmetric, k ·B0 = 0 and the influence
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of purely field-aligned thermal conduction can be dropped. Both the slow and
Alfvén continuum collapse onto the origin for k ·B0 = 0, but an infinite sequence
of unstable discrete m = 0 magnetic pinching modes with real growth rates λ can
accumulate to the marginal frequency λ = 0. In the presence of non-adiabatic
effects, another continuous range of purely exponentially growing (or damped)
modes exists known as the thermal continuum. This thermal continuum range can
be derived analytically for 1D planar or cylindrical equilibria [459]. It represents an
additional continuous range in the eigenfrequency plane corresponding to purely
exponentially growing or damped perturbations, in contrast to the wave-like Alfvén
and slow continua. In the presence of anisotropic thermal conduction, the neglect
of cross-field thermal conduction is needed to maintain a continuous range, as any
finite κ⊥ will replace the continuum with a dense set of discrete modes [458], in
a way reminiscent of what happens to the Alfvén and slow continua when going
from ideal to resistive computations. This highlights that this thermal continuum is
due to the fact that each field line can cool or heat independently of the adjoining
ones when perpendicular thermal conduction is absent. Incorporating a heat-loss
function and only field-aligned thermal conduction (and no resistivity) introduces
the thermal continuum, leaves the familiar Alfvén continuum unmodified from the
ideal case, and renders the slow continuum into a continuous range of complex
overstable or damped wave modes influenced by non-adiabatic effects. In addition
to the continuum range for the thermal condensation modes, an additional sequence
of discrete thermal modes may appear at its edges.

Figure 15.12 shows the computed unstable part of the MHD spectrum for axi-
symmetric modes with axial wave number k = 1 under equilibrium parameters
where (i) the entire thermal continuum is situated in the unstable half-plane (seen
as solid line segments on the Im(s) = 0 axis, where s ≡ λ ≡ −iω); (ii) the infinite
sequence of discrete unstable magnetic pinching modes is seen to start as indi-
cated by the mode labeled with I+1; (iii) discrete thermal modes with fundamental
mode labeled with T1 exist beyond the thermal continuum range. The numerical
analysis shows that from a certain overtone onwards, the two discrete sequences
merge in coalesced overstable magneto-thermal mode pairs (with complex conju-
gate eigenvalues λ and λ∗). This is a particular example of a computational MHD
eigenmode analysis where an analytic treatment alone of these intricate mode cou-
plings is challenging but almost necessarily incomplete. In further computational
studies [458] of more realistic helical equilibrium fields of coronal loops the ef-
fects of anisotropic thermal conduction as well as finite resistivity [244] have been
included. The inclusion of a finite (but small) cross-field conduction replaces the
thermal continuum with a dense set of discrete thermal eigenmodes, and introduces
very localized rapidly varying density eigenfunctions for those modes with eigen-
values located in the original continuum range. These could be responsible for the
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formation of fine structure during the thermal condensation process leading to solar
prominences. In tokamak plasmas, the thermal instability is believed to cause the
multifaceted asymmetric radiation from the edge (MARFE) phenomenon, where
low charge state impurity radiation gives rise to a condensation instability that is
primarily located at the high field side of the tokamak plasma edge (hence it is
asymmetric in the poloidal cross-section, but toroidally symmetric).

� Thermal condensation modes Thermal instability can be encountered as a result of
the precise thermodynamic dependence of the energy gain–loss function in Eq. (15.72).
The linearized version of this equation will contain the partial derivatives ∂L/∂ρ|T taken
at constant temperature and ∂L/∂T |ρ taken at constant density. Non-gravitational unsta-
ble thermal condensation modes can be predicted to form even in a static unmagnetized
medium of constant density and temperature, if the isobaric criterion

∂L
∂T

∣∣∣
p

=
∂L
∂T

∣∣∣
ρ
− ρ

T

∂L
∂ρ

∣∣∣
T
< 0 (15.73)

is encountered. The ideal gas law p ∼ ρT has been assumed. A runaway condensation can
result when a local cooling causes a net increase of the radiative energy losses, resulting in
a further cooling triggering yet more radiative losses and hence an unstable situation. This
condensation mode is an exponentially growing mode, and is the marginal entropy mode
discussed in Section 5.2.2 [1] driven unstable due to non-adiabatic influences, as already
analysed in detail in a seminal paper by Field [134], following on an earlier suggestive
work by Parker [362]. In the same purely hydrodynamic case, the sound waves, which
are purely oscillatory wave modes in adiabatic situations, can be driven overstable if the
isentropic instability criterion

∂L
∂T

∣∣∣
S

=
∂L
∂T

∣∣∣
ρ

+
ρ2

p(γ − 1)
∂L
∂ρ

∣∣∣
T
< 0 (15.74)

is met. In the presence of isotropic thermal conduction, these criteria are modified with
a stabilizing influence of thermal conduction on both the purely exponential condensation
mode and the overstable sound waves for short wavelengths. �

(b) Shear flow instabilities in current sheet configurations A second example of
MHD eigenvalue computations is taken from Dahlburg and Einaudi [102]. There,
the linear eigenmodes of a 1D current-vortex sheet are computed. The planar
current-vortex sheet is a stationary equilibrium configuration in ideal MHD, char-
acterized by a uniform density ρ0 = 1 and pressure p0 = 1/(γM2), but with a
shear flow profile given by v0 = tanh y ex and a co-spatial current sheet with
B0 = A tanh y ex + A sech y ez . The dimensionless parameters M and A denote
the sonic Mach number and the Alfvén Mach number, respectively. The magnetic
field configuration is a force-free field where the magnetic field rotates about the y-
axis in an out-of-plane fashion near y = 0 to become aligned with the anti-parallel
planar flow in both half spaces at y = ±∞.

The linearized MHD equations now contain many additional terms due to the
equilibrium velocity profile, and in Ref. [102] the effects due to (isotropic) thermal
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Fig. 15.13 Growth rates of overstable, oscillatory, weakly evanescent eigenmodes
for varying streamwise wave number α of a planar current-vortex sheet. The sta-
tionary equilibrium considered is characterized by a sonic Mach number M = 1
and Alfvén Mach number A. (From Dahlburg and Einaudi [102].)

conduction, finite magnetic resistivity and viscous stresses are also taken along.
Both the streamwise x-direction and the spanwise z-direction are handled in a
single Fourier mode pair for the perturbations exp[i(αx + βz)], while the spa-
tial variation of the eigenfunctions in the cross stream y-direction is discretized
using Chebyshev polynomials in a spectral collocation formalism. The SPECLS

(spectral compressible linear stability) code used was originally developed for pure
hydrodynamic eigenvalue computations by Macaraeg et al. [322] and modified in
this work to handle MHD configurations. The boundary conditions in the cross
stream directions represent free slip conditions: setting the gradients of all fluctu-
ating quantities to zero at fixed distances y = ±L. This allows one to compute
eigenmodes which are only weakly evanescent and oscillatory in their asymptotic
y → ±∞ behavior. Eventually, the obtained large generalized eigenvalue problem
is solved with a QZ algorithm.

The numerical approach then investigated parametrically the unstable part of the
MHD spectrum for flow and magnetically dominated regimes. Depending on their
relative strength, surface type ordinary Kelvin–Helmholtz modes can be found (for
M < 1 and small A), but also a class of overstable, oscillatory, weakly evanescent
modes occur when M ≈ 1 and A < 1. Figure 15.13 shows the growth rate of
these latter modes for M = 1 and varying A, over a range of streamwise wave
numbers α. Clearly, extensive numerical parameter studies are an essential means
to categorize the many intricate relationships between shear-flow driven Kelvin–
Helmholtz, resistive tearing modes, and all other ideal and non-ideal instabilities
for these and similar MHD equilibrium configurations with co-spatial velocity and
magnetic shear.
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(c) Line-tied MHD spectrum Our examples of MHD eigenvalue computations
thus far considered 1D equilibrium configurations (infinite slab or cylinder). The
spatial dependence of the eigenfunctions in the ignorable directions is then handled
by a single Fourier mode pair. However, virtually all astrophysical and labora-
tory MHD equilibrium states are at least two-dimensional in nature. For example,
coronal loops are anchored (line-tied) at both ends in the dense photospheric en-
vironment and can show considerable curvature depending on their loop length to
radius ratio. Even when neglecting their curvature and treating only their internal
variation with cylinder radius, the line-tying boundary conditions render the MHD
stability and eigenoscillation problem intrinsically 2D. For axi-symmetric tokamak
plasmas, only the toroidal direction for the linear perturbations can be treated with
a single Fourier mode at a time. In both cases, one needs to choose appropriate
discretization combinations for the two non-trivial spatial directions in the corre-
sponding MHD spectroscopic analysis.

In the case of line-tied loops, several authors [468, 106, 461] considered the
2D eigenvalue problem for axi-symmetric cylindrical models. The static MHD
equilibrium is then still only constrained by the 1D radial equilibrium condition

d

dr

(
p0 + 1

2B
2
0

)
= −B

2
θ0

r
. (15.75)

However, the eigenvalue problem takes account of a finite loop length and con-
siders eigenoscillations which obey line-tying boundary conditions. Line-tying
typically imposes rigid wall conditions for the velocity perturbations

v1 = 0 at z = ±L , (15.76)

for a loop of length 2L. The poloidal θ direction can be handled trivially as
exp(imθ), but the line-tying will introduce coupling between all axial Fourier
modes exp(inπz/L). In the case when Eqs. (15.63)–(15.66) are considered, all
linear quantities are written as

f1(r, θ, z)→
n=+∞∑
n=−∞

(−1)nf̂nm(r)ei(nπz/L+mθ) , (15.77)

and all θ derivatives are, as usual, replaced by multiplications with factors im.
However, both first and second order derivatives with respect to z have to be
handled carefully: not all perturbed quantities or their z-derivatives have equal
values at z = ±L and hence the periodic continuation of them will not behave
continuously at z = ±L. Partial integration of the (multiplied) equations by∫+L
−L dz exp(−i kπz/L) introduces unknown “surface terms”, with jumps across
z = ±L, in addition to the usual Fourier substitutions of first and second deriva-
tives. One then uses a truncation of the series representation (15.77) up to N
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terms. The 8N equations for the different Fourier modes exp(inπz/L) follow-
ing from (15.63)–(15.66) are then coupled through these unknown surface terms.
The procedure to remove these unknown surface terms subtracts the N th equation
for each linear variable from the N − 1 previous equations, and replaces those
equations of the N th set containing them by the rigid wall line-tying conditions,
which read in the form (15.77) as

n=+∞∑
n=−∞

v̂r1;nm(r) = 0 . (15.78)

Truncating this and similar relations for the other velocity components to N terms
yields a finite set of coupled ordinary differential equations for the radial variation
of the eigenfunctions, supplemented with boundary conditions on axis and at the
loop radius. Velli et al. [468, 106] combined this axial representation of the eigen-
functions using a truncated Fourier series with a finite difference treatment of the
radial direction, while Van der Linden et al. [461] combined it with the FEM rep-
resentation discussed above. Both used it to quantify the stabilizing influence of
line-tying and finite loop lengths on selected kink m = ±1 modes. In such cases,
one may suffice with a reasonably small number (up to 10) of axial Fourier modes
to get a converged eigenvalue, when these axial modes are chosen to correspond in
wavelength to the most unstable modes for the equivalent infinite length cylinder.

15.3 Linear algebraic methods

After discretization, all computational linear MHD applications for determining
steady solutions to driven problems eventually lead to a large linear algebraic sys-
tem. Similarly, determining the MHD spectrum of a particular equilibrium con-
figuration mathematically boils down to the numerical solution of a generalized
eigenvalue problem. We now briefly discuss some of the most suitable linear alge-
braic methods for these purposes. In practice, known properties of the coefficient
matrix (symmetry or Hermitian property, sparseness pattern, . . . ) will influence
the optimal algorithm choice for solving the linear system or eigenvalue problem.
For more details on linear algebraic methods we refer to the textbook on iterative
Krylov methods by van der Vorst [463].

15.3.1 Direct and iterative linear system solvers

The numerical solution to the linearly driven magnetized plasma loop discussed
in Section 15.2.2 led to a linear system given by the matrix equation (15.70). In
principle, this matrix problem can be solved directly: one then LU-factorizes the
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occurring coefficient matrix and subsequently solves the system by means of stan-
dard available linear algebra library routines (e.g. LAPACK). In the LU decompo-
sition, the coefficient matrix is written as the product of a lower triangular matrix
L and an upper triangular matrix U so that:

(A′ + iωd B)x = (LU)x = L (Ux)︸ ︷︷ ︸
y

= f ′, (15.79)

where the diagonal elements of the matrix L are all equal to one. The LU decom-
position allows a fast solution of the system in two trivial steps: first the system
Ly = f ′ is solved by forward substitution; next the system Ux = y is solved by
backward substitution. The LU decomposition of a matrix is obtained by succes-
sive standard Gaussian transformations, and its computational cost scales as order
n3 for a full n×nmatrix. For banded sparse matrices, this cost may decrease when
a good direct solver is used.

For very large linear systems, for which direct methods may become unfeasible
and computationally intensive, various iterative techniques have become standard
practice. A modern, practical, guide to iterative methods for linear systems is
found in Ref. [23]. An important class of iterative methods can be interpreted as
projection methods. Projection methods seek an approximate solution of the linear
system Ax = b at iteration step k in a subspace x0 +Kk, with x0 an initial guess,
by imposing the Petrov–Galerkin condition: b − Axk ⊥ Lk. Alternative choices
of Lk and Kk correspond to different methods. In what follows, we discuss the
basic idea of two particularly powerful iterative methods, namely the generalized
minimal residual (GMRES) method [401], and the bi-conjugate gradient stabilized
(Bi-CGSTAB) algorithm [462]. Both of these methods are suitable for dealing with
non-symmetric (real) or non-Hermitian (complex) matrices.

GMRES iterates on the solution of the linear system Ax = b as follows. For an
initial guess x0, the residual is indicated as r0 = b−Ax0. The Krylov subspace of
order k associated with this residual r0 and the matrix A is by definition the vector
space spanned by the vector series {r0,Ar0,A2r0, . . . ,Ak−1r0}. Indicating this
Krylov subspace with

Kk(A, r0) ≡ span
{
r0,Ar0,A

2r0, . . . ,A
k−1r0

}
, (15.80)

successive approximations xk are obtained by minimizing the L2-norm of the
residual ‖b − Axk‖2 over the Krylov subspace Kk(A, r0). GMRES is then a
projection method with the spaces Kk = Kk(A, r0) and Lk = AKk(A, r0). In
this way, the solution A−1b is approximated by a matrix polynomial of order k−1:
xk = x0 + pk−1(A)r0 ≈ A−1b. In practice, the approximation xk is only com-
puted at the end of the entire iterative procedure. Each iteration merely constructs
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an orthonormal basis for the successive Krylov subspaces Kk(A, r0) by means of
the following Arnoldi method [15]. Taking v1 = r0/‖r0‖2, one computes

for i = 1, 2, . . . do
vi+1 = Avi
for j = 1, 2, . . . , i do

vi+1 = vi+1 − (vT
j vi+1)vj

end
vi+1 = vi+1/‖vi+1‖2

end .

In each iteration, we thus need to evaluate one matrix–vector product, and i + 1
inner products between two vectors. Storage requirements also increase by one
vector per iteration. This GMRES method demonstrates a fast convergence when-
ever the matrix eigenvalues are reasonably close together but away from zero, and
the eigenvectors are nearly orthogonal. In the case when this is not true, one needs
to design a suitable pre-conditioner, i.e. a matrix P approximating A in some way
and easily invertible, such that the transformed system P−1Ax = P−1b has a
coefficient matrix P−1A with the desired property. The GMRES scheme is often
implemented using a suitable restart strategy, which limits the maximal number of
vectors used in the Krylov sequence {Akr0}.

The Bi-CGSTAB approach for solving Ax = b works with two sequences of
vectors (or “search directions”) to update the iterate xk. Starting with guess x0 and
residual r0 = b− Ax0, the first search directions could be taken as

p1 = r0, s1 = r0 − rT
0 r0

rT
0 (Ap1)

Ap1. (15.81)

The basic iteration then updates the kth solution iterate as

xk = xk−1 +
rT
0 rk−1

rT
0 (Apk)

pk +
(Ask)Tsk

(Ask)T(Ask)
sk. (15.82)

Denoting the residual with rk = b− Axk, the search directions are updated as

pk+1 = rk +
rT
0 rk

rT
0 (Apk)

(Ask)T(Ask)
(Ask)Tsk

(
pk − (Ask)Tsk

(Ask)T(Ask)
Apk
)
,

sk+1 = rk − rT
0 rk

rT
0 (Apk+1)

Apk+1. (15.83)

Since the residual can also be written as

rk = sk − (Ask)Tsk
(Ask)T(Ask)

Ask, (15.84)
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the Bi-CGSTAB scheme requires per iteration step the evaluation of two matrix
vector products Ask and Apk as well as four inner products rT

0 rk, (Ask)T(Ask),
(Ask)Tsk and rT

0 (Apk). Most variants again augment this basic scheme with a
suitable pre-conditioning.

15.3.2 Eigenvalue solvers: the QR algorithm

The column vector x is called a right eigenvector of an n× n matrix A with corre-
sponding eigenvalue λ if

Ax = λx. (15.85)

A generalized eigenvalue problem involves two square matrices A and B, and is of
the form

Ax = λBx. (15.86)

When B can be inverted3 this becomes a standard eigenvalue problem for matrix
C = B−1A. In principle, the eigenvalues of Eq. (15.85) can be found as the roots
of the characteristic equation

|A− λ In| = 0, (15.87)

so that there are always n eigenvalues, which can be degenerate. As a direct conse-
quence of the definition, the eigenvectors are determined only up to a scale factor
and the eigenvalues can be shifted:

(A + τ In)x = (λ+ τ)x, (15.88)

so that the eigenvectors are insensitive to shifts in the eigenvalues. Left eigen-
vectors are defined in a similar way, with a column vector y being a left eigen-
vector when yTA = yTλ. These left eigenvectors have the same eigenvalues
as right eigenvectors since, from the definition Ax = λx, we find immediately
that xTAT = xTλ and |A| = |AT|. When XR denotes the matrix with the right
eigenvectors in its columns and XL denotes the matrix with the left eigenvectors
in its rows, it can be shown that, with a proper normalization of the eigenvectors,
XL = X−1

R and

X−1
R AXR = diag(λ1, . . . , λn), (15.89)

where the RHS denotes a diagonal matrix with the eigenvalues of A as elements
on the diagonal. This is a special case of a “similarity transform”. Such similarity
transforms do not affect the eigenvalues. As a matter of fact, with a transformation
matrix Z we get: |Z−1AZ−λIn| = |Z−1||A−λIn||Z| = |A−λIn|. The strategy of

3 For generalized eigenvalue problems, the QZ variant of QR avoids the inversion of B.
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many eigenvalue solvers therefore typically involves two steps: (1) reducing A to a
simpler form by similarity transforms A → P−1

1 AP1 → P−1
2 P−1

1 AP1P2 → . . . ,
and (2) starting an iterative procedure. A thorough review of methods suitable
for solving the complex generalized eigenvalue problem (15.86) can be found in
Ref. [268].

The QR method in particular is based on a decomposition of matrix A = QR,
with R an upper triangular matrix and Q an orthogonal matrix (QTQ = In). The
QR algorithm consists of a succession of orthogonal transformations:

A = Q0R0 ⇒ T0 ≡ R0Q0︸ ︷︷ ︸
QT

0 AQ0

= Q1R1 ⇒ T1 ≡ R1Q1 = Q2R2. (15.90)

This yields in the ith iteration step:

Ti ≡ RiQi = Qi+1Ri+1 = QT
i . . .Q

T
0 AQ0 . . .Qi. (15.91)

It can be shown that, when the eigenvalues λi are all different, Ti converges to an
upper triangular matrix with the eigenvalues λi on its diagonal. When λk is p times
degenerate, on the other hand, Ti evolves to an upper triangular matrix except for
a diagonal block of order p (corresponding to the degenerate eigenvalue λk). The
LAPACK routine HQR exploits this algorithm and determines all eigenvalues of
the matrix A. The method is very reliable and stable. However, the QR algorithm
does not preserve the band structure of the matrices and the resulting memory
requirements restrict the spatial resolution considerably. Moreover, the number
of operations is proportional to n3 for a n × n matrix. As a result, only “small”
problems can be solved with this algorithm.

15.3.3 Inverse iteration for eigenvalues and eigenvectors

The QR algorithm can give a fair impression of the distribution of the eigenvalues
across the complex plane, but to get information on the associated eigenvectors
the products of all the transformation matrices must be kept, which is expensive.
Inverse iteration allows one to achieve a more accurate numerical proxy for a single
eigenvalue as well as its eigenvector, and at the same time this iteration is able to
handle larger dimensions. The basic idea is that if b0 is a random vector and τ0 an
approximation of an eigenvalue λk, the vector y satisfying

(A− τ0 In)y = b0 (15.92)

is an approximation of the eigenvector corresponding to λk. One can then start an
iteration procedure and replace b0 by y to get a new y which is even closer to the
eigenvector. This can be seen by writing both y and b0 in terms of all eigenvectors
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{xi} with i = 1, . . . , n of A: y =
∑
i αixi and b0 =

∑
i βixi. Substituting this in

Eq. (15.92) we get

αi =
βi

λi − τ0 and yi =
∑
i

βi
λi − τ0xi, (15.93)

so that when τ0 is close to λk and βk is not accidentally too small, we have y ≈ xk
(remember that eigenvectors are only determined up to a scale factor).

It is also not difficult to understand how one obtains an improved approximation
to λk. Suppose that in the ith iteration step we have (A − τiI)y = bi with a
normalized RHS, bT

i bi = 1. Using the fact that eigenvalues can be shifted, we can
write from the definition Axk = λkxk that

(A− τiIn)xk = (λk − τi)xk. (15.94)

Since y is closer to xk than bi, as shown above, we can replace xk by y in
Eq. (15.94) provided that λk is also replaced by the improved approximation τi+1.
The value for τi+1 then results from multiplying this expression by bT

i :

τi+1 = τi +
1

bT
i y

. (15.95)

This inverse iteration preserves the band structure of the matrix and, hence, allows
much higher resolutions. However, the CPU time consumption is also proportional
to n3 and the algorithm finds only one eigenvalue at a time, viz. the one closest to
the “initial guess” τ0. Moreover, the inverse iteration is less reliable in the sense
that no convergence does not guarantee that there is no eigenvalue to be found
in the neighborhood of the initial guess, which is particularly embarrassing when
determining stability thresholds.

15.3.4 Jacobi–Davidson method

As an example of a more recently developed, very powerful, algorithm to com-
pute a number of eigenvalues and their associated eigenvectors in the vicinity of
a target value in the complex eigenvalue plane, we present the Jacobi–Davidson
algorithm developed by Sleijpen and van der Vorst [412], applied to the general-
ized eigenvalue problem from Eq. (15.86). This is the general form obtained after
discretization of the linearized MHD equations, where the coefficient matrix A is
typically a complex-valued, non-Hermitian matrix, while B is self-adjoint and pos-
itive definite (BH = B and xHBx > 0 for any non-zero complex vector x). The
eigenvalues λ then correspond to eigenfrequencies ω of the perturbations about
an MHD equilibrium configuration via λ = −iω. As noted in earlier chapters,
these eigenfrequencies can be located anywhere in the complex plane whenever
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the background equilibrium is in motion, or when incorporating non-ideal effects
into the governing equations.

To obtain preferentially those eigenvalues in the vicinity of a specified target
value σ, we can subtract σBx from both sides of Eq. (15.86) and obtain

(A− σB)x = (λ− σ)Bx ⇒ (A− σB)−1 Bx =
1

λ− σx ⇒ Qx = μx,

(15.96)
where we introduced the shifted eigenvalue μ ≡ 1/(λ − σ). This shift-and-invert
strategy is generally applicable, at the cost of computing the matrix inverse of
(A− σB). For the block-tridiagonal matrices encountered in many of the lin-
ear MHD codes, one can affordably compute this inverse by performing its com-
plete LU decomposition (to be done only once for each target σ) and thus take
Q = (LU)−1B. (The inverse of an upper triangular matrix is easily computed
and remains upper triangular, and similarly for a lower triangular L.) The follow-
ing description of the Jacobi–Davidson algorithm [412] for computing several of
the largest eigenvalues and their associated eigenvectors for the system (15.96) is
adopted from [354].

The Jacobi–Davidson method iterates on an eigenvalue–eigenvector pair (uk, θk)
by repeated (approximate) solves of linear systems of the same (large) dimension
n as the eigenvalue problem under study. The large linear system is known as the
“correction equation” and its solution vector z is taken orthogonal to the current
eigenvector approximation, i.e. uH

k z = 0. The solution vector of the linear sys-
tem is subsequently used to obtain an improved approximation to the eigenvalue–
eigenvector combination in a step which computes a much smaller eigenvalue prob-
lem of order k exactly by direct methods, e.g. using the QR method and consecutive
linear system solves. These two building blocks of the Jacobi–Davidson algorithm
can be summarized as follows.

Given a proxy uk to an eigenvector of Eq. (15.96) which is normalized such that
‖uk‖22 = uH

k uk = 1, its eigenvalue can be approximated by θk = uH
k Quk. Defin-

ing the matrix P = ukuH
k , the multiplication of any vector with this P projects this

vector on the sub-space spanned by the vector uk. In particular, Puk = uk. Like-
wise, the matrix In − P with In the identity matrix of order n projects a vector on
the orthogonal complement of span{uk}. The idea for obtaining a better guess for
the eigenvector x from Qx = μx is then to write x = uk+z, where the correction
vector z is taken orthogonal to uk, i.e. uH

k z = 0, and belongs to this orthogonal
complement. This implies Pz = 0. If we introduce the restriction operator QP of
the matrix operator Q to the orthogonal complement by means of

QP ≡ (In − P)Q(In − P), (15.97)

we know that QPuk = 0 and we can rearrange (15.97) to Q = QP + QP + PQ−
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PQP. Introducing the residual r = Quk − θkuk (which is orthogonal to uk since
uH
k r = 0), we can rework the eigenvalue problem Q(uk + z) = μ(uk + z) to the

equation

(QP − μIn) z = −r +
(
μ− θk − uH

k Qz
)
uk, (15.98)

where we used the equality PQz = (uH
k Qz)uk. The unknown eigenvalue μ is then

replaced by its approximation θk in the left hand side of Eq. (15.98), effectively
replacing z with an approximation zk. Multiplying the equation with uH

k yields
that μ = θk + uH

k Qz so we can retain only the residual contribution in the right
hand side. The governing correction equation for zk then is written as

(In − P) (Q− θkIn) (In − P) zk = −r, (15.99)

where uH
k zk = 0. This is a large linear system, which is actually only solved ap-

proximately (consistent with the fact that zk only approximates the actual z obey-
ing Eq. (15.98)). This can be done by exploiting only a few iterations of a Krylov
subspace iterative method such as GMRES.

The approximate solution of the correction equation (15.99) is then made orthog-
onal by a Gram–Schmidt procedure to all previous search directions vk collected
from the previous solves. This adds a new search direction vk+1 to use in the com-
putation of the eigenvalue–eigenvector pairs (uk, θk). This part of the algorithm
proceeds by noting that, at each step, the approximation uk is a linear combination
of the k search directions vj with j = 1, . . . , k. When writing them in an n × k
matrix Vk as columns, we thus have uk = Vks with s a vector of length k. Due
to the orthonormalization process in constructing the search directions, we have
VH
k Vk = Ik.
The residual vector r = QVks− θkVks is then made orthogonal to the k search

directions, so by multiplying with VH
k we get the k × k “projected” eigenvalue

problem

VH
k QVks = θks. (15.100)

This small eigenvalue problem is solved by a direct method, e.g. with QR all k
eigenvalues are obtained, and their associated eigenvectors s can be computed.
The eigenvector approximation is then uk = Vks for a particular set (θk, s) which
solves system (15.100). In a suitable combination with the above scheme for ex-
tending the number of search directions by solving the correction equation (15.99),
the algorithm can then compute a series of eigenvalue–eigenvector pairs of the
original problem (15.96) up to the maximal dimension one uses for the projected
problem (15.100). This can deliver a few tens of eigenvalues and eigenvectors in
the vicinity of a target at once, and by scanning the target across the complex plane,
one may obtain an accurate numerical approximation of the entire spectrum.
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15.4 Linear MHD: initial value problems

The computation of the steady solution to a linearly excited, driven, MHD configu-
ration discussed in Section 15.2.2, or the computation of its spectrum of eigenoscil-
lations and instabilities presented in Sections 15.2.3 and 15.2.4, involved the solu-
tion of a boundary value problem and a suitable choice for the spatial discretization.
In the efficient calculation of the steady state of a driven dissipative configuration,
we directly assumed the asymptotically expected temporal periodicity of the driver.
We then necessarily lost all information on the time scales to reach this steady state
and had no information on transient phenomena that may occur in the initial driving
phase. The study of this transient phase requires the accurate determination of the
temporal evolution of the system, i.e. the integration of the MHD equations in time.
In what follows, we first introduce several basic concepts associated with spatio-
temporal discretizations, and then discuss specific strategies for and examples of
initial value problems in linear MHD.

15.4.1 Temporal discretizations: explicit methods

Similar to our presentation of the various spatial discretization methods, we in-
troduce some basic terminology concerning temporal discretization techniques by
first considering a suitable model problem. It should be clear how these can subse-
quently be applied to the more complicated linearized MHD equations. Following
e.g. LeVeque [302], it is instructive to focus on a seemingly trivial problem at first,
namely the numerical solution to the linear advection equation. This equation con-
siders a scalar variable u depending on one spatial coordinate x and on time twhich
obeys the following prototype hyperbolic equation:

∂u

∂t
= −v ∂u

∂x
, (15.101)

with v a given constant. The above equation is the simplest hyperbolic equation
containing an “advection” term in the RHS. The equation just states that u is carried
along (advected) without change of form in its arbitrary initial shape u0(x, t = 0)
and the solution is a wave propagating in the positive x-direction (when v > 0):

u(x, t) = u0(x− vt) . (15.102)

Since we know the exact analytic solution at any time, the intricacies of numerical
methods can easily be quantified. Moreover, Eq. (15.101) can be written in the
form of a conservation law, viz.

∂u

∂t
+
∂F

∂x
= 0 , (15.103)

showing that u is a conserved quantity with F = vu its associated flux.
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The numerical integration of Eq. (15.101) involves a discretization in both space
and time. When we discretize the time coordinate in discrete time levels tn = nΔt,
the temporal treatment can be explicit, implicit, or “semi-implicit”. In explicit
time integration, values of quantities at a new time level tn+1 are computed from
explicitly available information on time level tn. Implicit or semi-implicit schemes
will also involve the evaluation of the unknowns at the new time level, and will be
discussed in Section 15.4.3. An explicit method for Eq. (15.101) could replace the
spatial derivative with the second-order central difference (15.16) evaluated at tn

and the time derivative with the first-order accurate expression (15.15) to get

un+1
i − uni

Δt
= −v u

n
i+1 − uni−1

2 Δx
, (15.104)

or, rearranging the terms,

un+1
i = uni − v

Δt
Δx

uni+1 − uni−1

2
. (15.105)

As before, the subscript refers to the grid point and the superscript to the time
step, such that uni = u(iΔx, nΔt). The above scheme is called the forward Euler
scheme or Euler’s FTCS scheme (forward time central space), but we will shortly
explain why this method is utterly useless. Formally, it is second-order accurate in
space and first-order accurate in time and its “stencil” in the x − t-plane is shown
in Fig. 15.14(a). The difference equation (15.105) is a consistent representation of
the model PDE (15.101): the local truncation errors vanish in the limit Δx → 0
and Δt→ 0.

In order to be of any practical value, a spatio-temporal discretization should
not only be consistent, but also obey numerical stability constraints. Computers
always round off numbers and a scheme solving the differential equation (15.101)
is stable only if these round-off errors shrink or at least do not grow (accumulate)
during the time progression. The growth or decay of these round-off errors in a
numerical method can usually be evaluated by the von Neumann method. This is
a local stability analysis, i.e. it is assumed that the coefficients of the difference
equations vary slowly so they can be considered constant in both space and time.
The round-off error ε(x, t) can then be Fourier analyzed in space and time and each
Fourier term

εk(x, t) = ε̂keλteikx (15.106)

can be studied separately. (Notice the similarity between stability analysis of a
numerical scheme and stability analysis of a magneto-hydrostatic equilibrium.).
The condition for a numerically stable scheme then reduces to∣∣∣∣εn+1

k

εnk

∣∣∣∣ = |eλΔt| ≤ 1 , for every k . (15.107)
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Fig. 15.14 Stencils in the x−t plane for (a) Euler’s FTCS scheme, (b) Lax–
Friedrichs scheme, (c) leapfrog scheme, (d) one-step Lax–Wendroff scheme.

When we analyze the numerical stability of the difference equation (15.105), we
must admit that the numerical solution constitutes at best the exact solution, say
E, plus the round-off error ε. Since the exact solution E satisfies the equation
by definition, we need to insert Eq. (15.106) into Eq. (15.105) and we get, after
dividing by εnk ,

eλΔt = 1− vΔt
Δx

eikΔx − e−ikΔx

2
= 1− i

vΔt
Δx

sin (kΔx) . (15.108)

We are thus led to conclude that this scheme is unconditionally unstable since∣∣∣∣εn+1
k

εnk

∣∣∣∣ > 1 , for every k , (15.109)

which makes the Euler FTCS scheme fairly useless. Note that if v were a function
of x and t (or even u, which would bring in nonlinearity), it would still be treated
as constant in the von Neumann method since this performs a local analysis. Nev-
ertheless, this method is easy to apply and generally yields correct answers.

� Exercise Analyze a scheme similar to Eq. (15.105), viz. Euler’s FTFS method (forward
time forward space). How does the discretization of our model PDE look like in this
scheme? Show that this method is also unconditionally unstable for v < 0. Use a physical
argument to explain why the scheme is unstable then. �

One may alter the discrete formula (15.105) in several ways to resolve this nu-
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merical stability problem. Generally speaking, there are three types of solution.
First, one can restore stability by the addition of “numerical diffusion” to damp
the numerical (non-physical) instability. A second “cure” involves the use of a dis-
cretization with the same space-time symmetry as the original PDE. A third way
out is the use of an implicit scheme. We start with examples of the first two strate-
gies, while the third cure is discussed in Section 15.4.3. Upon replacing uni in
Eq. (15.105) by an average value of un between xi−1 and xi+1, we get

un+1
i =

uni+1 + uni−1

2
− v Δt

Δx
uni+1 − uni−1

2
, (15.110)

which is called the Lax–Friedrichs scheme (or Lax scheme). The scheme (15.110)
is also a consistent, explicit scheme with a simple stencil shown in Fig. 15.14(b).
Rearranging the terms in Eq. (15.110) yields

un+1
i − uni

Δt
= −v u

n
i+1 − uni−1

2Δx
+

(Δx)2

2Δt
uni+1 − 2uni + uni−1

(Δx)2
, (15.111)

which can be recognized as a discretization of

∂u

∂t
= −v ∂u

∂x
+

(Δx)2

2Δt
∂2u

∂x2
. (15.112)

In other words, we have added a diffusion term to the original equation which intro-
duces “numerical dissipation” or “numerical viscosity”. Hence, this is an example
of the first cure to the stability problem. As a matter of fact, the von Neumann
stability analysis for the Lax–Friedrichs scheme (15.110) yields

eλΔt = cos (kΔx)− i
vΔt
Δx

sin (kΔx) . (15.113)

The resulting condition for stability reads:

C ≡ |v|Δt
Δx

≤ 1 , (15.114)

which is a limitation of the time step Δt for a given resolution Δx. The condition
(15.114) is called the Courant–Friedrichs–Lewy condition (CFL) after Courant,
Friedrichs and Lewy who derived it in one of the first papers on finite difference
methods in 1928 [96], and C is called the Courant number. The CFL condition
is only a necessary condition for stability, not sufficient. Its physical meaning is
that the explicit time step has to be smaller than the time required for the fastest
wave in the system to propagate from one grid point to the next. Stated differently,
“the domain of dependence of the differential equation should be contained in the
domain of dependence of the discretized equations” [226, 477]. If the time step is
too big, the physical domain of dependency is larger than the stencil dependency
provided by the scheme and this lack of information leads to an instability. The
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physical domain of dependence is bounded by the physical characteristics in the
x − t plane corresponding to the fastest accessible signal speed. For our model
problem the physical characteristics are given by dx/dt = v, i.e. they are straight
parallel lines (see Fig. 15.15).

Fig. 15.15 Physical meaning of the CFL condition. (a) If Δt is small enough, the
“physical” domain of dependence lies within the “numerical” domain of depen-
dence. (b) If not, the scheme is not able to provide all the information needed to
determine the solution in the next time step and becomes unstable. In the model
problem, there is only one characteristic through each point, so that the situation
sketched here applies to a second order wave equation with two characteristics
dx/dt = ±v.

Let us now use the “flux notation”, i.e. the model equation (15.103) considered
in “conservative form”. For our model equation the “flux” is F = vu. This con-
servative form makes generalizations to the conservation laws of ideal MHD more
obvious and ensures that the numerical schemes discussed below are directly ap-
plicable to the finite volume method often used for hyperbolic nonlinear problems,
to be discussed in Section 19.1.4. Above, the unstable forward Euler scheme has
been “stabilized” by adding numerical dissipation. Now, we discuss an example of
a second “cure”, viz. mimicking the symmetry of the PDE in the discretized equa-
tion. Using a central discretization for both x and t, e.g., one gets the “leapfrog”
scheme:

un+1
i = un−1

i − Δt
Δx

(Fni+1 − Fni−1) , (15.115)

with Fni the “numerical” flux function, i.e. Fni ≡ vuni . This scheme is second-
order in both time and space. The time levels in the t-derivative “leapfrog” over
the time levels in the x-derivative, as can be seen in Fig. 15.14(c). Notice that this
scheme requires storage of un and un−1 to determine un+1.

Another method which is also second-order in time and very extensively used
for MHD (and CFD) calculations, is the Lax–Wendroff scheme. The Lax–Wendroff
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scheme is based on a truncated Taylor series expansion around u(x, t):

u(x, t+ Δt) ≈ u(x, t) + Δt
∂u

∂t
(x, t) + 1

2(Δt)2
∂2u

∂t2
(x, t) . (15.116)

By using Eq. (15.101), the time-derivatives in this truncated series can be re-
placed by derivatives with respect to x. This yields the second-order accurate
Lax–Wendroff scheme:

un+1
i = uni − 1

2

Δt
Δx

v (uni+1−uni−1)+ 1
2

(Δt)2

(Δx)2
v2 (uni+1−2uni +uni−1) . (15.117)

Clearly, this is another example of the first cure to the numerical instability prob-
lem: the LHS term and the first two RHS terms are identical, as in the forward
Euler scheme, while the third term in the RHS adds numerical dissipation. The
scheme is explicit and, hence, only conditionally stable. Its stencil is the same as
for the Euler FTCS scheme and displayed in Fig. 15.14(d).

� Exercise Show that for our model problem the leapfrog scheme (15.115) requires the
CFL condition to be satisfied for numerical stability. Notice that you obtain a quadratic
equation in exp (λΔt) now due to the occurrence of three time levels in the scheme. Fur-
ther, show that for our model problem the Lax–Wendroff scheme (15.117) again requires
the CFL condition to be satisfied for numerical stability. �

Example MHD application: p-mode interactions with sunspots An example lin-
ear MHD application where a Lax–Wendroff type scheme is used for the temporal
integration of the linearized MHD equations is taken from Cally and Bogdan [74].
These authors simulated f - and p-mode interactions with a stratified “sunspot” in
a purely planar approximation. The spot was represented by a mere slab of vertical
field of sunspot strength, but took into account the realistically strong gravitational
stratification of the plasma. Both internal “spot” plasma and the external unmagne-
tized medium had a polytropic stratification (taking account of the offsets required
to ensure horizontal pressure balance) and the background density resulted from
vertical hydrostatic equilibrium. Using a finite difference spatial discretization of
the linearized MHD equations in conservation form, the evolution of the driven
problem was simulated. The driver consisted of prescribing the horizontal velocity
field at one side of the slab from the exact eigenfunction of the non-magnetic poly-
trope fitting the horizontal domain size. A staggered grid was employed to ensure
numerical conservation. These simulations demonstrated convincingly that im-
pinging f - or p-modes are partially converted to slow magneto-atmospheric grav-
ity waves within the stratified magnetic slab. In turn, this leads to a clear deficit in
the amplitude of the emerging, non-magnetic modes exiting the “spot” on the far
side of the driver. As seen in Fig. 15.16, showing the horizontal velocity field when
an incident p- mode is driving the slab from the left, the incoming acoustic mode
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Fig. 15.16 A snapshot of the temporal evolution of a p-mode impinging on a strat-
ified sunspot. The grey scale of the horizontal velocity shows that part of the in-
coming acoustic power (driver is at left) gets converted into downward propagating
magneto-acoustic slow modes in the magnetized slab representing the sunspot. The
top solid line indicates the square of the vertical velocity along a temperature iso-
therm marked by the dotted line. If the spot is removed, this velocity profile would
follow the dashed line shown. (From Cally and Bogdan [74].)

gets coupled at the fore boundary of the magnetic slab (between x = 20 Mm and
x = 50 Mm), at depths where β ≈ 1, to downward propagating magneto-acoustic
slow or s-modes. These propagate away from this conversion layer along the verti-
cal field lines, and form a very natural explanation for the observationally detected
p-mode power absorption in sunspot and plague regions. Indeed, at the far side,
the exciting p-mode re-emerges but is clearly reduced in amplitude and also mixed
with an f -mode of the same frequency but shorter horizontal wavelength. In more
realistically stratified sunspot models, the additional effects of resonant absorption
could act as an extra sink of incoming acoustic power, as already explained in
Chapter 11 [1].

Semi-discretization I All the schemes discussed so far are presented as if space
and time are discretized simultaneously. In practice, one may use the “method of
lines” also known as semi-discretization for treating a system of PDEs numerically.
This implies that one first only discretizes in space, turning the problem into a set
of ODEs in time. The latter can be solved by one of the numerous methods avail-
able for integrating ODEs, e.g. a second or fourth order Runge–Kutta scheme or a
predictor–corrector approach. Obviously, semi-discretization is very useful when



232 Computational linear MHD

higher-order (> 2) accuracy is needed in time. The approach is also powerful
because any spatial discretization method (FD, FE, spectral, or the finite volume
method) of any accuracy can then be coupled to the ODE solver for the time dis-
cretization. For explicit schemes such as those discussed before, the CFL stability
constraint on the time step will typically require the use of the same order of ac-
curacy for treating the then separate temporal and spatial discretizations. This is
no longer the case when dealing with implicit treatments, where as we will see the
stability constraint will be lifted.

Runge–Kutta methods The application of the semi-discretization method on the
model problem given by Eq. (15.101) yields an initial value problem determined
by an ODE of the form

du

dt
= f(t, u) , (15.118)

(where f(t, u) denotes an expression depending on t and u) and an initial condition

u(t0) = u0 . (15.119)

When f and ∂f/∂u are continuous on an (open) rectangle in the (t, u)-plane
containing the point (t0, u0) it can be proven that there exists a unique solution
u = φ(t) of this problem in an interval around t0. When Eq. (15.118) is nonlinear
the solution of this problem is not trivial and often needs to be solved numerically,
e.g. by the forward Euler scheme discussed in Section 15.4.1 or the backward Euler
scheme discussed in Section 15.4.3. Both these schemes, however, are only first or-
der accurate in time. There exists a class of schemes we now call the Runge–Kutta
methods that enables much faster convergence in time. The Runge–Kutta formulas
contain weighted averages of the value of f(t, u) in different points in the time
interval [tn, tn+1]. The second order formula uses a trial step at the mid-point of
the interval to cancel out lower order error terms. It is given by

un+1 = un + Δt kn2 +O(Δt)3 , (15.120)

with

kn1 = f(tn, un), kn2 = f(tn + 1
2Δt, un + 1

2Δtkn1). (15.121)

This two-step method is also known as the predictor–corrector method, where kn2

corresponds to evaluating the function f at time tn+ 1
2 . However, the method origi-

nally developed by Runge and Kutta is now called the classic fourth order four-step
Runge–Kutta method, in short the Runge–Kutta method. It is given by

un+1 = un + Δt 1
6(kn1 + 2kn2 + 2kn3 + kn4) +O(Δt)5 , (15.122)
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where

kn1 = f(tn, un), kn2 = f(tn + 1
2Δt, un + 1

2Δtkn1),

kn3 = f(tn + 1
2Δt, un + 1

2Δtkn2), kn4 = f(tn + Δt, un + Δtkn3). (15.123)

It is not difficult to show that the scheme (15.122) differs from the Taylor expansion
of the exact solution by terms that are proportional to (Δt)5, though the derivation
is rather lengthy. On a finite time interval, the global truncation error is smaller
than a constant times (Δt)4. The scheme is thus fourth order accurate (for the
time derivative) in the step size Δt. In other words, the order of consistency of
this method is equal to four, and there are four intermediate steps necessary, viz.
the determination of kn1, . . . , kn4. The Runge–Kutta method thus converges three
orders of magnitude faster than the Euler method with respect to the time step. Yet,
it is relatively easy to implement and sufficiently accurate to tackle most problems
efficiently. This is also true for so-called adaptive Runge–Kutta methods which
take variable step sizes Δt where needed.

15.4.2 Disparateness of MHD time scales

In MHD, the CFL time step limitation for explicit codes is very severe due to the
disparate times scales associated with the various MHD wave types. In practice,
this makes explicit schemes useless for the computation of resistive instabilities, as
it would involve too many discrete time steps and CPU time. In particular, the fast
wave sub-spectrum is responsible for this problem since it accumulates at infinity.
Let us analyze the consequences of the disparate time scales for simulating the
linear (or nonlinear) dynamical behavior of a tokamak plasma. In tokamak geom-
etry, the time scale associated with the compressional fast magneto-sonic wave is
measured by the transit time of the fast magneto-sonic wave over the small plasma
radius a, τfast ≡ a/vf , with vf the phase velocity of the fast magneto-sonic wave.
For the low-β plasmas in tokamaks (where β is the ratio of the plasma pressure
and the magnetic pressure: β ≡ 2μ0p/B

2), the fast magneto-sonic speed is nearly
equal to the Alfvén speed, vf ≈ vA, and, hence, τfast ≈ a/vA. Shear Alfvén
waves, on the other hand, propagate mainly along the magnetic field lines. Hence,
the time scale related to these waves is measured by the transit time of the shear
Alfvén wave over the length 2πR0 of the torus: τAlfv ≡ 2πR0/vA, where R0 is
the major radius of the tokamak. In large aspect ratio R0/a 	 1 tokamaks (the
argument also holds for large aspect ratio solar coronal loops), the time scales τfast

and τAlfv differ substantially.
When resistive instabilities and Ohmic dissipation are studied, there is a third

time scale of interest, viz. the time scale of resistive diffusion of magnetic fields,
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τdiff ≡ μ0a
2/η. The ratio of the compressional time scale to the time scale of

resistive diffusion is equal to the magnetic Reynolds number Rm. In tokamak
plasmas, Rm is typically 106–108 and in the large aspect ratio solar coronal loops
Rm may reach values up to 1010. Clearly, the resistive diffusion time scale is much
longer than both τfast and τAlfv so that we have

τfast � τAlfv � τdiff . (15.124)

Consequently, the study of wave problems in tokamaks or solar coronal loops
where dissipation is important leads inevitably to “stiff” equations in which the
dependent variables change on two or more very different scales. Stiff problems
make explicit methods inefficient to use, or may even render them unstable, and
the cure to solve this problem is the use of implicit methods.

15.4.3 Temporal discretizations: implicit methods

Consider again Euler’s FTCS scheme. By evaluating the spatial derivative in this
scheme in the (n+ 1)th time step instead of the nth, one obtains the “BTCS Euler
scheme” (backward in time now):

un+1
i = uni − v

Δt
Δx

un+1
i+1 − un+1

i−1

2
. (15.125)

Notice that now un+1
i cannot be expressed in terms of known values at time index

n anymore. It also depends on unknown values at time index n + 1, viz. un+1
i+1

and un+1
i−1 . The scheme is therefore called implicit. For (15.125), this results in a

tridiagonal system for un+1
i , i = 1, . . . N . A von Neumann stability analysis of the

scheme (15.125) yields

e−λΔt = 1 + iv
Δt
Δx

sin(kΔx) , (15.126)

so that

|eλΔt| = 1
|1 + iC sin (kΔx)| < 1 for all k . (15.127)

Hence, this scheme is unconditionally stable, and any large time step Δt is in prin-
ciple allowed. However, for wave problems, the time step must be much smaller
than the wave period of interest to avoid numerical damping. This is so since
the implicit treatment improves the stability of the scheme, but not the accuracy.
Larger time steps introduce larger truncation errors. The stencil of scheme (15.125)
is given in Fig. 15.17(a) where the three dots at time level n+ 1 imply the tridiag-
onal system solve. This introduces more computational work per time step, so the
use of an implicit scheme only pays off when large enough time steps can be taken
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to make the total amount of work to reach a fixed future time decrease. For wave
problems, this may often not be the case.

Fig. 15.17 Stencils of (a) BTCS Euler scheme and (b) Crank–Nicolson method.

The implicit backward Euler scheme (15.125) is only first-order in time. Upon
writing the spatial differences in the right hand side of the explicit unstable forward
Euler scheme (15.105) in terms of averages between the nth and the (n+1)th time
step, one gets

un+1
i = uni − 1

4v
Δt
Δx

(un+1
i+1 + uni+1 − un+1

i−1 − uni−1) , (15.128)

which is called the Crank–Nicolson method. This scheme is second-order accurate
in both time and space and again requires a tridiagonal system to be solved in each
time step. Its stencil is shown in Fig. 15.17(b). The Crank–Nicolson method is
widely used in CFD and computational MHD.

� Exercise Show that the scheme (15.128) is unconditionally stable. �

� Semi-implicit schemes The term “semi-implicit” for temporal discretization techniques
is used for several schemes which are neither explicit nor fully implicit. Different options
can be, e.g., to treat some variables explicitly and others implicitly, or to update only spe-
cific terms in the equations implicitly, or to relax the CFL condition somewhat by treating
only the fastest sub-spectrum of waves implicitly. The latter alternative has been applied
in particular for nonlinear MHD with a lot of success [214]. When the fast magneto-sonic
waves are handled in an implicit way, the time step is limited by the CFL condition on the
Alfvén waves. This is much less restrictive in tokamaks because of Eq. (15.124). �

Semi-discretization II Returning to the semi-discretization method, we can con-
sider the quite general model problem involving a vector u of unknowns. These un-
knowns are introduced by the spatial discretization (FDM, FEM, (pseudo-)spectral,
etc.) and one obtains an ordinary differential equation for u:

du
dt

= f(u) , (15.129)
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where f could even be a nonlinear function of u. Discretize this ODE in time by
the following scheme:

un+1 = un + Δt
[
αf(un+1) + (1− α)f(un)

]
, (15.130)

with parameter α. For α = 1/2 the above implicit scheme is called the trapezoidal
method, while for α = 1 the scheme reduces to the implicit “backward Euler”
scheme. For α = 0 we get the explicit forward Euler method. The scheme is only
second-order accurate for α = 1/2. As a matter of fact, with a central formula for
the flux the trapezoidal method is exactly the same as the Crank–Nicolson method
discussed above for the model problem (15.101). For a nonlinear f , the above
scheme involves the (iterative) solution of a nonlinear system at each time step.
The system can be simplified by linearizing f(un+1), i.e. by replacing this term by

f(un+1) ≈ f(un) +
∂fn

∂u
(un+1 − un) , (15.131)

where the matrix
∂fn

∂u
is called the “Jacobian matrix” of f . With this linearization

(15.131), the scheme (15.130) reduces to

un+1 = un + Δtα
∂fn

∂u
(un+1 − un) + Δtf(un)

⇒
[
I −Δtα

∂fn

∂u

]
δu = Δtf(un) , (15.132)

which is a linear system for the unknowns δu ≡ un+1−un. Notice that this equa-
tion is equivalent to the first step of a Newton iteration on Eq. (15.130), which may
need to be expanded to a full Newton iteration in the case of nonlinear problems.

15.4.4 Applications: linear MHD evolutions

If we follow the semi-discretization approach for the linearized MHD equations
(15.63)–(15.66), we obtain a system of ODEs in time. In a manner analogous
to the discussion of the driven problem in Section 15.2.2, but now keeping the
unknown temporal behavior, we can write

Ax = B
dx
dt

+ f , (15.133)

where f again results from a possible external driving source or initial perturbation.
For linear (and even for nonlinear) stability calculations, the solution of this system
as a function of time will automatically yield the expected growth at early times
of the most unstable mode out of a random initial vector f . Moreover, this initial
value approach also enables us to simulate the nonlinear evolution of instabilities.
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We discuss two example linear MHD applications where a different implicit time
discretization was used to overcome the CFL time step constraint, thus enabling us
to obtain quantitative insight into long-term, resistively controlled, phenomena.

(a) Determining growth rates of linear resistive instabilities Specifying the dis-
cussion to cylindrical geometry and linear MHD, we can combine, as in the steady-
state approach, the finite-element discretization for the radial direction and the
spectral discretization for the other two spatial directions. The Galerkin method
then yields system (15.133) (without f for a non-driven case) with the matrices A
and B exactly the same as before. If we perform a forward time discretization, we
get the integration formula

xn+1 = (ΔtB−1A + I)xn . (15.134)

Numerical stability limits the time step to

Δt ≤ 2/λmax , (15.135)

where λmax is the largest eigenvalue of the system Ax = λBx . This CFL con-
dition is often not acceptable in MHD because λmax tends to infinity in the limit
of infinite resolution in the direction normal to the magnetic flux surfaces. The
generalized trapezoidal method (15.130) then gives the following algorithm for the
time advance:

[−B + αΔtA ]xn+1 = −[B + (1− α) ΔtA ]xn , (15.136)

which is unconditionally stable for α ≥ 0.5.
Kerner, Jakoby and Lerbinger [273] applied this technique to analyze resistive

waves (which requires an appropriate initialization), and current- and pressure-
driven resistive instabilities for cylindrical equilibrium configurations. They typi-
cally used α = 0.52 in order to introduce some numerical damping to damp out the
fast modes. An example is shown in Fig. 15.18, where the growth rate of a resistive
instability is quantified for such a cylindrical “tokamak-like” equilibrium configu-
ration with a peaked current density and constant toroidal field. They considered
the class of profiles

jz = j0(1− r2/a2)ν , Bz = 1, ρ = 1,

with a the radius of the cylinder. For this class, the ratio of the safety factor on
the surface and on the axis q(a)/q(0) = ν + 1. They set ν = 1 and adjusted the
constant j0 to vary q(0), since j0 is connected with q(0) by j0 = 2k/q(0), where
k = 2π/L defines the periodicity length of the cylinder (simulating a tokamak with
large aspect ratio). The wall is placed directly at the plasma surface (cf. model I
in Section 4.6.1 [1]). This equilibrium is known to be unstable against the m = 1
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tearing mode (see Section 14.2.2) if the q = 1 surface is located inside the plasma.
This instability is avoided by making sure that q > 1 over the whole plasma radius.
The m = 2 tearing mode is then the most dangerous instability. The growth rate
of the most unstable mode is plotted versus q(a) in Fig. 15.18. When the wall
is placed directly at the surface, the m = 2 tearing mode is unstable for 2.20 ≤
q(a) ≤ 4.00. The growth rates were obtained by studying the time evolution of an
initial random starting vector with a time step Δt = 400 for the strong instabilities
near nq(a) = 3, and Δt = 1000 for the weaker instabilities around nq(a) = 2.1.
For nq(a) ≤ 2.3 the instability changes from a current-driven into a pressure-
driven mode.

Fig. 15.18 Growth rates of resistive instabilities versus total current, parameterized
by q(a), showing the transition (at nq = 2.3) from pressure driven to current driven
instabilities. (From Kerner et al. [273].)

When an external driving source excites the plasma, the implementation of the
boundary conditions through the boundary terms in the weak form of the equations
yields a “force” term f and a small change to the matrix A → A′, as discussed in
Section 15.2.2. Hence, we now retain f in (15.133) and the algorithm for the time
advance is modified to

[−B + αΔtA′ ]︸ ︷︷ ︸
≡ Â

xn+1 = −[B + (1− α) ΔtA′ ]︸ ︷︷ ︸
≡ B̂

xn + Δt[(1− α)fn + αfn+1]︸ ︷︷ ︸
≡ f̂(t)

.

(15.137)
This equation for xn+1 is of the same form as Eq. (15.136) with the exception that
the RHS is now time dependent through the driving term f̂(t). However, the matrix
operations are straightforward and preserve the block-tridiagonal structure. Hence,
in each time step the above system (15.137) can be solved in the same way as the
steady state problem (Section 15.2.2). Notice that the Δt is constant so that the
matrices Â and B̂ are constant in time. This means that the CPU time consuming
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Fig. 15.19 The temporal evolution of the radial velocity at the loop axis, for a sud-
denly perturbed coronal loop. The inset shows the initial leaky transient, while the
main plot shows the longer-period attenuated oscillation identified with a resonantly
damped kink mode. (From Terradas et al. [434].)

LU factorization needs to be carried out only once. The solution process itself,
however, must be carried out several 104 times since the time step Δt is limited by
the period of the external driving source. As concrete examples of this approach,
see the results on time scales and transient phenomena involving resonant absorp-
tion and wave heating effects discussed in Chapter 11 [1]. For example, Figs. 11.8
and 11.9 [1] have been obtained with the above semi-discretization method.

(b) Damped coronal loop oscillations A representative example of a linear MHD
time evolution concentrates on solar coronal loop dynamics. The advent of mod-
ern high-resolution, high cadence, views on the highly structured coronal plasma
by space missions such as the transition region and coronal explorer (TRACE, see
e.g. the image in Fig. 8.10 [1]), has identified many MHD wave modes in coronal
loops. Routinely, transverse oscillations are detected in these loops, e.g. in con-
nection with a solar flare disruption of a neighboring arcade. Detailed information
on the oscillation amplitudes, periods and damping times has been collected. Al-
though the observed loop displacements are large, linear MHD theory can still be
applicable since the associated velocities are small with respect to the Alfvén speed
in the low-β coronal conditions. Terradas et al. [434] solved the linearized resistive
MHD equations for a cylindrical coronal loop model exploiting a zero-β limit. In
this limit, slow modes are eliminated and the governing equations need only retain
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radial and azimuthal velocity perturbations together with the linear field B1. The
set of equations was semi-discretized, and the spatial discretization employed a
finite element treatment of the radial direction, and a Fourier handling in the ignor-
able directions of the equilibrium. A single Fourier mode pair (m, kz) = (1, π/L)
was chosen to isolate kink displacements of a line-tied loop of length L. The
equilibrium taken considered a uniform axial magnetic field B0 = B0ez , and a
smoothly varying density profile connecting the higher internal loop density ρi to
the external coronal value ρe. The temporal discretization used the second order
Crank–Nicolson approach, and simulated the long-term evolution of the response
of the loop to a sudden radial velocity perturbation impinging on it. In Fig. 15.19,
the typical temporal behavior of the radial velocity at the loop axis is shown: sev-
eral phases characterized by totally different time scales are evident. The authors
identified the first series of strongly attenuated short-period oscillations seen in the
inset of Fig. 15.19 with a leaky eigenmode of the loop configuration. As the per-
turbation was selected to deposit a considerable amount of energy in the loop, this
first phase corresponds to the resulting excitation of fast waves carrying energy ra-
dially off to infinity. The damped longer period oscillation eventually dominating
the loop dynamics was then found to be in exact agreement with the presence of
a resonantly damped quasi-mode. This global kink eigenoscillation is coupled to
torsional Alfvén motions in a thin resonant layer due to the density variation. The
strongly localized resistive dissipation quickly leads to the observed amplitude de-
cay. By also computing the eigenmodes of the system, a one-to-one correspon-
dence with the damped quasi-mode was established. This time-dependent analysis
of loop oscillations convincingly showed the combined interpretative power of both
eigenvalue and initial value approaches.

15.5 Concluding remarks

Computational MHD is essential for present-day modeling of fundamental plasma
processes. We briefly discussed basic concepts of spatial and temporal discretiza-
tion techniques, and gave various applications in computational linear MHD. Ap-
plications considered steady state as well as normal mode codes, together with time
evolution codes for simulating linear wave dynamics. Numerical MHD simulations
become more realistic as increasing computing power allows the consideration
of higher Reynolds numbers (introducing smaller length scales and longer time
scales), more complex geometries (curvature, stratification, X-points), and more
“physics” (background flow, thermal conduction, etc.). This requires ever more
efficient algorithms for dealing with large linear systems and eigenvalue problems,
which exploit the power of massively parallel computer systems. We conclude
this chapter by pointing out some overall guidelines for selecting suitable numer-
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ical methods. The choice of the numerical method for a specific problem should
always consider the following criteria.

– Consistency: the approximation should converge to the real solution in the limit of
vanishing Δt and Δx.

– Numerical stability: the round-off errors should not grow (accumulate).

– Accuracy: the approximation should be of a sufficiently high order in Δx and Δt or
in the dimensionless parameters

δ =
∣∣∣Δx
u

∂u

∂x

∣∣∣ and C = v
Δt
Δx

.

– Efficiency: the CPU time consumption and computer memory requirements should be
optimized for a given accuracy.

– Monotonicity: a (locally) monotone solution at time t should remain monotonic at
t+ Δt, i.e. at all later times.

The last criterion is of particular relevance when dealing with nonlinear, shock-
dominated problems. In Chapter 19, we continue the discussion of numerical
methods, with a particular emphasis on nonlinear MHD computations.

15.6 Literature and exercises

Notes on literature

Finite differences and finite elements

– A good introduction to the basic theory and the practical implementation of the finite
element method is given by William G. Strang and George J. Fix in An Analysis of the
Finite Element Method [424]. Some sections are dated but the book is well-written,
easy reading and contains many ideas on the behavior of finite elements which are
interesting from both a mathematical and a practical point of view.

– A good introduction to the theory of finite difference and finite element methods is
given by Stig Larsson and Vidar Thomée, Partial Differential Equations with Numer-
ical Methods [297], Chapter 2, Sections 4.1 and 5.1.

– Dianne P. O’Leary’s Scientific Computing with Case Studies [356] is a practical guide
to the numerical solution of linear and nonlinear differential equations, optimization
problems and eigenvalue problems. The exercises below are inspired by the home-
work assignment “Finite Differences and Finite Elements” of Chapter 23. With her
consent, we adopted the assignment to the notation used by us.

Linear algebraic methods

– A good insight into the construction of iterative methods for the solution of linear
systems with a large number of unknowns is provided by H. A. van der Vorst in
Iterative Krylov Methods for Large Linear Systems [463]. Van der Vorst first discusses
the main concepts and then explains how they lead to several efficient solvers such
as CG, GMRES and Bi-CGSTAB. He also explains the main ideas behind the use of
pre-conditioners and how they are constructed.
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Exercises

[ 15.1 ] Finite difference method

We consider the simple problem

−[p(x)u′(x)]′ + q(x)u(x) = f(x), for x ∈ [0, 1],

where the functions p(x), q(x) and f(x) are given and u(0) = u(1) = 0. We will assume
that 0 < p(x) ≤ p0 and q(x) ≤ 0 for x ∈ [0, 1].

– First rewrite the derivative as −p(x)u′′(x) − p′(x)u′(x). Then, use the first-order
backward difference method (the equivalent of Eq. (15.15) of Section 15.1.2) for
u′(x) and the formula (15.17) for the second-order derivative u′′(x). Note that p′(x)
will be computed analytically so that no approximation to it is needed.

– Choose mesh points xj = jh, where h = 1/(M − 1) for some integer M , and
solve for uj ≈ u(xj) for j = 1, . . . ,M − 2 to obtain an equation for each unknown
by substituting the finite difference approximations for u′′ and u′ in the differential
equation and then evaluating the equation at x = xj .

– Let M = 6 and write the four finite difference equations at x = 0.2, 0.4, 0.6 and 0.8.
Notice that the matrix you constructed has non-zeros on only three bands around the main
diagonal; all other elements are zero. The full matrix requires (M − 2)2 storage locations,
but, if we are careful, we can instead store all of the data in O(M) locations by agreeing
to store only the non-zero elements, along with their row and column indices. This is a
standard technique for storing sparse matrices, those whose elements are mostly zero.

[ 15.2 ] Finite difference method: implementation

Let us now see how this finite difference method is implemented.
– The Matlab function finitediff1.m, found on the website of Ref. [356], imple-

ments the finite difference method for our equation. The inputs are the parameter M
and the functions p, q and f that define the equation. Each of these functions takes a
vector of points as input and returns a vector of function values. (The function p also
returns a second vector of values of p′.) The outputs of finitediff1.m are a vector
ucomp of computed estimates of u at the mesh points xmesh, along with the matrix A
and the right hand side g from which ucomp was computed, so that A ucomp = g.

– Add documentation to the function finitediff1.m so that a user could easily use
it, understand the method, and modify the function if necessary.

[ 15.3 ] Finite difference method: improvement

There is a mismatch in finitediff1.m between our approximation to u′′, which is second
order in h, and our approximation to u′, which is only first order. We can compute a better
solution, for the same cost, by using a second order (central difference) approximation to
u′, so next we will make this change to our function.

– Define a central difference approximation to the first derivative by

u′(x) = [u(x+ h)− u(x− h)]/(2h) +O(h2).

– Modify the function of Problem 15.2 to produce a function finitediff2.m that uses
this approximation in place of the first order approximation.

[ 15.4 ] Finite element method: Galerkin approach

For the finite element method, we keep the differential equation of Exercise 15.1.



15.6 Literature and exercises 243

– Apply the Galerkin approach and use integration by parts to obtain∫ 1

0

p(x)u′h(x)φ
′
h(x) + q(x)uh(x)φh(x) dx =

∫ 1

0

f(x)φh(x) dx,

for all functions φh ∈ Sh, a subspace of H1
0 (all functions that satisfy the boundary

conditions and have a first derivative), with the integral of (φ′h(x))
2 on [0, 1] finite.

[ 15.5 ] Finite element method: preparation for implementation

Choose for Sh the set of piecewise linear elements that are continuous and linear on each
interval [jh, (j + 1)h], j = 0, . . . ,M − 2, where h = 1/(M − 1). Use as basis of Sh,
the set of hat functions φj , j = 1. . . . ,M − 2 defined by Eq. (15.29). These functions are
designed to satisfy φj(xj) = 1 and φj(xk) = 0 if j �= k.

– Put the unknowns uj in a vector u and write the resulting system of equations as
Au = g, where the (j, k) entry in A is a(φj , φk) and the j th entry in g is (f, φj).

[ 15.6 ] Finite element method: implementation (linear elements)

Write a function fe−linear.m that has the same inputs and outputs as finitediff1.m
but computes the finite element approximation to the solution using piecewise linear ele-
ments. Remember to store A as a sparse matrix.

[ 15.7 ] Finite element method: implementation (higher order elements)

Better accuracy can be achieved if we use higher order elements; for example, piecewise
quadratic elements would produce a result within O(h3) for smooth data. A convenient
basis for this set of elements is the piecewise linear basis plus M − 1 quadratic functions
ψj that are zero outside [xj−1, xj ] and satisfy

ψj(xj) = 0, ψj(xj−1) = 0, ψj(xj−1 + h/2) = 1 (for j = 1, . . . ,M − 1).

– Write a function fe−quadratic.m that has the same inputs and outputs as the func-
tion finitediff1.m but computes the finite element approximation to the solu-
tion using piecewise quadratic elements. In order to keep the number of unknowns
comparable to the number in the previous functions, let the number of intervals be
m = M/2. If you order the basis elements as ψ1, φ1 . . . , ψm−1, φm−1, ψm then the
matrix A will have five non-zero bands around the main diagonal.

– Compute one additional output uval which is the finite element approximation to
the solution at the m − 1 interior mesh points and the m midpoints of each interval,
where the 2m − 1 equally spaced points are ordered smallest to largest. (In our
previous methods, this was equal to ucomp, but now the values at the mid-points of
the intervals are a linear combination of the linear and quadratic elements.)

[ 15.8 ] Comparison of finite element methods versus finite difference methods

Now we have four solution algorithms, so we define a set of functions for experimentation:

u1(x) = x(1− x) ex,

u2(x) =
{ u1(x)

x(1− x) e2/3 , u3(x) =
{
u1(x) (x ≤ 2/3)

x(1− x) (x > 2/3)
,

p1(x) = 1, p2(x) = 1 + x2,

p3(x) =
{
p2(x)

(x− 1/3) + 10/9
, p4(x) =

{
p2(x) (x ≤ 1/3)

1 + 2x2 (x > 1/3)
,
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q1(x) = 0 , q2(x) = 2 , q3(x) = 2x.

The function f(x) is the one obtained under the specified true solutions mentioned below.
Use your four algorithms to solve seven problems:

– p1 with qj(j = 1, 2, 3) and true solution u1.
– pj(j = 2, 3) with q1 and true solution u1.
– p1 with q1 with true solution uj(j = 2, 3).

Compute three approximations for each algorithm and each problem, choose for the num-
ber of unknowns 9, 99 and 999. For each approximation, print ||ucomputed − utrue|| where
utrue is the vector of true values at the M − 1 mesh points. Discuss the results.

– How easy is it to program each of the four methods? Estimate how much work Matlab
does to form and solve the linear systems. (The work to solve the tridiagonal systems
should be about 5M multiplications, for the 5-diagonal systems 11M multiplications,
so you just need to estimate the work in forming each system.)

– For each problem, note the observed convergence rate r: if the error drops by a factor
of 10r when M is increased by a factor of 10, the observed convergence rate is r.

– Explain any deviations from the theoretical convergence rate: r = 1 and r = 2 for the
two finite difference implementations, r = 2 and r = 3 for the finite element ones.

[ 15.9 ] Test problem comparison of FEM versus FDM

Use your four algorithms to solve the test problems that yielded Fig. 15.7 and Table 15.2,
viz. p2 with q2 and true solution u = x4(1− x)4. Compute three approximations for each
algorithm with 9, 99 and 999 for the number of unknowns. For each approximation, print
||ucomputed − utrue||, where utrue is the vector of true values at the M − 1 mesh points.

[ 15.10 ] Wave modes in unmagnetized, uniform, radiating gases

Compute the dispersion relation of linear perturbations about a static (non-magnetized)
homogeneous gas of constant density ρ0, pressure p0 and temperature T0, which can lose
internal energy by means of radiative losses.

– Assuming a radiative loss function L(ρ, T ), which vanishes for the equilibrium con-
ditions L(ρ0, T0) = 0, obtain this dispersion relation by linearizing the set of (dimen-
sionless) equations given by

∂ρ

∂t
+∇ · (ρv) = 0, ρ

( ∂
∂t

+ v · ∇
)
v +∇p = 0,( ∂

∂t
+ v · ∇

)
p+ γp∇ · v + (γ − 1)ρL(ρ, T ) = 0, p = ρT.

– Assume for the linear perturbations ρ1, v1, p1 and T1 the usual exp i(k · r− ωt) de-
pendence, with wave vector k and eigenfrequency ω. (Note: since the precise depen-
dence of L on thermodynamic variables ρ and T is further unspecified, linearization
will introduce partial derivatives Lρ ≡ ∂L/∂ρ|T and LT ≡ ∂L/∂T |ρ.)

– Renaming λ ≡ −iω, discuss the essential cubic dispersion relation in λ in terms of its
physical implications: what changes from the case when radiative losses are absent?

– Assuming that the radiative terms are small and the cubic in λ has then one real root
and a pair of complex conjugate roots, can you derive an instability criterion for the
real root from the constant term in the cubic?

– Discuss the basic physical mechanism to form condensations in a uniform radiating
gas in the absence of gravity through this “thermal instability”.
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Static equilibrium of toroidal plasmas

16.1 Axi-symmetric equilibrium

16.1.1 Equilibrium in tokamaks

The aim of the theory of plasma equilibrium in any configuration is to determine
the global magnetic confinement topology and the physical characteristics of the
underlying basic equilibrium state. For most fusion applications, to first approxi-
mation, this state is assumed to be static, i.e. the background plasma velocity and
the time derivative of the other variables vanish, v = 0 and ∂/∂t{ρ, p,B} = 0.
A superficial impression might be that this must correspond to the most boring ex-
ample of plasma behavior, viz. total absence of dynamics: a corresponding fluid
dynamics problem hardly exists. Of course, the reason for our interest in this state
is the prospect of obtaining clean, abundant, and cheap energy from controlled ther-
monuclear fusion reactions. At present, the most promising candidate to reach this
goal is the tokamak configuration, in which the assumption of static equilibrium is
satisfied to a rather high degree of precision.

The MHD equations for static equilibrium are about the best satisfied plasma
equations we know. If a plasma is sitting at rest, it is hard to imagine it satisfying
any other conditions than the following ones:

j×B = ∇p (pressure balance), (16.1)

j = ∇×B (Ampère’s law), (16.2)

∇ ·B = 0 (basic law of magnetic flux). (16.3)

In fact, if the equation of pressure balance is not satisfied, the plasma is immedi-
ately accelerated to huge velocities and there is no way to prevent it from being
smashed into the wall and causing severe damage to the equipment.

In Section 1.2.3 of Volume [1], we have schematically summarized the history
of magnetic plasma confinement experiments aimed at the eventual construction of
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a thermonuclear reactor. After the declassification of the subject in 1958, some ten
years of rather unsuccessful research of high-beta plasmas in z-pinch and θ-pinch
configurations followed, exhibiting dramatic demonstration of lack of equilibrium,
instabilities and end losses, all operating on the typical MHD time scale of mi-
croseconds. It was entirely unclear how time scales of these fusion experiments
could ever be extended to seconds or minutes, let alone to steady state operation.
All this changed by the announcement of progress by Soviet scientists with an
entirely different confinement scheme, called tokamak, at the IAEA Novosibirsk
conference of 1968 [16]. (See the review paper on tokamaks by Artsimovich [17]
and Section 5.2 of Braams and Stott [66] on the history of this period.) Soon af-
ter this, tokamaks were constructed in many countries, and the next thirty years
witnessed steady increase of the triple product nτET̃ , of density, energy confine-
ment time and temperature in these devices, with a factor of about 106 nearing
the required value for ignition of 5 × 1021 m−3 s keV by the end of the twentieth
century (see Fig. 1.1.1 of Wesson [481]). Based on this phenomenally successful
upgrading, the International Tokamak Experimental Reactor (ITER) is presently
being constructed in Cadarache, France.

Whereas the simple schemes of θ- and z-pinch easily produced the temperatures
needed for thermonuclear ignition by shock heating, they fell short by a factor of at
least a million with respect to the required confinement times. Crudely speaking,
the tokamak configuration cures the main problems of the z-pinch (its instability
due to the curvature of the magnetic field Bθ) and of the θ-pinch (its end losses)
by combining them into a single configuration (see Fig. 1.4 [1]). With respect to
the θ-pinch end losses, those are simply eliminated by closing the plasma column
onto itself by means of a “toroidal” confinement chamber and the current-driven
instabilities of the z-pinch are eliminated by keeping the toroidal plasma current Iϕ
below the Kruskal–Shafranov limit (2.160) [1] so that the resulting “poloidal” mag-
netic field Bp (corresponding to Bθ in cylinder geometry) remains much smaller
than the dominant toroidal magnetic field Bϕ (corresponding to Bz). Hence, the
magnetic field structure is now helical and the confinement geometry is toroidal,
rather than cylindrical. Most important, the plasma β (≡ 2p/B2) is significantly
decreased and the induction of currents is slow, so that shock heating has to be
abandoned and replaced by other heating methods (Ohmic, neutral beams, ion and
electron cyclotron resonance heating and, eventually, heating by the fusion pro-
duced α particles themselves.). Although the tokamak configuration thus elimi-
nates the mentioned insurmountable problems of θ-pinches and z-pinches, quite
a variety of lesser equilibrium and stability problems have to be addressed still.
These will be the subject of the present and the next chapter.

Concerning equilibrium in tokamaks, returning to the misleadingly simple look-
ing equations (16.1)–(16.3), the very first remark to be made is that these equations
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are actually nonlinear partial differential equations, as follows immediately by sub-
stituting Ampère’s law (16.2) into the pressure balance equation (16.1). We have
encountered the central importance of the basic law (16.3) for magnetic flux many
times in Volume [1]. Hence, the solution of the combined equations

(∇×B)×B = ∇p , or −∇(p+ 1
2B

2) + B · ∇B = 0 , (16.4)

and ∇ ·B = 0 , (16.5)

with the single boundary condition

n ·B = 0 (plasma boundary) , (16.6)

for plasmas without circular cylinder symmetry (2D: tokamaks, 3D: stellarators)
constitutes a nonlinear problem with many intriguing geometrical features that
turns out not to be a boring problem at all!

From the original equations (16.1) and (16.2), it follows that the magnetic field
and the current density are orthogonal to the pressure gradient:

B · ∇p = 0 , j · ∇p = 0 . (16.7)

Hence, the magnetic surfaces spanned by the magnetic field lines and the current
density lines are also constant pressure surfaces. If none of the quantities ∇p, B
and j vanishes anywhere in the plasma volume, these surfaces form an infinite con-
tinuous sequence of nested magnetic toroids around a single closed curve, called
the magnetic axis [287]. Consequently, the magnetic surfaces may be labeled by
a single variable Ψ, so that p = p(Ψ). We will soon see that the most effective
choice for that variable is the poloidal magnetic flux.

For tokamaks, the equilibria still have the additional property of axi-symmetry
(∂/∂ϕ = 0), which is of great help in explicit calculations. Fig. 16.1 shows
a schematic representation of the magnetic configuration. Because of the axi-
symmetry of the configuration, it is expedient to exploit special cylindrical coordi-
nates R, Z, ϕ, where R is the distance from the symmetry axis, Z is the vertical
coordinate and ϕ is the (ignorable) toroidal angle (see Appendix A.2.4). Although
the toroidal magnetic field component is much larger than the poloidal component
in tokamaks, the latter one is usually considered as the primary quantity since it
effectively describes the magnetic geometry of the tokamak. This is done by defin-
ing the toroidal and poloidal magnetic fluxes through the respective surfaces SΦ

and SΨ (indicated by the shaded areas in Fig. 16.1):

Φ ≡ 1
2π

∫
Bϕ dSΦ , Ψ ≡ 1

2π

∫
Bp dSΨ , (16.8)

where the normalization factor 1/(2π) is introduced to simplify the relationship
between the polodial flux and the poloidal magnetic field; see Eq. (16.84) below.
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Fig. 16.1 Toroidal and poloidal magnetic field components Bϕ and Bp in a toka-
mak and cross-sections SΦ and SΨ for the corresponding magnetic fluxes Φ and Ψ
within a magnetic surface lying between the magnetic axis and the plasma bound-
ary, indicated by its cross-section (the curve C) with the poloidal plane ϕ = 0.
Of course, the surface SΦ also includes the reflected part Z ≤ 0 of the shaded
area and it can be taken at any angle ϕ. Similarly, the surface SΨ covers the full
range 0 ≤ ϕ ≤ 2π and it can be taken between the magnetic axis and any circle
R = const, Z = const lying in the magnetic surface.

In Fig. 16.1, the poloidal flux surface SΨ is chosen in the horizontal plane Z = 0,
containing the magnetic axis (the dashed circle R = Rm), so that the poloidal field
is pointing up forR > Rm and down forR < Rm. From the flux tube concept (see
Section 4.2.1 [1]), it is obvious though that the outer boundary of SΨ may be any
horizontal circle lying in the magnetic surface. Hence, the infinitely many nested
magnetic flux surfaces are most effectively labeled with the value of Ψ, which thus
plays the role of a “radial” coordinate, running from Ψ = 0 at the magnetic axis
to Ψ = Ψ1 at the plasma boundary, where Ψ1 is the total poloidal flux confined
within the plasma. The toroidal magnetic flux is then considered as a function of
the poloidal flux, Φ = Φ(Ψ).

Once this is established, the helicity of the magnetic field lines is expressed as
the derivative of the toroidal flux with respect to the poloidal flux. This quantity is
known as the safety factor, or inverse rotational transform, of the field lines:

q(Ψ) ≡ dΦ
dΨ

. (16.9)

This function, which runs from q0 ≡ q(0) on the magnetic axis to q1 ≡ q(Ψ1)
on the plasma boundary, is the most important physical variable in the stability
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analysis of tokamaks. An alternative expression for the safety factor may be ob-
tained from Eq. (16.9) by considering the poloidal flux dΨ = RBpdx through an
infinitesimal annulus between two flux surfaces separated by a local distance dx
and the corresponding toroidal flux dΦ = (2π)−1

∮
(Bϕdx)d�, where

∮
d� is the

line integral along the closed boundary curve of the toroidal flux surface SΦ (see
Wesson [481], Section 3.4). This yields

q(Ψ) =
1
2π

∮
Ψ

Bϕ
RBp

d� , (16.10)

which now expresses the safety factor as some average of the ratio Bϕ/Bp, i.e. of
the tangent of the field line.

Before we discuss the implications of the details of the Ψ-dependence of the
safety factor, it is useful to stress the importance of the global properties of the
equilibrium, which are mainly determined by two physical parameters and one
geometrical parameter. Concerning the latter, the geometry is mainly controlled by
the inverse aspect ratio of the torus,

ε ≡ a/R0 , (16.11)

where a is the half width of the plasma column and R0 is the distance of the cen-
ter of that column to the symmetry axis. For simplicity, we will usually (except
in Sections 16.1.4 and 16.2.3) assume that the plasma boundary coincides with a
“wall” surrounding it so that a and R0 are just geometrical properties of that wall.
Moreover, we will assume up–down symmetry of the equilibrium with respect to
the horizontal plane Z = 0. None of these assumptions is essential for the argu-
ment, they just simplify the analysis. (In particular, divertors for impurity control
usually destroy up–down symmetry.) The physical parameters are the value of the
safety factor at the edge of the plasma,

q1 ≡ q(Ψ1) , (16.12)

and the value of the average kinetic pressure compared to the magnetic pressure,

β ≡ 2〈p〉
〈B2

ϕ〉
, 〈f〉 ≡

∫
fdV . (16.13)

We will return to these determining parameters in Section 16.1.4 when we discuss
global confinement in tokamaks, i.e. equilibrium “in the large”. Of course, all
the local dependence of the plasma variables has to be determined as well. This
can only be done if the magnetic geometry is known in detail, i.e. if the nonlinear
partial differential equations (16.1)–(16.3) have been solved. This will concern us
in Section 16.2, but we will first define the relevant properties of the magnetic field
lines and coordinates describing them.
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16.1.2 Magnetic field geometry

In order to appreciate the meaning of the average in the definition (16.10) of the
safety factor, we need to consider the magnetic field lines themselves. Introducing
the infinitesimal tangent vector dsfl to them, the equation for the field lines may be
written as

B× dsfl = 0 . (16.14)

To work out the consequences of this equation, it is expedient to exploit coordinates
based on the poloidal flux Ψ and the toroidal angle ϕ, rather than the cylindrical
coordinates (R, Z, ϕ), which do not “see” the geometry of the magnetic field. The
third coordinate must be a poloidal angle indicating the position on the flux surface
for given ϕ. That coordinate, θ, could be a polar angle but, since any function of
θ that increases monotonically from 0 to 2π is again an acceptable poloidal co-
ordinate, it is convenient to exploit the arbitrariness to construct coordinates with
simplifying properties. Two such coordinate systems are frequently exploited, viz.
orthogonal flux coordinates, where the gradient of the poloidal angle is chosen or-
thogonal to ∇Ψ and ∇ϕ, and straight field line coordinates, where the poloidal
angle is chosen such that the field lines are straightened out in the representation
of the tangential plane. The details of these coordinates are put in small print since
they are a detour of the present exposition, but the reader who is not familiar with
these constructions is advised not to skip this part since it is central to understand-
ing of the geometry of the equilibrium needed in this chapter and the next.

� Flux coordinates The construction of these coordinates involves a task that recurs in
equilibrium calculations, viz. the determination of the connection between the ordinary
geometrical coordinates and the coordinates based on the flux:[

(X ,Y ,Z) ⇒ ] (R ,Z , ϕ) ⇒ (Ψ , θ , ϕ) . (16.15)

This is actually an entirely non-trivial problem since it involves, first, the solution of the
Grad–Shafranov equation (see Section 16.2), providing Ψ = Ψ(R,Z), and, next, the con-
struction of θ = θ(R,Z) from the condition that describes the property desired of the
poloidal angle. For now, we simply assume that these problems have been solved (we re-
turn to them in Sections 16.2 and 16.3), so that these two functions are known.

For orthogonal flux coordinates (Ψ, χ, ϕ), for which ∇χ · ∇Ψ = 0, we can then con-
struct the line element,

(ds)2 = h2
1(dΨ)2 + h2

2(dχ)2 + h2
3(dϕ)2 , (16.16)

the volume element and the Jacobian,

dV = JodΨdχdϕ , Jo ≡ (∇Ψ×∇χ · ∇ϕ)−1 = h1h2h3 , (16.17)

the gradient operator,

∇ = eΨ
1
h1

∂

∂Ψ
+ eχ

1
h2

∂

∂χ
+ eϕ

1
h3

∂

∂ϕ
, (16.18)
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Fig. 16.2 Field line and safety factor q in plane tangential to a magnetic surface for
(a) arbitrary flux coordinates (Ψ, θ, ϕ); (b) straight field line coordinates (Ψ, ϑ, ϕ).

and all other vector expressions (see Appendix A.2.7), which involve the three scale factors

h1 ≡ 1
|∇Ψ| =

1
RBp

, h3 ≡ 1
|∇ϕ| = R ⇒ h2 ≡ 1

|∇χ| =
J0

h1h3
= JoBp . (16.19)

This provides all expressions needed to account for the geometry of magnetic field lines
in orthogonal flux coordinates (assuming the coordinate connections (16.15) are known).
These coordinates are frequently used in analytical calculations, but not in numerical ones
since they provide poor angular resolution in plasmas with elongated cross-sections.

For straight field line coordinates (Ψ, ϑ, ϕ), we determine the function ϑ(θ) by straight-
ening out the field lines in the tangential (ϑ , ϕ) plane (see Fig. 16.2) for each flux surface
Ψ = const. This coordinate system has the obvious advantage of a simple representation
of the field lines, which is extremely important in stability calculations. However, it is
non-orthogonal so that its use requires the knowledge of the four elements of the metric
tensor (see Appendix A.3.1):

g11 ≡
∣∣∣ ∂r
∂Ψ

∣∣∣2 , g12 ≡ ∂r
∂Ψ
· ∂r
∂ϑ

, g22 ≡
∣∣∣ ∂r
∂ϑ

∣∣∣2 , g33 ≡
∣∣∣ ∂r
∂ϕ

∣∣∣2 = R2 . (16.20)

We just provide the expressions for the volume element and the Jacobian,

dV = J dΨdϑdϕ , J ≡ (∇Ψ×∇ϑ · ∇ϕ)−1 =
√

[g11g22 − (g12)2] g33 , (16.21)

and leave explicit determination of the metric elements for later. �

In the orthogonal flux coordinate system (Ψ, χ, ϕ), the magnetic field and the
infinitesimal tangent vector are expressed as

B = (0, Bp, Bϕ) , dsfl = (0, JoBpdχ,Rdϕ) , (16.22)

so that Eq. (16.14) yields the local direction ν of the field lines in the representation
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of the plane tangential to the magnetic surfaces:

Bp(Rdϕ− JoBϕdχ) = 0 ⇒ ν ≡ dϕ

dχ

∣∣∣∣
fl

=
JoBϕ
R

. (16.23)

Hence, since d� = JoBpdχ, the safety factor q just represents the progression of
the field line over the toroidal angle after one full poloidal revolution:

q(Ψ) =
1
2π

∮
Ψ

Bϕ
RBp

d� =
1
2π

∮
Ψ
ν(Ψ, χ) dχ . (16.24)

This is illustrated in Fig. 16.2(a) for arbitrary flux coordinates (Ψ, θ, ϕ) on a mag-
netic surface with q(Ψ) > 1.

Actually, inside a magnetic surface, orthogonality of∇Ψ and∇χ is not of much
help. It is much more expedient to exploit the arbitrariness of the poloidal coor-
dinate to construct a coordinate ϑ for which the field lines are straight, as shown
in Fig. 16.2(b). In the definition of q, the line element along the poloidal circum-
ference of a flux surface differs for the different coordinate systems since their
Jacobians are different. In particular,

d� = JBp dθ = JoBp dχ = JBp dϑ (16.25)

for arbitrary flux coordinates (Ψ, θ, ϕ), with Jacobian J ; orthogonal flux coordi-
nates (Ψ, χ, ϕ), with Jacobian Jo; and straight field line coordinates, with Jacobian
J , respectively. Obviously, the last expression is the best choice since the local
direction of the field lines then coincides with the global direction, as expressed by
the relationship between the safety factor and the Jacobian that does not depend on
the position on the flux surface:

q(Ψ) =
JBϕ
R

(straight field line coordinates) . (16.26)

Running ahead of our presentation (see Chapter 17), these coordinates are most
appropriate to describe local stability since that basically involves Alfvén waves
traveling along the field lines in a curved magnetic geometry.

An important concept in this context is that of rational magnetic field lines,
situated on a rational magnetic surface. The latter is a surface where the field
lines close upon themselves after M revolutions the short way (poloidally) and
N revolutions the long way (toroidally) around the torus (see Fig. 16.3, for M = 2
and N = 3), so that the safety factor is a rational number there:

qrat =
N

M

(
=

number of toroidal revolutions

number of poloidal revolutions

)
. (16.27)

If q is irrational, the field line does not close onto itself but covers the magnetic
surface ergodically. The importance of rational field lines can be seen from the ex-
pression of magnetic perturbations on a rational magnetic surface. Expressing the
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Fig. 16.3 Rational field line (q = 3/2).

doubly periodic perturbations in the form of an expansion in Fourier components
of the plasma displacement normal to the magnetic surfaces,

ξ(Ψ, ϑ, ϕ) =
∑
m

∑
n

ξmn(Ψ) ei(mϑ+nϕ) , (16.28)

where m is the poloidal mode number and n is the toroidal mode number, the
main field line bending perturbation is roughly (neglecting curvature contributions)
proportional to the parallel gradient operator acting on ξ :

B · ∇ ξ ∼ k0 ·B ξ ∼ (m+ nq) ξ . (16.29)

Since field line bending is associated with a large increase of the potential energy,
this term must vanish, or be small, for almost all instabilities that occur in tokamaks
(not for astrophysical plasmas, recall the discussion of Section 12.1.2). The expres-
sion vanishes when the “wave vector” k0 is perpendicular to the magnetic field, i.e.
when the wave fronts of the perturbation on the magnetic surface are parallel to the
magnetic field lines so that they are minimally bent. According to Eq. (16.29),
this happens when the ratio of mode numbers is rational, which only happens on a
rational surface where the field lines are resonant with the perturbation:

qrat = −m
n

(
= −poloidal mode number

toroidal mode number

)
. (16.30)

(Note that the adjectives “poloidal” and “toroidal” have switched position here.)
Consequently, most local MHD stability analysis (Suydam’s criterion (9.145) [1],
the Mercier criterion and ballooning mode theory, see Chapter 17) centers about
the resonant surfaces and field lines. (Therefore, if such resonances are forbidden
because of different longitudinal boundary conditions, like line-tying of solar coro-
nal flux tubes at the photospheric boundary, stability theory is completely changed
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and configurations are encountered which are much more stable; see Goedbloed
and Halberstadt [178].)

16.1.3 Cylindrical limits

With the introduction of straight field line coordinates, the magnetic geometry has
been reduced to a representation resembling that of a cylindrical plasma with cir-
cular cross-section. This is helpful because much intuition on equilibrium and
stability comes from circular cylinder theory. Hence, let us consider the limit of a
slender torus to a “periodic” straight cylinder, the so-called straight tokamak ap-
proximation, already introduced in Sections 9.1.1 and 9.4.4 [1]. We will use this
limit to discuss the connection of the rather subtle effects of the safety factor and
flux function distributions to the robust ones of the total current flowing in the
plasma and the global pressure balance requirements.

Recall from Section 9.1.1 [1] that in a straight plasma cylinder with a circular
cross-section, because of the symmetries ∂/∂θ = 0 and ∂/∂z = 0, the solution of
the equilibrium equations (16.1)–(16.3) is a function of the radius r alone. More-
over, Br = 0 and jr = 0, whereas the density profile ρ(r) is completely arbitrary
in static equilibria. The remaining equilibrium functions p(r), Bθ(r), Bz(r) have
to satisfy just one differential equation, viz.

d

dr

(
p+ 1

2B
2
)

= −B
2
θ

r
, (16.31)

so that two of those three functions can be chosen arbitrarily. The components of
the current density are then determined by Ampère’s law,

jθ = −dBz
dr

, jz =
1
r

d

dr
(rBθ) , (16.32)

which completes the description of cylindrical equilibria. In conclusion, in addition
to ρ(r), two of the three functions p(r), Bθ(r), Bz(r) can be freely chosen. This
corresponds to the experimental freedom to create different magnetic confinement
configurations, like those of a θ-pinch or a z-pinch (Figs. 16.4(a) and (b)). The
same freedom is present in toroidal equilibria, where it needs to be represented
very carefully in order to enable comparison of experimental data with theoretical
assumptions on the equilibrium (see Section 16.3).

As discussed in Section 16.1.1 on the history of the different approaches to
plasma confinement for fusion, the tokamak configuration may be considered as
the combination of a θ-pinch with a much smaller pressure (and hence a smaller dip
in the longitudinal field) and a z-pinch with a smaller plasma current (Fig.16.4(c)).
This gives rise to a finite safety factor with a radially increasing profile, typically
(but not necessarily) increasing monotonically from q0 ∼ 0.8 to q1 ∼ 2.5.
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Fig. 16.4 Schematic cylindrical equilibrium profiles for (a) θ-pinch, (b) z-pinch,
(c) “straight tokamak” with periodicity over Lz ≡ 2πR0.

To define the safety factor q in straight circular cylinder geometry, one first needs
to consider the original toroidal problem for a slender torus with major radius R0

and minor radius r = a (Fig. 16.5), so that the inverse aspect ratio, defined in
Eq. (16.11), is small:

ε ≡ a/R0 � 1 . (16.33)

In the limit ε → 0, this torus is represented as a “periodic cylinder” of length Lz
and radius a, where the cylindrical coordinate z is related to the toroidal angle ϕ
and the periodicity length Lz according to

z = [ϕ/(2π)]Lz , Lz ≡ 2πR0 . (16.34)

The nested magnetic surfaces become nested periodic cylinders of radius r ≤ a.
On each of those cylinders, the safety factor is easily visualized by unrolling that
cylinder, which results in the straight field line representation of Figs. 16.2(b) and
16.3. In the limit ε→ 0, the two magnetic fluxes defined in Eq. (16.8) become

Φcyl =
∫ r

0
Bzrdr , Ψcyl = R0

∫ r

0
Bθ dr , (16.35)

so that any of the definitions (16.9), (16.10) or (16.24) of the safety factor yields

qcyl(r) =
dΦ
dΨ

=
1
2π

∮
dϕ

dθ

∣∣∣∣
fl
dθ =

rBz
R0Bθ

. (16.36)

The value of the safety factor at the edge of the plasma, defined in Eq. (16.12) is
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Fig. 16.5 Large aspect ratio torus with Shafranov shift Δ0 of the magnetic axis.

then a direct measure for the total toroidal current flowing in the plasma:

qcyl(a) =
aBz(a)
R0Bθ(a)

=
2πa2Bz(a)
R0Iz

≡ (2πεaB0)/Iz , (16.37)

where the constant value B0 ≡ Bz(a) in the last expression anticipates the dimen-
sional scaling that will be made in Section 16.3.1.

The importance of extracting the magnitude of the safety factor at the plasma
boundary, qcyl(a), from the detailed radial distribution qcyl(r) is to stress the very
different physical consequences of the toroidal current and the field line geome-
try. In particular, as already noted in Section 2.4.3 [1], when this difference is not
appreciated, it leads to confusion on the cause of the m = 1 external kink mode
instability. In a periodic cylinder with circular cross-section, the condition for sta-
bility of the external kink mode is the celebrated Kruskal–Shafranov limit:

qcyl(a) > 1 , or Iz < 2πεaB0 , (16.38)

already encountered in Eqs. (2.160) and (9.91). This condition just depends on the
value of qcyl(a), not on the details of qcyl(r), i.e. the current distribution, as clearly
illustrated in Wesson’s stability diagram [480], reproduced in Fig. 9.19 [1]. If this
condition is violated, the result is just as bad as lack of equilibrium: the plasma
is smashed onto the wall on a time scale of microseconds. Hence, the Kruskal–
Shafranov limit is an essential limit on the parameter regime of tokamaks (the
very reason of the necessity to decrease the toroidal current of a z-pinch to that
of a tokamak, illustrated in Figs. 16.4(b) and(c)). The confusion arises because
Eq. (16.38) appears to suggest, as frequently stated in the literature, that external
kink mode instability occurs because the field lines close onto themselves after
one revolution the short way and one revolution the long way around the torus.
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However, this is just an unfortunate consequence of degeneracy of the circular
cross-section cylinder, which disappears for genuine toroidal equilibria with non-
circular cross-section. (To avoid further confusion: field line topology does play a
dominant role in the stability of internalm = 1 kink modes, requiring qcyl(0) > 1 .
However, this is a much softer condition, as demonstrated by the fact that tokamaks
usually operate in a regime where this condition is violated.)

The other global parameter describing the overall equilibrium of tokamaks is
the ratio of the average plasma pressure confined to the average pressure of the
confining toroidal magnetic field, defined in Eq. (16.13):

β ≡ 2
∫
p dV∫

B2
ϕ dV

≈ 2
∫
p dS∫

B2
z dS

≈ 2
B2

0

〈p〉 , 〈p〉 ≡
∫
p dS∫
dS

. (16.39)

Here, the volume integral is over the total plasma volume and the surface integral
is over the poloidal cross-section of it. The last two approximations come from the
straight cylinder approximation, whereas the first one is due to the general orders
of magnitude in a tokamak:

p ∼ B2
p

(
≈ B2

θ

)
� B2

ϕ

(
≈ B2

z

)
⇒ β ∼ ε2 � 1 , (16.40)

as illustrated in Fig. 16.4(c). The importance of β is that it is a measure of the
thermonuclear power obtained for a given magnetic field strength (Wesson [481],
Section 3.5; Freidberg [141], Section 5.5.6). Because of the estimate (16.40), the
total pressure is dominated by the contribution of the magnetic field:

P ≡ p+ 1
2B

2 ≈ 1
2B

2 . (16.41)

One gets an impression of the magnitude of this pressure by just inserting typical
values of tokamaks, e.g. for B = 5 T, we already found in Section 12.1.1 that

P ≈ 107 N/m2 = 1000 metric tons = 100 atm ! (16.42)

Clearly, magnetic pressures are huge and need to be balanced carefully. It is to
be noted though that the dominant contribution of the above pressure is exerted on
the external coils of the tokamak which, therefore, need a very strong supporting
structure. The internal pressures, even though smaller by an order of magnitude,
are not negligible either (e.g., for β = 5% the plasma pressure p ≈ 5 atm). More-
over, since β is a figure of merit for future fusion reactors, there is an urgent need
to try to increase it. This implies that some part of the huge magnetic pressure es-
timated above should ultimately be shifted towards the plasma interior, that would
then resemble more the θ-pinch configuration of Fig. 16.4(a). However, we will
see in Section 16.1.4 that, within the tokamak confinement scheme, the best one
can do eventually is to obtain values of β ∼ ε .

This upper estimate of the order of magnitude of β implies that the toroidal
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geometry is essential for the proper description of overall pressure balance, so that
the cylindrical approximation fails. This is most clearly illustrated by one of the
effects of toroidal pressure balance, viz. the outward shift of the magnetic surfaces
relative to those of a circular cross-section cylinder: the Shafranov shift (Fig. 16.5).
In the next section, we will see that the order of magnitude of this shift depends on
the order of magnitude of β, as expressed by the following two expansion schemes:

q1 ∼ 1 , β ∼ ε2 � 1 ⇒ Δ0 ∼ ε (low β tokamak) , (16.43)

q1 ∼ 1 , β ∼ ε � 1 ⇒ Δ0 ∼ 1 (high β tokamak) . (16.44)

In the first expansion scheme, the zeroth order is the straight circular cylinder
and toroidal effects enter as subsequent higher order corrections. In the second
one, the cylindrical approximation fails since the equilibrium is essentially two-
dimensional. Hence, we now have to turn to a proper toroidal description of toka-
mak equilibrium.

To summarize: except for the freedom of choice of the equilibrium profiles,
two other properties of toroidal configurations can be anticipated in the context of
straight cylinder theory. These have to do with the total toroidal current flowing
in the plasma, i.e. the global magnetic field line geometry expressed by the edge
safety factor, and with some aspects of the bulk forces associated with the magnetic
pressure. However, a proper description of the magnetic pressure and of the kinetic
pressure effects in the plasma requires a genuine toroidal theory.

16.1.4 Global confinement and parameters

Why can one not obtain the desirable high values of β by just bending the cylin-
drical θ-pinch column of Fig. 16.4(a) into a torus, i.e. by closing the configuration
onto itself? To answer that question, we need to consider the complete equilibrium
problem, both of internal pressure balance inside the plasma and of the position
control of the plasma column as a whole by means of magnetic fields produced by
currents in external coils (Shafranov [409], p. 124; Miyamoto [334], Section 7.7,
and [335], Section 6.3; Wesson [481], Section 3.1; Freidberg [141], Section 11.7).
In a tokamak, the large magnetic fieldBz of the θ-pinch becomes the main toroidal
magnetic field component Bϕ. That component is primarily produced by poloidal
currents Iex

p in the external toroidal field coils, whereas the internal poloidal plasma
current density jp produces a relatively small deviation from that externally pro-
duced “vacuum magnetic field” distribution. Neglecting the poloidal plasma cur-
rents for the time being, the toroidal magnetic field is obtained by integrating
Ampère’s law (16.2) along a circle of radiusR in the mid-plane (Z = 0), enclosing
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Fig. 16.6 Schematic tokamak equilibrium at the mid plane (Z = 0).

a surface SR, and applying Gauss’ law (A.14):

Iex
p ≈

∫
j · n dSR =

∮
B · dlR = 2πRBϕ ⇒ Bϕ ≈ R0B0/R . (16.45)

Here, B0 is the value of the external toroidal magnetic field on the plasma bound-
ary atR = R0, see Fig. 16.6. (For the scaling to be made later, in Section 16.3.1, it
is important to note that this parameter is exact, independent of the approximation
made.) The 1/R dependence of the toroidal magnetic field implies that the plasma
column cannot be in equilibrium with this field since it produces a magnetic pres-
sure that is much larger on the inside, the high field side (R = R0 − a), than on
the outside, the low field side (R = R0 + a). The result is an outward force in the
R-direction, which is larger than the inward force due to magnetic tension, as we
will see below. To ensure equilibrium, counter measures have to be taken.

The counter measures taken are, first, induction of a (secondary) toroidal plasma
current Iϕ by means of coupling, due to the change in time of the poloidal magnetic
flux through the central hole of the torus, to the toroidal current Iex

ϕ in a set of (pri-
mary) windings on the outer legs of a transformer (see Fig. 1.5 of Volume [1]). This
contributes the z-pinch part (Fig. 16.4(b)) to the tokamak confinement scheme,
with the advantage of enhanced flexibility due to the additional parameter Iex

ϕ . An
obvious disadvantage is that tokamak operation now becomes limited to the time
scale of resistive decay of the plasma current. This is the main reason for contin-
ued interest in the stellarator approach to plasma confinement, where such currents
are not needed. (Eventual steady state operation of tokamaks has become feasible,
though, through the kinetic effects of current drive by radiofrequency heating and
the possible production of a toroidal bootstrap current by pressure gradients; see
the review papers by Fisch [136] and Boozer [60].)

The induction of the toroidal plasma current appears to have an adverse effect on
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the equilibrium, viz. the production of an additional outward force, called the hoop
force. This follows from the basic fact of electrodynamics that a current-carrying
ring tends to increase its size in order to reduce the magnetic field strength for given
magnetic flux trapped inside the ring. The hoop force can be obtained from the
expression for the magnetic energy of the poloidal field of a thin current-carrying
ring (a� R) with circular cross-section (Shafranov [409], p. 122):

Wp = 1
2

∫
B2

p dV = 1
2LϕI

2
ϕ , Lϕ = R[ ln(8R/a) + 1

2�i − 2] , (16.46)

where Lϕ is the self-inductance of the ring. The internal contribution to the self-
inductance, �i, defined below, is a positive quantity of order unity which depends
on the distribution of the current (Landau and Lifschitz [295], p. 124; recall that
the factor 4π of the Gaussian system of units is to be replaced by the factor μ0 of
the mks system of units, which is consistently dropped here). The hoop force is
then given by:

Fh = −∂Wp

∂R

∣∣∣∣
LϕIϕ

= 1
2I

2
ϕ

∂Lϕ
∂R
≈ 1

2I
2
ϕ [ ln(8R0/a) + 1

2�i − 1] > 0 , (16.47)

i.e. it points outward, QED.
The second, crucial, counter measure is the creation of a homogeneous vertical

magnetic field (in the Z-direction) by means of a toroidal current Iex
ϕ,vf in a set of

external vertical field coils (Fig. 16.7). Of course, this counter measure is to be
taken together with the first one, since a homogeneous vertical magnetic field has
no effect on the toroidal θ-pinch (non-)equilibrium part of the tokamak, but it does
have an effect on the toroidal z-pinch part by interacting with the toroidal plasma
current. This is easily seen from the direction of the poloidal magnetic field vectors
of Fig. 16.1: the external vertical field will increase the magnitude of the poloidal
field on the outside, but decrease it on the inside. The resulting magnetic pressure
will be inward. This inward force can be estimated from the Lorentz force of the
vertical field on a wire carrying the toroidal plasma current Iϕ:

Fvf ≈ −2πR0IϕBv . (16.48)

It is now simply a matter of turning the knob on the current Iex
ϕ,vf in the vertical

field coils to keep the plasma column at the desired equilibrium position.
By means of the mentioned three external current parameters Iex

p (controlling the
toroidal magnetic field Bϕ), Iex

ϕ (controlling the poloidal magnetic field Bp), and
Iex
ϕ,vf (controlling the external vertical magnetic field Bv), the tokamak configura-

tion obtains the necessary flexibility which has produced the impressive increase
in performance towards controlled fusion described in Section 16.1.1. It remains
to be shown how the value of β is determined by these parameters. This requires
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Fig. 16.7 Adding an external vertical field to ensure equilibrium in a tokamak.
(From Mukhovatov and Shafranov [342].)

the consideration of the volume averaged effects of the gradients of the plasma
pressure and of the toroidal field pressure, giving rise to forces Fp and FBϕ .

Following Freidberg [141], Section 11.7.7, these forces are approximated by
computing the different weighting due to the larger volume on the outside than on
the inside. Exploiting polar coordinates r, θ, with the origin in the center of the
plasma, R = R0, Z = 0, i.e. neglecting the Shafranov shift, so that r and θ effec-
tively become “cylindrical” coordinates, this only involves toroidal corrections of
the volume element,

dV = 2πRrdrdθ ≈ 2πR0 [1 + (r/R0) cos θ]rdrdθ , (16.49)

coupled to the cos θ variations of the outward unit vector eR ,

eR = cos θer − sin θeθ , (16.50)

so that the volume integrals just involve averaging of the cos2 θ contributions:

−
∫

eR · ∇f dV ≈ −2πR0

∫ a

0

∫ 2π

0
[1 + (r/R0) cos θ] cos θf ′rdrdθ

= −2π2
∫ a

0
f ′r2dr = 2π2

[
2
∫ a

0
frdr − a2f(a)

]
≡ 2π2a2

[
〈f〉 − f(a)

]
.

(16.51)

Hence, the final volume averages just reduce to integration of the leading order,
“cylindrical”, contributions of the variables over the radius r:

〈f〉 ≡ 1
V

∫
f dV ≈ 2

a2

∫ a

0
f rdr . (16.52)

All this will be justified rigorously in Section 16.2.2 from a large aspect ratio ex-
pansion of the Grad–Shafranov equation in the “shifted circle” approximation.

In effect, the leading order outward force due to pressure gradients becomes

Fp ≡ −
∫

eR · ∇p dV ≈ 2π2a2〈p〉 . (16.53)
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For the calculation of the outward force due to the toroidal magnetic field, the 1/R
dependence of Bϕ, indicated by Eq. (16.45), should be accounted for:

Bϕ(r, θ) ≈ (R0/R)Bϕ0(r) ≈ [1− (r/R0) cos θ]Bϕ0(r) , (16.54)

where we now also include internal structure due to poloidal currents, indicated
by the “cylindrical” factor Bϕ0(r). As a result of the 1/R2 dependence of the
toroidal magnetic field pressure, the integrand of Eq. (16.51) flips sign, so that the
associated outward force becomes

FBϕ ≡ −
∫

eR ·
[
∇(1

2B
2
ϕ) +B2

ϕ/R
]
dV ≈ −

∫
eR · ∇(1

2B
2
ϕ) dV

≈ −
∫
R2

0

R2
eR · ∇(1

2B
2
ϕ0) dV ≈ −2π2a2

[
〈12B2

ϕ0〉 − 1
2B

2
ϕ0(a)

]
.(16.55)

The poloidal field also has a 1/R dependence,Bp(r, θ) ≈ (R0/R)Bp0(r), produc-
ing an outward force that has already been accounted for by the hoop force (16.47).
Of course, the three functions Bp0(r), p(r) and Bϕ0(r) have to satisfy the cylin-
drical equilibrium equation (16.31), which becomes

(p+ 1
2B

2
ϕ0)

′ = −Bp0

r
(rBp0)′ . (16.56)

It is now expedient to convert the toroidal field force (16.55) to an expression in
terms of the plasma pressure and the poloidal field. This is done by applying the
operator

∫
drr2 to Eq. (16.56) and integrating by parts, giving

− 〈12B2
ϕ0〉+ 1

2B
2
ϕ0(a) = 〈p〉 − 1

2B
2
p0(a) . (16.57)

Hence

Fp + FBϕ = 2π2a2 [2〈p〉 − 1
2B

2
p0(a)] = 1

2I
2
ϕ(βp − 1

2) , (16.58)

where the new parameter

βp ≡ 2〈p〉
B2

p0(a)
=

8π2a2

I2
ϕ

〈p〉 (16.59)

represents the average plasma pressure compared to the magnetic pressure of the
poloidal field at the plasma boundary, i.e. measured in terms of the square of the
total toroidal current flowing in the plasma.

Adding up the four forces yields global equilibrium,

Ftot ≡ Fp + FBϕ + Fh + Fvf (16.60)

= 1
2I

2
ϕ

[
βp + ln(8R0/a) + 1

2�i − 3
2 −

4πR0

Iϕ
Bv

]
= 0 , (16.61)
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provided the vertical field has the proper magnitude

Bv =
Iϕ

4πR0

[
βp + ln(8R0/a) + 1

2�i − 3
2

]
. (16.62)

Here, the parameter

�i ≡
〈B2

p0〉
B2

p0(a)
(16.63)

represents the average poloidal magnetic field pressure, which is a function of the
radial distribution of the toroidal current density.

We have now encountered the main parameters governing global equilibrium in
a tokamak with circular plasma cross-section. Taking the external “engineering”
parameters Iex

p , Iex
ϕ and Iex

ϕ,vf , respectively producing the toroidal, the poloidal and
the vertical magnetic field, for granted, and zooming in onto the resultant equilib-
rium characteristics of the plasma column itself, we may distinguish

(1) the trivial scaling parameters a (plasma radius) and B0 (external magnetic field at the
center of the plasma, R = R0) that fix the size of the plasma and the overall magnetic
field strength: just to be used to create dimensionless quantities according to our usual
scale-independence argument;

(2) the geometry parameter ε ≡ a/R0 that fixes the aspect radius of the plasma torus, and
possible elongation parameters of the plasma cross-section;

(3) the global confinement parameters βp and Bp0(a) ∼ Iϕ, fixing the average amount of
plasma pressure confined and the total toroidal current flowing in the plasma;

(4) distribution parameters describing the details of the pressure p(r) and the toroidal
current density jϕ0(r), or the poloidal field Bp0(r), for given global parameters. (The
equilibrium condition (16.56), later to be replaced by the exact conditions from the
Grad–Shafranov equation, then fixes the third profile, that of the toroidal field Bϕ.)

We will consider these scaling considerations in more detail in Section 16.3.1, but
item (3) needs to be elaborated here since it still involves the dimensional poloidal
magnetic field and toroidal current variables that appear to be rather different from
the safety factor q, that might be expected at this point.

In fact, an obvious way to create a dimensionless parameter representing the
poloidal field at the plasma edge, Bp0(a), or the toroidal plasma current, Iϕ, is to
relate them to the safety factor (16.10), evaluated at the plasma edge:

q1 =
1
2π

∮
Ψ1

Bϕ
RBp

d�

Iϕ ≡
∫∫
∇×B · eϕ dS =

∮
Bp d�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒ q1,cyl =
aB0

R0Bp0(a)
=

2πa2B0

R0Iϕ
,

(16.64)
as already suggested in Eq. (16.37). Since elongating the plasma cross-section has
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become an important method of increasing the admissible value of β in tokamaks,
with respect to both equilibrium and stability, let us consider the corresponding
expression for a straight cylinder with elliptical cross-section [299]:

q1,cyl =
π(a2 + b2)B0

R0Iϕ
, (16.65)

where a and b define the plasma cross-section through the points R = R0 ± a and
Z = ±b. It would appear that βp and q1,cyl become the most appropriate global
dimensionless parameters to describe equilibrium in a tokamak.

A serious objection needs to be raised, though, against the tacit identification
of the robust effects of the toroidal current, expressed by the cylindrical parameter
q1,cyl, and the subtle toroidal effects of field line geometry, expressed by the param-
eter q(Ψ1). For example, in tokamaks with a divertor, the line integral (16.64)(a)
for the edge safety factor q1 blows up due to the x-point at the plasma boundary,
where Bp = 0, whereas the line integral (16.64)(b) for Iϕ just stays finite. Sim-
ilarly, the ultimate limit of tokamak equilibrium by means of a vertical field, just
discussed, implies that the x-point depicted in Fig. 16.7 intrudes into the plasma,
again implying that q1 → ∞, whereas Iϕ stays finite. Hence, we introduce a pa-
rameter that is formally identical to q1,cyl, but actually only measures the magnitude
of the toroidal current, viz. the modified safety factor q∗:

q∗ ≡ L2B0

2πR0Iϕ
, L ≡

∮
d� ≈ π

√
2(a2 + b2) . (16.66)

This definition arose in stability studies of skin current high-β tokamaks [120],
but turns out to be most adequate for our present general discussion of tokamak
equilibrium. (We here drop the later modification [153, 179] of the definition of
q∗ and return to the earlier one since it conserves the mentioned relation with q1,cyl

for non-circular cross-sections.)
It is to be noted that the definition (16.66) is an exact one for toroidal geometry:

it only involves the trivial item (1) scaling parameters a and B0 and the item (2)
geometry parameters b and R0, that may be considered to be external parameters,
i.e. they can be accurately prescribed (e.g. by the size of the limiters) and they
do not require determination through plasma diagnostics. In contrast, the safety
factor, both on edge and at the magnetic axis, though extremely important for lo-
cal plasma dynamics, is only indirectly known by means of various diagnostics
(usually delivering no better than 10% accuracy, up till now).

We now also need to replace the quasi-cylindrical definition (16.59) for βp by
an exact toroidal definition, for which we choose [153]

βp ≡ 8πS〈p〉
I2
ϕ

, S ≡
∫∫

dx dy ≈ πab , (16.67)



16.1 Axi-symmetric equilibrium 267

where, again, an accurate external geometry parameter appears, viz. the surface
area S of the plasma cross-section. Finally, we redefine the basic confinement
parameter β by comparing the average plasma pressure with the magnetic pressure
of the external toroidal field, i.e. again in terms of an external parameter:

β ≡ 2〈p〉
B2

0

. (16.68)

With the global equilibrium parameters βp and q∗ thus defined, the parameter β,
though crucial as a measure for the performance of fusion reactors, just becomes a
secondary quantity:

β

ε
= C

εβp

q∗2 , C ≡ L4

16π3a2S
≈

⎧⎪⎪⎨⎪⎪⎩
1 (circle)

(1 + b2/a2)2

4b/a
(ellipse)

. (16.69)

Here, the constant C just depends on the cross-sectional shape of the plasma, i.e.
it may be considered as an external parameter that is accurately known. With
this parameterization, the two orderings introduced in Eqs. (16.43) and (16.44) of
Section 16.1.3 can be expressed more appropriately as

q∗ ∼ 1 , β/ε ∼ εβp ∼
⎧⎨⎩
ε (low-beta tokamak)

1 (high-beta tokamak)
, (16.70)

where the high-beta tokamak regime is the one where the limiting values of the
parameters are found.

We have purposely replaced the usual definition of β, involving the average of
the toroidal magnetic field pressure 〈12B2

ϕ〉, given in Eq. (16.39), by the above
one which just involves the external magnetic field pressure 1

2B
2
0 . Also, the vol-

ume averages of plasma variables, defined in Eq. (16.52), have been replaced with
cross-sectional averages. This way, the influence of poorly known internal distri-
butions of plasma parameters is restricted to the necessary minimum, viz. to the
pressure distribution entering 〈p〉. Of course, once an accurate equilibrium solver
is constructed, all desired derived quantities can be computed “exactly”, neces-
sarily making bold assumptions on those poorly known distributions though, but
this is just a numerical detail, not be confused with the basic scaling of plasma
equilibrium variables.

The relation (16.69) summarizes the main constituents in the optimization pro-
cedure of tokamaks with respect to equilibrium and stability. Roughly speaking,
as illustrated in Fig. 16.8, the value of the parameter εβp is limited from above by
equilibrium considerations, and the value of q∗ is limited from below by stability
conditions. With respect to equilibrium, we have already indicated that there is a
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Fig. 16.8 Schematic equilibrium–stability diagram. (a) An x point intruding into
the plasma imposes a limit εβp ≤ E to the equilibrium, external m = 1 and m = 2
instabilities impose the limits q∗ ≥ 1, respectively q∗ ≥ 2, to the stability. (b) This
translates into the limits β/ε ≤ CE (point P1), resp. β/ε ≤ 1

4CE (point P2).

limit due to the fact that the vertical magnetic field produces an x-point that will
hit the plasma, and thus destroy the coherence of the nesting of the magnetic sur-
faces, if εβp is increased beyond a certain value. Let us call that value E. For
circular plasma cross-section, this number is easily estimated from the expression
for the poloidal magnetic field Bp, which involves a parameter Λ that describes the
poloidal variation (see Eq. (16.109) of the following section):

E ≡ εβp,max = εΛmax ≈ 1 . (16.71)

From the relation (16.69), it is clear that to obtain a maximum value of β, one
wishes to push the toroidal current to a maximum, i.e. to choose the value of q∗ as
small as possible. Obviously, external kink mode stability will ultimately limit that
value to q∗ = 1, which is the Kruskal–Shafranov limit. However (see Wesson’s
stability diagram, reproduced in Fig. 9.19 of Volume [1]), the m = 2 external kink
mode presents a much severer condition since it increases the limit to q∗ = 2.
Consequently, a rough estimate of the combined equilibrium–stability limit on β is
given by

βmax = C
ε2βp,max

q∗2 = 1
4CE ε . (16.72)

For a circular plasma cross-section, this implies that β should not exceed 1
4ε, which

is less than 0.1 for usual aspect ratios. It is clear that the increase of this value by
cross–sectional shaping is most desirable, but one should also take the ordinary
engineering wisdom into account to stay away from ultimate operating boundaries
with a margin of a least 10%.
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In principle, these severe equilibrium and stability limits can easily be overcome
by enclosing the plasma with a conducting wall. With perfect conductivity, the
value of βp can even be increased without a limit since the poloidal flux trapped be-
tween the plasma and the wall will always prevent the plasma from actually hitting
the wall. Similarly, a conducting wall that is close enough will stabilize any exter-
nal kink mode with m ≥ 2. However, proximity of a conducting wall is prohibited
in a fusion reactor. More fundamentally, even when close, a conducting wall is
no longer a cure for improving either equilibrium or stability limitations since the
perfect conductivity required is simply no longer there on fusion time scales: the
poloidal flux required for equilibrium leaks away and the resistive wall mode grows
unimpeded on those time scales (see Section 14.3.1). Although Fig. 16.8 gives a
good impression of the order of magnitude of the limits on β, it is clearly an over-
simplification: toroidal effects deform the straight lines of external kink stability
limits at higher β. Most important, in toroidal geometry, new pressure-driven in-
stabilities appear that restrict the operating windows even further.

16.2 Grad–Shafranov equation

16.2.1 Derivation of the Grad–Shafranov equation

The previous section presented the qualitative features and global parameterization
of plasma equilibrium in a torus. To proceed further, to the construction of gen-
eral axi-symmetric equilibria, which is presently possible virtually without any real
limitations of the numerical precision, we need to derive the central partial differen-
tial equation (PDE) that describes the spatial dependence of the poloidal magnetic
flux. This equation is generally known as the Grad–Shafranov equation, after the
authors that published it in the 1950s [188, 406], although Lüst and Schlüter [319]
also published it independently at the same time.

We will exploit again the special cylindrical coordinates R, Z, ϕ, where ϕ is
the toroidal angle, R is the distance to the symmetry axis and Z is the vertical
coordinate, so that R and Z are just Cartesian coordinates in the poloidal plane.
Note that the order of these cylindrical coordinates is not the usual one. It is cho-
sen to provide the most logical connection with the different toroidal coordinates
(Appendices A.2.4–A.2.7). In particular, notice that the replacements (A.62) to
convert vector operators from the usual r, θ, z coordinates to the present R, Z, ϕ
coordinates involves a minus sign: dθ = −dϕ.

The derivation of the Grad–Shafranov equation involves the following steps.

(a) From the divergence equation (16.3) and Ampère’s law (16.2), the poloidal field and
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the poloidal current are derivable from stream functions Ψ(R,Z) and I(R,Z):

∇ ·B =
1
R

∂(RBR)
∂R

+
∂BZ
∂Z

= 0 ⇒ BR = − 1
R

∂Ψ
∂Z

, BZ =
1
R

∂Ψ
∂R

, (16.73)

∇ · j =
1
R

∂(RjR)
∂R

+
∂jZ
∂Z

= 0 ⇒ jR =
1
R

∂I

∂Z
, jZ = − 1

R

∂I

∂R
. (16.74)

Of course, Ψ is the poloidal magnetic flux (normalized by dividing by a factor 2π).
Alternatively, solving∇ ·B = 0 by means of B = ∇×A, the poloidal flux turns out
to be related to the toroidal component of the vector potential:

Ψ = −RAϕ . (16.75)

(b) The toroidal and poloidal components of Ampère’s law (16.2) provide associated ex-
pressions for the toroidal current density jϕ and the poloidal current stream function I:

Rjϕ = R

(
∂BZ
∂R

− ∂BR
∂Z

)
= R

∂

∂R

(
1
R

∂Ψ
∂R

)
+
∂2Ψ
∂Z2

≡ Δ∗Ψ , (16.76)

jR =
∂Bϕ
∂Z

, jZ = − 1
R

∂(RBϕ)
∂R

⇒ I ≡ RBϕ . (16.77)

Here, the special symbol Δ∗ indicates a Laplacian-like operator where the order of the
factors R and 1/R is reversed with respect to the ordinary Laplacian.

(c) Finally, the toroidal and poloidal components of the pressure balance equation (16.1)
imply that the stream function I of the poloidal current and the pressure p are flux
functions (i.e. functions of the flux Ψ) which are related to the toroidal current jϕ:

∂p

∂ϕ
= jRBZ − jZBR =

1
R2

(
∂I

∂Z

∂Ψ
∂R
− ∂I

∂R

∂Ψ
∂Z

)
= 0 ⇒ I ≡ I(Ψ) , (16.78)

∂p

∂R
= jZBϕ − jϕBZ =

(
− II ′

R2
− jϕ
R

)
∂Ψ
∂R

∂p

∂Z
= jϕBR − jRBϕ =

(
− II ′

R2
− jϕ
R

)
∂Ψ
∂Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒ p = p(Ψ) , (16.79)

p′ = −II
′

R2
− jϕ
R
. (16.80)

Here and in the following, the prime indicates differentiation with respect to Ψ.

Summarizing, from Eqs. (16.76) and (16.80) it follows that the equilibrium is
described by an elliptic nonlinear PDE, the Grad–Shafranov equation, for the
poloidal flux Ψ = Ψ(R,Z):[

Δ∗Ψ ≡ R2∇ ·
(

1
R2
∇Ψ
)
≡ ΔΨ− 2

R

∂Ψ
∂R
≡
]

R
∂

∂R

(
1
R

∂Ψ
∂R

)
+
∂2Ψ
∂Z2

= −II ′ −R2p′
[

= Rjϕ

]
, (16.81)
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which has to satisfy the boundary condition

Ψ = Ψ1 = const (on the plasma cross-section) . (16.82)

A considerable complication is that this plasma cross-section, in general, is also
unknown since it represents the interface between the plasma and the external vac-
uum region which is determined by another nonlinear problem, viz. the external
free-boundary problem with given currents in external coils. Here, we will assume
that this problem is solved separately so that the cross-sectional shape is known.
(Alternatively, one could assume that the plasma is surrounded by a closely fitting
external wall of the desired shape, or, as we will do in the next sections, one could
prescribe a desired shape of the plasma cross-section and compute what external
field would produce it: an ill-posed, though physically very relevant, problem.)
From Eqs. (16.77), (16.78), (16.79) it follows that the RHS of the Grad–Shafranov
equation (16.81) contains two completely arbitrary flux functions,

I ≡ RBϕ = I(Ψ) , and p = p(Ψ) . (16.83)

This arbitrariness is the toroidal counterpart of the freedom to specify two variables
in cylindrical equilibria, that we frequently encountered. Specifying the functions
I = I(Ψ) and p = p(Ψ), everything else will be determined from the solution
of the Grad–Shafranov equation. For example, the poloidal field and current are
determined from Eqs. (16.73) and (16.74):

Bp =
1
R

eϕ ×∇Ψ , jp = −I ′ Bp . (16.84)

This completes the derivation of the Grad–Shafranov equation.

16.2.2 Large aspect ratio expansion: internal solution

As a first application that requires the solution of the Grad–Shafranov equation, we
revisit the global equilibrium problem of Section 16.1.4. We now justify all the
rather ad hoc approximations that were made there and derive precise expressions
for all the quantities, both inside the plasma (this section) and in the outer vacuum
region that produces the necessary vertical field (next section).

The poloidal flux Ψ of the internal plasma region is determined by the full Grad–
Shafranov equation (16.81). To solve it, we anticipate that, for a circular outer
cross-section of the plasma, the cross-sections of the magnetic surfaces inside are
approximately shifted circles, where the shift Δ varies from Δ0 at the magnetic
axis to 0 at the plasma surface. We assume this shift to be small with respect to the
plasma radius: Δ/a ∼ ε � 1. Of course, these assumptions are to be justified by
the solutions that will be obtained. Our main task is to determine the magnitude of
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Fig. 16.9 “Shafranov” shifted circle approximation of the flux surfaces: non-
orthogonal coordinates r̂, θ̂ are defined with respect to the centers of the flux sur-
faces, which are shifted by an amount Δ(r̂), to be computed, with respect to the
center of the plasma (R = R0); the magnetic axis (R = Rm) is indicated by a dot.

Δ for the different magnetic surfaces. For the solution of this problem, we exploit
the non-orthogonal shifted circle coordinate system r̂, θ̂, ϕ (Fig. 16.9) based on the
“Shafranov” shift Δ:

R = R0 + r̂ cos θ̂ + Δ(r̂) , Z = r̂ sin θ̂ . (16.85)

Note that the three terms of R are of the order ε−1, 1 and ε, respectively. Actually,
our definition of Δ(r̂) differs from the shift ΔShafr(r̂) ≡ Δ0 − Δ(r̂) defined by
Shafranov in that we measure it with respect to the center of the plasma (R = R0),
whereas Shafranov defined it with respect to the magnetic axis (R = Rm). This
modification is not meant to be original, but to implement the strategy discussed
in Section 16.1.4 to define parameters, as much as possible, in terms of precisely
known external quantities.

The covariant metric elements of the shifted circle coordinates are given by

ĝ11 = 1 + 2Δ′ cos θ̂ + Δ′2 ≈ 1 + 2Δ′ cos θ̂ , ĝ12 = −r̂Δ′ sin θ̂ ,

ĝ22 = r̂2 , ĝ33 = R2 ≈ R2
0 [1 + 2(r̂/R0) cos θ̂] ,

Ĵ =
√

det(ĝij) = Rr̂(1 + Δ′ cos θ̂) ≈ R0 r̂[1 + (r̂/R0 + Δ′) cos θ̂], (16.86)

where each first expression is exact and each second expression is correct to first
order in ε. We also need the contravariant components of the metric tensor:

ĝ11 = (R2/J2)ĝ22 , ĝ12 = −(R2/J2)ĝ12 ,
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ĝ22 = (R2/J2)ĝ11 , ĝ33 = 1/R2. (16.87)

To first order in the inverse aspect ratio, the Grad–Shafranov equation becomes

Δ∗Ψ =
R2

Ĵ
∂i

(
Ĵ

R2
ĝij∂jΨ

)
≈ (1− 2Δ′ cos θ̂)

1
r̂

∂

∂r̂

(
r̂
∂Ψ
∂r̂

)
− (1/R0 −Δ′/r̂ + Δ′′) cos θ̂

∂Ψ
∂r̂

+
1
r̂2
∂2Ψ
∂θ̂2

= −I dI
dΨ
−R2 dp

dΨ
≈ − d

dΨ

(
1
2I

2 +R2
0p
)
− 2R0 r̂

dp

dΨ
cos θ̂ , (16.88)

where the arbitrary functions I(Ψ) and p(Ψ) are yet to be specified. Here, the
terms with ∂Ψ/∂θ̂ and ∂2Ψ/∂r̂∂θ̂ have been neglected since first order multipliers
turn them into second order quantities.

We now apply the low-β tokamak approximation introduced in Section 16.1.3.
To get dimensionless quantities that one can compare, we exploit a characteristic
length scale and magnetic field strength, for which we choose the plasma radius
a and the “vacuum” magnetic field strength B0 at R = R0, i.e. the trivial scaling
parameters of Section 16.1.4. This yields the following orders of magnitude for the
main quantities:

r̂/a ∼ 1 , Bϕ/B0 ∼ 1 , β ∼ p/B2
0 ∼ B2

p/B
2
0 ∼ ε2 . (16.89)

The merit of the shifted circle approximation is that, in the usual expansion

Ψ(r̂, θ̂) = Ψ0(r̂) + Ψ1(r̂) cos θ̂ + · · · , (16.90)

the first order flux Ψ1 vanishes identically since the angular distortion of the mag-
netic surfaces, which it represents, is already accounted for by the coordinates.
Hence, satisfaction of the BC (16.82) is automatic in this order.

Before we continue with the solution of the Grad–Shafranov equation, it is useful
to digress on certain technicalities of the use of non-orthogonal coordinates. The
details are given in Appendix A.3, but we here illustrate some of the subtleties
by working out the expression (16.84) for the poloidal field. Denoting the basis
vectors of the non-orthogonal coordinates r̂, θ̂, ϕ as

a1 ≡ ∇r̂ , a2 ≡ ∇θ̂ , a3 ≡ ∇ϕ , (16.91)

the gradient of the poloidal flux is written as

∇Ψ = (∂iΨ)ai =
∂Ψ
∂r̂

a1 +
∂Ψ
∂θ̂

a2 , (16.92)

so that the poloidal field becomes

Bp =
1
R

eϕ ×∇Ψ = ∇ϕ×∇Ψ = a3 ×
(∂Ψ
∂r̂

a1 +
∂Ψ
∂θ̂

a2
)
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(A.69)=
1
Ĵ

∂Ψ
∂r̂

a2 − 1
Ĵ

∂Ψ
∂θ̂

a1 ≈ 1
Ĵ

∂Ψ
∂r̂

a2 . (16.93)

This yields the angular dependence of the poloidal magnetic field amplitude,

Bp = |Bp| =
√

a2 · a2

Ĵ

∂Ψ
∂r̂
≡
√
g22

Ĵ

∂Ψ
∂r̂
≈ 1
R0

[
1− (r̂/R0 + Δ′) cos θ̂

] ∂Ψ
∂r̂

,

(16.94)
which plays a central role in these sections.

We now work out the expanded Grad–Shafranov equation (16.88) in the low-β
tokamak ordering. This yields the following leading order contribution:

1
r̂

d

dr̂

(
r̂
dΨ0

dr̂

)
= − d

dΨ0

(
1
2I

2 +R2
0p
)
. (16.95)

From the leading order part of the poloidal field expression (16.94), derivatives
with respect to Ψ0 may now be converted into derivatives with respect to r̂:

Bp0 =
1
R0

dΨ0

dr̂
⇒ d

dΨ0
=

1
R0Bp0

d

dr̂
. (16.96)

Hence, to significant order, the poloidal field expression (16.94) becomes

Bp(r̂, θ̂) ≈ [1− (r̂/R0 + Δ′) cos θ̂]Bp0(r̂) , (16.97)

where Bp0(r̂) is free so far. Moreover, to get a balance between the LHS and RHS
of Eq. (16.95), the function I2 must be constant to leading and first order, so that

I ≡ RBϕ ≈ (R0 + r̂ cos θ̂ + Δ)(B(0)
ϕ +B(1)

ϕ +B(2)
ϕ )

≈ R0B
(0)
ϕ +R0B

(1)
ϕ + r̂ cos θ̂B(0)

ϕ +R0B
(2)
ϕ + r̂ cos θ̂B(1)

ϕ + ΔB(0)
ϕ

⇒ B(0)
ϕ = const , B(1)

ϕ = −(r̂/R0) cos θ̂B(0)
ϕ . (16.98)

Hence, to significant order, the expression for the toroidal field becomes

Bϕ ≈ [1− (r̂/R0) cos θ̂]B(0)
ϕ +B(2)

ϕ ≈ [1− (r̂/R0) cos θ̂](B(0)
ϕ +B(2)

ϕ )

⇒ Bϕ(r̂, θ̂) ≈ [1− (r̂/R0) cos θ̂]Bϕ0(r̂) , (16.99)

where we have lumped together the zeroth and second order into the “cylindri-
cal” function Bϕ0(r̂), which is also free so far. Consequently, the leading order
equilibrium relation (16.95) reduces to the cylindrical equilibrium relation (16.56),

d

dr̂
(p+ 1

2B
2
ϕ0) +

Bp0

r̂

d

dr̂
(r̂Bp0) = 0 , (16.100)

where the variables p, Bp0 and Bϕ0 should be considered as functions of r̂, two of
which may be chosen freely, as in the analogous cylindrical equilibrium problem.
An expedient choice is p(r̂) and Bp0(r̂), or the related current density jϕ0(r̂).
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The next, and final, order of the expanded Grad–Shafranov equation (16.88) is
the first order contribution:

− 2Δ′ d2Ψ0

dr̂2
− (Δ′′ + Δ′/r̂ + 1/R0)

dΨ0

dr̂
= −2R0 r̂

dp

dΨ0
. (16.101)

Converting dΨ0/dr into R0Bp0 in this relation yields the crucial inhomogeneous
differential equation for the determination of Δ(r̂):

d

dr̂

(
r̂B2

p0

d

dr̂
Δ
)

= (r̂/R0)(2r̂p′ −B2
p0) . (16.102)

For given p = p(r̂) and B2
p0(r̂), the two integrations required are straightforward,

so that the problem may be considered solved. We first construct the first integral
of Eq. (16.102) and transform it by integration by parts:

Δ′(r̂) = (1/R0) · 1
r̂B2

p0(r̂)

∫ r̂

0
(2r̂p′ −B2

p0) r̂dr̂

= (1/R0) · 1
r̂B2

p0(r̂)

[
2r̂2p(r̂)−

∫ r̂

0
(4p+B2

p0) r̂dr̂
]
, (16.103)

and then integrate the result to produce the shift itself, satisfying the BC at the
plasma boundary, viz. Δ(a) = 0:

Δ(r̂) = −
∫ a

r̂
Δ′(r̂) dr̂ ⇒ Δ0 ≡ Δ(0) = −

∫ a

0
Δ′(r̂) dr̂ . (16.104)

This finally gives the unknown displacement Δ0 of the magnetic axis. Incidentally,
notice that, only now, after obtaining the solution characterized by Ψ0 = Ψ0(r̂) and
Δ = Δ(r̂), the coordinate system has become explicitly known. This is the general
a posteriori feature of exploiting magnetic flux based coordinates.

It remains to extract the global physical characteristics from these solutions. To
that end, we average over the toroidal plasma volume,

dV = Ĵ dr̂ dθ̂ dϕ ≈ 4π2R0 r̂ dr̂ ⇒ V ≈ 2π2a2R0 , (16.105)

so that the rough approximation (16.52) for the average of leading order quantities
gets a precise meaning in terms of the shifted circle coordinate r̂:

〈f〉 ≡ 1
V

∫
f(r̂, θ̂) dV ≈ 2

a2

∫ a

0
f0(r̂) r̂ dr̂ . (16.106)

With this understanding, the definitions (16.59) and (16.63) of Section 16.1.4 for
the poloidal beta, βp, and of the internal inductance, �i, of the plasma, now also get
a precise meaning. Their normalization with respect to the average poloidal field
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at the plasma boundary demonstrates the central importance of the total toroidal
current flowing in the plasma,

Bp0(a) =
Iϕ
2πa

, (16.107)

and, hence, of the modified safety factor q∗ defined in Eq. (16.66).
With the mentioned definitions of the two global parameters βp and �i, the solu-

tion (16.103) for Δ′ at the plasma boundary becomes

Δ′(a) = −ε(βp + 1
2�i) , (16.108)

where the edge pressure is assumed to vanish, p(a) = 0. From Eq. (16.97), this
yields the required expression for the poloidal field at the plasma boundary:

Bp(a, θ) =
Iϕ
2πa

(
1 + εΛ cos θ

)
,

Λ ≡ −1−Δ′(a)/ε = βp + 1
2�i − 1 . (16.109)

We have replaced θ̂ by the ordinary polar angle θ because Δ(a) = 0 implies that the
Shafranov coordinates coincide with the ordinary polar coordinates at the plasma
boundary: r̂ = r = a ⇒ θ̂ = θ. The poloidal dependence of Bp(a, θ), expressed
through Λ, summarizes the main physical properties of the internal solution Ψ,
which will be applied as a BC on the external solution Ψex in the next section.

Extrapolating the expression (16.109) to the high-beta tokamak regime, which is
strictly speaking invalid here since we have assumed the low-beta tokamak order-
ing, but which nevertheless catches the essential physics, a limit on the equilibrium
appears when the vertical field has to be increased so much that the poloidal field
vanishes on the inside plasma boundary, Bp(a, π) = 0:

εΛ ≈ εβp = 1 . (16.110)

This yields the limiting equilibrium value E of Eq. (16.71).
Finally, it is of interest to notice that βp also determines the overall radial depen-

dence of the “cylindrical” partB2
ϕ0(r̂) of the toroidal magnetic field pressure [481].

This follows by applying a similar reasoning as led to Eq. (16.57):∫ a

0

dB2
ϕ0

dr̂
r̂2dr̂ = −2

∫ a

0
jp0Bϕ0 r̂

2dr̂ = a2
(
B2

0 − 〈B2
ϕ0〉
)

=
I2
ϕ

4π2
(βp − 1) .

(16.111)
Clearly, the value βp = 1 separates paramagnetic equilibria with the “wrong”
direction of the poloidal current (viz. increasing the toroidal field in the plasma
with respect to that in the vacuum) from diamagnetic equilibria where the poloidal
current is in the proper direction (viz. θ-pinch like) to facilitate higher values of the
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plasma pressure confined:{
jp0Bϕ0 > 0 (outward Lorentz force) : βp < 1 ,

jp0Bϕ0 < 0 (inward Lorentz force) : βp > 1 .
(16.112)

For the latter case, on average, the plasma pressure “digs a hole” in the toroidal
magnetic field pressure, as shown in Fig. 16.6.

� Explicit solutions for Wesson profiles It is instructive to substitute in the expressions
derived the simple model distributions for the plasma pressure and the toroidal current
density introduced by Wesson [481], Section 3.7, viz.

p = p0(1− r̄2) , jϕ0 = j0(1− r̄2)ν , where r̄ ≡ r̂/a . (16.113)

Recall that this class of current profiles was extensively exploited to study the stability
of “straight tokamaks” (see Section 9.4.4 and Fig. 9.19 [1]). In particular, recall that the
overall magnetic shear, expressed by the ratio of the cylindrical safety factors at the plasma
surface and the magnetic axis, is q1/q0 = ν+1. For ν = 1 (parabolic pressure and current
profile), the explicit expressions of the “cylindrical” quantities become

Bp0(r̄) =
Iϕ
2πa
· r̄(2− r̄2) , Iϕ = 1

2πa
2j0 ,

βp =
(2πa
Iϕ

)2
p0 , �i = 11

12 ≈ 0.917 , (16.114)

and the final integrations (16.103) and (16.104) of the Shafranov shift yield

Δ′(r̂) ≡ 1
a

d

dr̄
Δ(r̄) = −ε · r̄(βp + 1− 2

3 r̄
2 + 1

8 r̄
4)

(2− r̄2)2
⇒ Δ′(a) = −ε(βp + 11

24 ) , (16.115)

Δ(r̄) = 1
4εa ·

[
(2βp + 5

6 − 1
4 r̄

2)(1− r̄2)
2− r̄2 + 1

3 ln(2− r̄2)
]

⇒ Δ0 ≡ Δ(0) = 1
4εa(βp + 5

12 + 1
3 ln 2) . (16.116)

The first relation reproduces Eq. (16.108) for the derivative of the shift at the plasma sur-
face. The second one yields the shift of the magnetic axis, in agreement with Fig. 3.7.2
of [481], where graphs of Δ0 for varying ν (i.e. �i) are given. Explicit calculation of the
toroidal field is left as an exercise for the reader. �

16.2.3 Large aspect ratio expansion: external solution

In this section, we determine the vertical magnetic field needed for equilibrium,
extending the procedure first presented by Shafranov [408], applied by Greene
et al. [192] to a tokamak compression experiment, and extensively discussed by
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Miyamoto [334], [335](a). This requires solution of the external “vacuum” mag-
netic field equations

∇×Bex = 0 , ∇ ·Bex = 0 (16.117)

⇒ Bex
p =

1
R

eϕ ×∇Ψex , Δ∗Ψex = 0 , (16.118)

so that the poloidal flux Ψex of the external region is determined by the Grad–
Shafranov equation (16.81) with vanishing RHS, i.e. vanishing toroidal current.
The source of the external field, viz. the distribution of the toroidal current Iex

ϕ,vf in
the vertical field coil(s) (Section 16.1.4), is not considered here but, instead, a BC
is imposed on Ψex that yields a homogeneous vertical field Bv at large distances
from the plasma. This is sufficient to determine the amplitude Bv. Of course, for
the design of external coils for plasma control or the interpretation of magnetic
diagnostics, the actual current distribution can not be ignored [7, 290, 13].

In the absence of skin currents on the plasma boundary, the pertinent BCs for
this problem follow from prescribing the dependence (16.109) of Bp at the plasma
boundary and the dependence of Ψex far away (at “infinity”) from the plasma:

Ψex(a, θ) = const

Bex
p (a, θ) =

Iϕ
2πa

(1 + εΛ cos θ)

⎫⎪⎬⎪⎭ (at the plasma boundary) , (16.119)

Ψex = Ψex
pl + Ψex

vf → C + Ψex
pl,∞ + 1

2BvR
2 (at “infinity”) , (16.120)

where Λ ≡ βp + 1
2�i − 1, the flux Ψex

pl,∞ corresponds to the far field due to the
plasma current and Ψex

vf is the flux of the vertical field.
It should be noticed that the boundary value problem (BVP) of solving the

PDE (16.118) with BCs (16.119)–(16.120), suffers from two defects.

(1) Disregarding the BC (16.120), the remaining BVP is already sufficient to completely
determine the solution Ψex. However, it is ill-posed: instead of solving the ellip-
tic problem starting from Dirichlet conditions on the two boundaries, the problem
is solved by posing Cauchy conditions on the internal boundary and integrating out-
ward. This is not forbidding by itself (many problems in science and engineering
are ill-posed and effective numerical procedures exist to solve them), but it does have
peculiar consequences, as we will see.

(2) The additional BC (16.120) really makes the problem over-determined, which implies
that we will have to relax it in some way. We will discuss how this may be done when
we have obtained the solution of the restricted BVP (16.118)–(16.119).

To solve the “Grad–Shafranov” equation (16.118) with the BC (16.119), we
exploit orthogonal toroidal coordinates μ, η, ϕ, using the notation of Morse and
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Feshbach [341], p. 1301. They have the following relationship to the cylindrical
coordinates R, Z, ϕ and resultant scale factors of the differential operators:

R = Rc
sinhμ
D

, Z = Rc
sin η
D

, D ≡ coshμ− cos η ,

h1 = h2 =
Rc

D
, h3 = R , J = h1h2h3 . (16.121)

The full range of these coordinates is indicated by the following scheme:

μ =

⎧⎪⎪⎨⎪⎪⎩
0 : R = 0 , or Z = ±∞ , or R =∞ (infinity)

μ1 : R = R0 + a cos θ , Z = a sin θ (plasma boundary)

∞ : R = Rc , Z = 0 (concentration point)

.

(16.122)
The “radial” coordinate curves μ = const of this system are circles with centers
R = Rc cothμ and radii r = Rc/ sinhμ, fitted to the circular plasma boundary
that is indicated by the value μ = μ1, so that

R0 = Rc cothμ1 , a = Rc/ sinhμ1 (16.123)

⇒ ε−1 ≡ R0/a ≡ coshμ1 ≈ 1
2eμ1 	 1 , Rc = R0

√
1− ε2 .

These coordinates are not very practical inside the plasma since the concentration
point (Rc, 0) is shifted inward with respect to the plasma center (R0, 0), whereas
the magnetic axis is shifted outward. We exploit them only in the outer range,

0 ≤ μ ≤ μ1 ≡ cosh−1(R0/a) ≈ ln(2R0/a) , (16.124)

where μ1 need not be very large for e−μ1 ≈ 1
2ε to be very small.

In terms of these coordinates, the vacuum Grad–Shafranov equation becomes

Δ∗Ψex ≡ R2

J

[
∂

∂μ

(
1
R

∂Ψex

∂μ

)
+

∂

∂η

(
1
R

∂Ψex

∂η

)]
= 0 . (16.125)

This equation may be solved by the transformation

Ψex(μ, η) =
G(μ, η)√
D(μ, η)

=
1√

D(μ, η)

∞∑
m=−∞

Ĝm(μ) cosmη , (16.126)

where the Fourier harmonics Ĝm of the function G(μ, η) satisfy the ODEs

sinhμ
d

dμ

(
1

sinhμ
dĜm
dμ

)
− (m2 − 1

4)Ĝm = 0 , (16.127)

having derivatives of the two kinds of Legendre functions as solutions. Hence, the
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general up–down symmetric solution of Eq. (16.125) may be written as

Ψex =
1√

D(μ, η)

∞∑
m=0

(2− δm0)
[
amSm(μ) + bmTm(μ)

]
cosmη ,

⎧⎪⎪⎨⎪⎪⎩
Sm(μ) ≡ sinhμ

d

dμ
Pm− 1

2
(coshμ) ≡ sinhμP 1

m− 1
2
(coshμ) ,

Tm(μ) ≡ sinhμ
d

dμ
Qm− 1

2
(coshμ) ≡ sinhμQ1

m− 1
2
(coshμ) ,

(16.128)

where Pm− 1
2

and Qm− 1
2

are the zero order toroidal harmonics (or Legendre func-

tions of the first and second kind), and P 1
m− 1

2
andQ1

m− 1
2

are the first order toroidal

harmonics. (The higher order toroidal harmonics may be exploited to calculate 3D
perturbations with toroidal dependence exp(inϕ), like external kink modes.) The
functions Sm and Tm are related to the Fock functions fm and gm, exploited by
Shafranov [407, 408], through Sm ≡ (m2− 1

4)fm and Tm ≡ (m2− 1
4)πgm. They

satisfy the Wronskian identity SmT ′
m − TmS′

m = (m2 − 1
4) sinhμ .

� Scalar potential Just for completeness: the vacuum field equations (16.117) may also
be solved by means of the scalar potential, Bex = ∇Φex, satisfying ΔΦex = 0; see
Biermann et al. [41]. The latter is solved by the transformation Φ =

√
DF , where the

Fourier harmonics F̂m of F (μ, η) satisfy Legendre’s equation proper, so that the solution

Φex(μ, η) =
√
D(μ, η)

∞∑
m=−∞

[
cmPm− 1

2
(coshμ)+dmQm− 1

2
(coshμ)

]
cosmη (16.129)

involves the Legendre functions themselves; see [341], p. 1303. �

Close to the plasma boundary (large μ), the exact solution (16.128) for Ψex(μ, η)
may be approximated by the leading terms in an expansion in powers of e−μ:

[D(μ, η)]−1/2 ≈
√

2e− 1
2μ(1 + e−μ cos η) , (16.130)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S0(μ) ≈ − 1
2π

(μ+ ln 4− 2)e
1
2μ , Sm(μ) ≈ (m− 1)!

2Γ(m− 1
2)
√
π

e(m+ 1
2 )μ

(m ≥ 1) ,

Tm(μ) ≈ −Γ(m+ 3
2)
√
π

2m!
e−(m− 1

2 )μ (all m) . (16.131)

For the full hypergeometric expressions, see Abramowitz and Stegun [3], p. 332, or
Morse and Feshbach [341], pp. 1302 and 1329. To assist the reader who wishes to
reproduce the algebra, in the rest of this section, we indicate by �. . . 	 the different
stumbling blocks from errors and confusing notations encountered in the literature.
� In the latter reference, note that the functions P and Q are defined with extra powers

of i and −1 respectively, that the expression for Q on p. 1302 is correct, but the one on

p. 1329 is incorrect, and that the Fourier coefficients of the expansion for 1/
√
D should be

a factor 2 larger for m �= 0 than those given on pp. 1304 and 1330. 	
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Since the low-β tokamak approximation of the internal solution contains only
two Fourier harmonics, to solve the restricted BVP (16.118)–(16.119) with these
approximate expressions, we only need to substitute the boundary values of the
m = 0 and m = 1 harmonics into the external solutions Ψex and Bex

p :

Ψex(μ1, η) ≈ − 1
π
√

2

{
(ln(8/ε)− 2)a0 + 1

2π
2b0

+ 1
2ε
[
(ln(8/ε)− 2)a0 − 8ε−2a1 + 1

2π
2(b0 + 3b1)

]
cos η

}
= const , (16.132)

Bex
p (μ1, η) = −

(
1
h1R

∂Ψex

∂μ

)
μ1

≈ ε−1

π
√

2R2
0

{
a0 − 1

2ε
[
(ln(8/ε) + 1)a0

+ 8ε−2a1 + 1
2π

2(b0 + 3b1)
]
cos η

}
=

Iϕ
2πa

(1 + εΛ cos η) . (16.133)

In the last equality we used θ ≈ η, obtained from the coordinate relationship
R(μ, η) = R0 + r cos θ , Z(μ, η) = r sin θ. To the order required, this yields

cos η ≈ cos θ , μ− μ1 ≈ ln(a/r)− 1
2ε(a/r − r/a) cos θ . (16.134)

The transformed BCs (16.132) and (16.133) determine three of the four constants,

a0 =
1√
2
R0Iϕ , a1 = −1

8ε
2(Λ + 3

2)a0 ,

b0 + 3b1 = − 2
π2

[Λ + ln(8/ε)− 1
2 ]a0 , (16.135)

so that the solution close to the plasma boundary is represented by

Ψex(μ, η) ≈ − R0Iϕ
2π

{
μ− μ1 + ln(8/ε)− 2 + 1

2π
2b0/a0

+
[
μ− μ1 − (Λ + 3

2)(1− e2(μ−μ1))
]
e−μ cos θ

}
, (16.136)

or

Ψex(r, θ) ≈ − R0Iϕ
2π

{
ln(8R0/r)− 2 + 1

2π
2b0/a0

− 1
2

[
ln(r/a) + (Λ + 1

2)(1− a2/r2)
]
(r/R0) cos θ

}
. (16.137)

Apart from the arbitrary constant b0/a0, the solution is now completely determined
in terms of a truncated Fourier expansion around the plasma boundary.

We now have to consider whether it is possible at all to satisfy the additional
“BC” (16.120) for the vertical field and, if so, to determine its amplitude Bv. To
that end, we first extract the plasma self field Ψex

pl,∞ from the solution obtained and
then evaluate whether the remainder conforms to the vertical flux Ψex

pl,v = 1
2BvR

2.
(For simplicity, we exploit the arbitrariness of b0/a0 to set C = 0.)
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Far away from the plasma, the actual current distribution in the plasma can be
ignored so that the plasma self field is related to the exact expression of the vector
potential for a ring current Iϕ at R = R0 (see Jackson [247], Section 5.5):

Ψex
pl,∞ = −RAϕ = −R0Iϕ ·

√
R/R0

(2− k2)K(k2)− 2E(k2)
2πk

,

k2 ≡ 4R/R0

(1 +R/R0)2 + (Z/R0)2
. (16.138)

Converting these expressions into μ, η coordinates, the square root
√
R/R0 ≈√

sinhμ/D, the parameter k becomes a function of μ alone, k2 ≡ 1 − e−2μ, and
the quotient with the elliptic integrals brings in the function −S0(μ)/

√
2 sinhμ,

where S0(μ) = −1
2 coshμP−1/2(coshμ) + 1

2 P1/2(coshμ). Hence,

Ψex
pl,∞ = R0Iϕ

S0√
2D

= a0
S0(μ)√
D(μ, η)

. (16.139)

This expression for the plasma far field not only justifies the neglect of a1S1(μ),
since a1 ∼ ε2 according to Eq. (16.135), but of all terms amSm(μ) for m ≥ 1.
� In the derivation of these expressions, a serious source of confusion had to be identified:

in contrast to Jackson [247] and others [189], we considered it more logical to indicate

the argument of the elliptic integrals as it appears in the integrals, viz. as k2 and not as k,

i.e. to follow the convention of Abramowitz and Stegun [3], Chapter 17. However, in their

expressions for the Legendre functions in terms of elliptic integrals [3], Section 8.13, they

inconsistently exploit the wrong argument k. 	
It remains to express the vertical field in μ, η coordinates and to convert it into a

series of the functions Tm(μ). To that end, we exploit a general identity (see, e.g.,
B. Braams [65]) relating those functions to the Fourier coefficients of

√
2D:

π
√

2D(μ, η) =
∞∑
m=0

2− δm0

m2 − 1
4

Tm(μ) cosmη (16.140)

⇒ Tm(μ) = (m2 − 1
4)
∫ π

0

√
2D(μ, η′) cosmη′ dη′ . (16.141)

By differentiating this identity twice, and exploiting the ODE (16.127) for Tm(μ),
we obtain the following representation of the vertical flux:

Ψex
vf = 1

2BvR
2 ≈ 1√

D
1
2BvR

2
0

sinh2 μ

D3/2

= −
√

2
π
√
D

∞∑
m=0

(2− δm0)BvR
2
0 Tm(μ) cosmη = Ψex(am= 0) (16.142)

⇒ bm = −
√

2
π
BvR

2
0 (all m) . (16.143)
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Hence, all coefficients bm should be equal! However, from the relation (16.135)
it follows that only b0 and b1 are needed to determine Bv. Substituting them, the
required relation for the vertical field results:

Bv ≈ − π

4
√

2R2
0

(b0 + 3b1) =
Iϕ

4πR0

[
βp + ln(8R0/a) + 1

2�i − 3
2

]
, (16.144)

justifying the heuristic expression (16.62) derived in Section 16.1.4; QED.
This illustrates the intermediate asymptotic character of the ill-posed equilib-

rium problem. Since the exact expression (16.142) for the vertical field involves
all coefficients bm, but only two of them are determined from the present low-β
tokamak expansion, the sum Ψex = Ψex

pl,∞ + Ψex
vf of the expressions (16.138) and

(16.142) represents the solution “far away” from the plasma, but not too far away
(in particular not at μ � 1, see small text below) so that the functions S0(μ),
T0(μ) and T1(μ) suffice to approximate the solution. Once this is established, one
can also extract the contribution of the vertical field from the solution (16.137) at
the plasma boundary, as Shafranov does [408]:

Ψex
vf ≡ Ψex(am= 0) ≈ − π

2
√

2

[
b0 + 1

2(b0 + 3b1)
r

R0
cos θ

]
= 1

2BvR
2 ≈ 1

2BvR
2
0

(
1 + 2

r

R0
cos θ

)
. (16.145)

This again yields the expression (16.144) for Bv.
Since the external solution (16.128) is exact, the method may be generalized

to arbitrary aspect ratio. The coefficients am and bm are then determined by the
plasma current distribution; see Zakharov and Shafranov [494], Section 3.3.

� Supplementary expressions From Eq. (16.141), one may obtain exact relations of the
functions Tm(μ) in terms of elliptic integrals, alternative to the hypergeometric series:

T0(μ) = − 1
4

∫ π

0

√
2D(μ, η′) dη′ = − 1

λ
E(λ2) , λ2 ≡ [ cosh(μ/2)]−2 ,

T1(μ) = 3
4

∫ π

0

√
2D(μ, η′) cos η′ dη′ =

(2− 2λ2)K(λ2)− (2− λ2)E(λ2)
λ3

. (16.146)

These provide checks on the expansions (16.131), and (16.147) below.
The approximations of Sm and Tm for μ � 1 may be derived from the functions P of

Morse and Feshbach [341], p. 1329, and the functions Q of Bateman [25], p. 149:⎧⎪⎪⎨⎪⎪⎩
Sm(μ) ≈ 1

2 (m2 − 1
4 )μ2,

Tm(μ) ≈ −1 + 1
2 (m2 − 1

4 )
[
μ2 ln(8/μ) +

(
1
2 −

m∑
n=1

2
2n− 1

)
μ2

]
.

(16.147)

The logarithmic terms demonstrate the ill-posedness from another angle: to give finite
results for the flux Ψex and its derivatives in the limit μ → 0 (e.g. on the axis of symme-
try), the constants bm should be such that

∑
bmTm cancels, which is a hopeless task to

accomplish when the solution is obtained by integrating from the inside to the outside. �
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16.3 Exact equilibrium solutions

16.3.1 Poloidal flux scaling

Recall the analysis of the scaling properties of the MHD equations in Volume [1],
Section 4.1.2. We found that in any MHD problem three trivial quantities appear
that have no other function than to provide magnitude and dimensions for the oc-
curring lengths, magnetic field strengths and time scales. Hence, they can, and
should, be scaled out by dividing all occurring variables and parameters by appro-
priate powers of them, so that the resulting problem becomes dimensionless. Since
equilibrium problems are time-independent, only two such trivial scaling quanti-
ties occur, viz. a length and a magnetic field strength. After these have been taken
out, we can concentrate on the quantities of real physical interest, e.g. the field
line geometry, represented by the parameter q1, the amount of plasma confined,
represented by the parameter β/ε, and the “fatness” of the torus, represented by
the parameter ε. In Section 16.1.4, we have already demonstrated that a more
effective parameterization is obtained by replacing the parameter pair β/ε, q1 by
the parameter pair εβp , q∗. We will now complete that analysis by systematically
subjecting the Grad–Shafranov equation to this scaling, where also the degrees of
freedom residing in the free flux function profiles will be accounted for.

This procedure involves the following steps.

(a) Construct a minimum number of dimensionless quantities of order unity by dividing
lengths by the half-width a of the plasma, and magnetic fields by the strength B0 of
the external vacuum magnetic field at R = R0, i.e. at the middle of the plasma, but
on the outside (indicated by B0 in Fig. 16.10(a)). This yields dimensionless poloidal
coordinates (Fig. 16.10(b)):

x ≡ (R−R0)/a , y ≡ Z/a , (16.148)

the inverse aspect ratio:

ε ≡ a/R0 ( � 1 in asymptotic expansions ) , (16.149)

the dimensionless poloidal flux:

Ψ ≡ Ψ/(a2B0) , (16.150)

a separate parameter for the inverse of the total poloidal flux through the plasma, which
is proportional to the modified safety factor q∗:

α ≡ a2B0/Ψ1 ≡ 1/Ψ1

( ∼ q∗) , (16.151)

and a dimensionless “radial” flux coordinate of unit range:

ψ ≡ Ψ/Ψ1 ≡ αΨ ⇒ 0 ≤ ψ ≤ 1 . (16.152)

From now on, we will leave this construction understood and drop the bars.
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Fig. 16.10 Cross-sectional geometry of flux surfaces: (a) in R, Z, ϕ coordinates;
(b) in the dimensionless poloidal x-y plane.

(b) Introduce scaled dimensionless profiles for the pressure and the “diamagnetism”,

P (ψ) ≡ α2

εB2
0

p(Ψ) , Q(ψ) ≡ − εα2

a2B2
0

1
2

[
I2(Ψ)−R2

0B
2
0

]
, (16.153)

so that the Grad–Shafranov equation transforms into

ψxx + ψyy − ε

1 + εx
ψx =

1
ε

[
Q′ − (1 + εx)2P ′

]
. (16.154)

To get a RHS of order unity, we introduce yet another profile that expresses the men-
tioned fact that tokamak equilibria at “high” β (∼ ε) become θ-pinch like so that the
pressure and diamagnetism profiles must approximately balance:

G(ψ) ≡ −1
ε

[
Q(ψ)− P (ψ)

]
. (16.155)

The Grad–Shafranov equation then transforms into the desired form where the order
of magnitude of each term is manifest:

ψxx + ψyy − ε

1 + εx
ψx = −G′ − 2x(1 + 1

2εx)P
′ . (16.156)

Notice that, even in the limit ε → 0, there is still poloidal asymmetry resulting in an
outward shift of the flux surfaces due to the term −2xP ′. This is the essence of the
high β tomakak ordering, but with ε �= 0 the equation is exact.

(c) We are not content yet: the arbitrary profiles G′(ψ) and P ′(ψ) represent an infinite
amount of freedom which makes it hard to compare experimental with theoretical
stability results obtained for different equilibria. We should distinguish the ampli-
tudes of these functions (related to the global parameters εβp and q∗) and their shapes.
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Therefore, we introduce unit profiles Γ(ψ) and Π(ψ), or rather γ(ψ) and π(ψ), and
amplitudes A and B:

G′ ≡ −AΓ(ψ) , Γ(ψ) = Γ1 + (1− Γ1)γ(ψ) , (16.157)

with boundary values Γ(0) = γ(0) = 1 , Γ(1) = Γ1 , γ(1) = 0 ,

P ′ ≡ − 1
2BΠ(ψ) , Π(ψ) = Π1 + (1−Π1)π(ψ) , (16.158)

with boundary values Π(0) = π(0) = 1 , Π(1) = Π1 , π(1) = 0 ,

where the parameters Γ1 and Π1 roughly represent a possible non-vanishing current
density and pressure gradient at the plasma edge. When G′ and P ′ are integrated
with respect to ψ, two additional arbitrary integration constants appear that represent
possible non-vanishing surface currents; they will be neglected here. Hence,

G(ψ) = A

∫ 1

ψ

Γ(ψ′) dψ′ , P (ψ) = 1
2B

∫ 1

ψ

Π(ψ′) dψ′ , Q(ψ) = P (ψ)−εG(ψ) .

(16.159)
The scaled Grad–Shafranov equation then becomes:

Δ∗ψ ≡ ψxx + ψyy − ε

1 + εx
ψx = AΓ(ψ) +Bx(1 + 1

2εx)Π(ψ) , (16.160)

where Γ(ψ) and Π(ψ) approximately represent the shapes of the toroidal current den-
sity and the pressure gradient profiles. This appears to be a final, definite, form of the
Grad–Shafranov equation, with no arbitrariness in the normalizations.

(d) Finally, we transform the original boundary value problem (16.81)–(16.82) into a non-
standard boundary value problem by considering not only the cross-sectional shapeC,
but also the dimensionless position δ ≡ Δ0/a of the magnetic axis (Fig. 16.10(b)) as
given, so that the boundary conditions become

ψ = 1 (at the plasma boundary C : r ≡
√
x2 + y2 = f(θ)) , (16.161)

ψ = ψx = ψy = 0 (at the magnetic axis: x = δ , y = 0) . (16.162)

The boundary value problem (16.160)–(16.162) is then over-determined, so that the
global parameters A and B become eigenvalues that should be determined together
with the solution ψ. Effective methods exist to do this (see Section 16.3.3).

Now count! Since the Grad–Shafranov equation is a nonlinear equation, it is im-
possible to distinguish between cause and effect. This translates into arbitrariness
of the choice of input and output variables of a numerical equilibrium code that
solves this problem. It is essential, though, that the number of independent global
and shape parameters is carefully counted in order to be able to compare results
from different equilibrium solvers and to avoid spurious parameter scans. This is
true in general, but more pertinent in MHD equilibrium because of the two-fold
infinite freedom of the equilibrium profiles. Therefore, in Section 16.1.4, we have
introduced a distinction between four kinds of parameter stressing the difference
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Fig. 16.11 Independent parameters and profiles in a numerical equilibrium solver.
Inside the red box: core part of the solver, which is independent of the inverse flux
parameter α ≡ 1/Ψ̄1 or the modified safety factor q∗.

between precisely known external parameters and parameters that require knowl-
edge of the plasma profiles that is only indirectly known from diagnostics.

The mentioned distinction between the four kinds of parameters has now been
completed by the associated construction for the Grad–Shafranov equation:

(1) we have eliminated the trivial scaling parameters a and B0;

(2) we have defined the geometry parameters ε and the shape r = f(θ) of the plasma
cross-sectional boundary curve C;

(3) we have (temporarily) replaced the global confinement parameters εβp and q∗ by the
shift δ of the magnetic axis and the inverse poloidal flux α;

(4) we have defined the distribution functions Γ(ψ) and Π(ψ) for the toroidal plasma
current and the pressure profile.

The peculiar construction of item (3) requires some explanation. Whereas εβp and
q∗ remain the global equilibrium parameters of interest, in a numerical solution
procedure it is expedient to consider δ and α as the primary, input, parameters.
Specifying δ then fixes one of the major geometric features of the solution, viz.
the position of the magnetic axis, and specifying α fixes the other major geometric
feature of the magnetic geometry, viz. the total poloidal flux.

There is another, more fundamental, reason for the procedure put forward: the
poloidal flux scaling, described by the parameter α, permits the solution of the
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core of the equilibrium problem, described by the scaled Grad–Shafranov equa-
tion (16.160), without actually specifying it! This is evident from the fact that the
latter equation does not contain α. The eigenvalue parameters A and B of this
equation will be completely determined, and hence the solution ψ(x, y) as well,
when all item (1), (2) and (4) parameters are given, but from the item (3) param-
eters only δ, which then uniquely determines the parameter εβp. However, the
parameter q∗ is not determined by the scaled equations, but only its relative mag-
nitude with respect to α,

q̃∗ ≡ q∗/α . (16.163)

Hence, the poloidal flux scaling, described by the parameter α, and the toroidal
current scaling, introduced in Section 16.1.4 and described by the parameter q∗, are
one and the same. This is illustrated in Fig. 16.11 by the red box, which contains
the α or q∗ independent part of the equilibrium solver. In tokamak stability studies,
constructing stability diagrams as schematically indicated in Fig. 16.8, usually q1,
or rather q∗, is varied while the rest of the equilibrium is kept fixed as much as
possible. With the poloidal flux scaling, this computer time saving procedure is
now uniquely defined.

If the core problem for the flux ψ and the eigenvalues A and B is solved, the
explicit spatial dependence of the physical variables follows by substituting the
value of α in the following expressions:

ψ = ψ(x, y) ⇒ (α/ε)Bp = (1 + εx)−1eϕ ×∇ψ ,

(α2/ε)p = P (ψ) , Bϕ = (1 + εx)−1
[
1− 2(ε/α2)Q(ψ)

]1/2
,

αjp = Q′(ψ)
[
1− 2(ε/α2)Q(ψ)

]−1/2
, (α/ε)jϕ = (1 + εx)−1Δ∗ψ .

(16.164)

The global parameters defined in Eqs. (16.66) [(16.163)] and (16.67),

q̃∗ =
L2

2π

[ ∫∫
S
(1 + εx)−1Δ∗ψ dxdy

]−1
, (16.165)

εβp = 8π
∫∫

S
P (ψ) dxdy

[ ∫∫
S
(1 + εx)−1Δ∗ψ dxdy

]−2
, (16.166)

do not involve α, but just the eigenvalues A and B, according to Eqs. (16.159) and
(16.160), so that they may be determined inside the red box of Fig. 16.11. At this
level, the scaled counterpart of Eq. (16.69) may also be computed:

β̃/ε ≡ α2β/ε = 2S−1
∫∫

S
P (ψ) dxdy = Cεβp/q̃

∗2 . (16.167)

However, the scaled safety factor profile depends on α and, hence, does not belong
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to the core solver:

q̃(ψ) ≡ q(ψ)/α =
1
2π

∮
ψ

√
1− 2(ε/α2)Q(ψ)
(1 + εx)|∇ψ| d� . (16.168)

Notice that it requires accurate calculation over a flux surface: another reason not
to exploit the boundary value q1 as a global parameter (nor the arbitrary parameter
q95, that is sometimes used to indicate the value of q at the flux surface containing
95% of the flux in order to avoid the infinity when a separatrix occurs). To avoid
misunderstanding: this does not imply that the safety factor profile q(ψ) loses its
central importance, in particular not because it is crucial in the construction of
straight field line coordinates for stability analysis.

Summarizing, we have enumerated the freedom in the choice of MHD equi-
librium parameters and profiles by prescribing three geometric quantities, viz. the
inverse aspect ratio ε, the shift δ of the magnetic axis, the plasma cross-sectional
shape C, and two arbitrary unit profiles Γ(ψ) and Π(ψ), corresponding to the
toroidal current and the pressure gradient. Solving the Grad–Shafranov equation
with these independent input parameters turns A and B into eigenvalues which
should be computed together with the solution ψ(x, y). These parameters are di-
rectly related to the scaled physical parameters q̃∗ and εβp. The unscaled param-
eters q∗ and β/ε, and all other parameters and functions of interest, are obtained
by means of a simple scaling in terms of the parameter α ≡ Ψ−1

1 . As a bonus,
in the “high”-beta tokamak ordering, where ε � 1 while εβp ∼ 1 and q∗ ∼ 1
are kept finite, the scaling becomes trivial: all RHSs of Eqs. (16.164)–(16.168)
become independent of both α and ε, whereas the LHSs scale as simple powers of
those parameters.

16.3.2 Soloviev equilibrium

A useful special solution of the original Grad–Shafranov equation (16.81) was ob-
tained by Soloviev [413] by assuming linear profiles for I2(Ψ) and p(Ψ),

1
2I

2(Ψ) = 1
2I

2
0 − EΨ , I0 ≡ R0B0 ⇒ 1

2I
2′ = −E ,

p(Ψ) = p0 − FΨ , p0 ≡ p(0) ⇒ p′ = −F , (16.169)

so that the Grad–Shafranov equation becomes a linear, inhomogeneous, PDE:

R
∂

∂R

(
1
R

∂Ψ
∂R

)
+
∂2Ψ
∂Z2

= E + FR2 . (16.170)

If one ignores the elliptic character of this equation, by replacing the BC (16.82)
by the condition that Ψ should vanish at the magnetic axis, which is accepted to be
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located at some position determined by

Ψ = ΨR = ΨZ = 0 (at the magnetic axis R = Rm , Z = 0) , (16.171)

one easily checks (just substitute) that the Grad–Shafranov equation is solved by
the following polynomial expression:

Ψ(R,Z) = (C −DR2)2 + 1
2

[
E + (F − 8D2)R2

]
Z2 , Rm =

√
C/D .

(16.172)
Hence, one obtains a four-parameter family of solutions of the original equilibrium
problem (16.81)–(16.82), where the position of the magnetic axis (at R = Rm)
is controlled by the parameters C and D, but the cross-section of the outer wall
can only be specified a posteriori by cutting out some suitable part of the solution
where the flux surfaces are still nested around the magnetic axis. Obviously, this is
not what one needs in the control room of a tokamak experiment, but the Soloviev
solution is, nevertheless, important to test equilibrium solvers and the accuracy of
the associated construction of flux coordinates for stability analysis.

In order to develop intuition about the parameterization introduced in the previ-
ous section, let us now consider the scaled counterpart of the Soloviev construction.
The flux functions Γ(ψ) and Π(ψ) corresponding to the linear profiles (16.169) be-
come constants, Γ1 = Π1 = 1, and the scaled Grad–Shafranov equation (16.160)
becomes

ψxx + ψyy − ε

1 + εx
ψx = A+Bx(1 + 1

2εx) . (16.173)

The scaled Soloviev solution now involves only three arbitrary parameters, viz. the
inverse aspect ratio ε, the elongation σ = b/a of the outer flux surface ψ = 1 at
x = 0, and the triangularity τ of the outer flux surface. It may be written as

ψ(x, y) =
[
x− 1

2ε(1− x2)
]2

+ (1− 1
4ε

2)
[
1 + ετx(2 + εx)

]( y
σ

)2
, (16.174)

where the position of the magnetic axis at x = δ, y = 0, found a posteriori from
the “boundary condition” ψ = ψx = ψy = 0, is directly related to ε:

δ =
1
ε

[√
1 + ε2 − 1

] (
≈ 1

2ε , if ε� 1
)
. (16.175)

The eigenvalue parameters A and B of the scaled Grad–Shafranov equation are
found by substitution of Eq. (16.174) into Eq. (16.173):

A = 2
[
1 +

1− 1
4ε

2

σ2

]
, B = 4ε

[
1 +

1− 1
4ε

2

σ2
τ
]
. (16.176)

They are independent of α, as expected, and they determine the scaled parameters
q̃∗ and εβp by the integrals (16.165) and (16.166). Also specifying the parameter
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Fig. 16.12 Flux contours 0 ≤ √ψ ≤ 1 for Soloviev equilibria, ε = 0.4, σ = 1.4,
(a) open configuration with separatrix on the right, τ = −2.0; (b) closed configu-
ration with negative triangularity, τ = −0.5; (c) closed configuration with positive
triangularity, τ = 1.0; (d) open configuration with separatrix on the left, τ = 2.5.
Plasma boundary (ψ = 1) in thick black, axis of symmetry and separatrices in red.

α, the three parameters ε, σ and τ then finally completely determine the global
parameters q∗ and β/ε, and the safety factor profile according to Eq. (16.168).

According to our normalization, the plasma boundary curve C of the Soloviev
equilibria is given by

ψ(x, y) = 1 , (16.177)

determined by the expression (16.174) in terms of the parameters ε, σ and τ . Re-
sulting flux contour plots are shown in Fig. 16.12 for some representative parameter
values. The qualitative geometry of the flux contours is determined by the extrema
of the flux, ψx = ψy = 0, which are elliptic or hyperbolic points depending on the
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value of the discriminant,

D ≡ ψxxψyy − 4ψ2
xy

⎧⎨⎩
> 0 (elliptic point)

< 0 (hyperbolic point)
. (16.178)

This yields the following characteristic features of the Soloviev equilibria:

(a) the central point on the symmetry axis, x = −1/ε, y = 0, is elliptic for τ > 1 and
hyperbolic for τ < 1;

(b) the magnetic axis at x = δ, y = 0, given by Eq. (16.175), is elliptic if τ > −1/ε2;

(c) the separatrices through the hyperbolic points

xs = −(1/ε)[1−
√

1− 1/τ ] , ys = ±[σ/(ετ)]
√

1
2 (1 + ε2τ)/(1− 1

4ε
2) (16.179)

enter the plasma domain from the right (xs < 1) if τ < −1/[ε(2 + ε)] and from the
left if τ > 1/[ε(2− ε)]. A system of closed flux contours requires the value of τ to be
restricted within these limits. These features are manifest in Fig. 16.12.

These restrictions of the Soloviev equilibria should not be taken to be illustrative
of the ultimate limit εβp,max ∼ 1 of tokamaks at high-beta, defined in Eq. (16.71)
of Section 16.1.4. This is evident from the orders of magnitude δ ∼ ε and B ∼ ε,
which imply that Soloviev equilibria are essentially low-β equilibria with artificial
limits εβp,max ∼ ε due to the way in which they were constructed. If one chooses
δ = O(1) and solves Eq. (16.173) with the same boundary (16.177), one obtains
valid high-beta equilibria, but they will not be of the Soloviev polynomial type.

To analyze the waves and instabilities of a toroidal equilibrium, we need to be
able to construct the poloidal flux coordinates corresponding to the magnetic sur-
faces. One of the merits of the Soloviev equilibrium is that this can be done explic-
itly by means of a Pythagorean decomposition of ψ :

f ≡
√
x− 1

2ε(1− x2)

g ≡
√

(1− 1
4ε

2)[1 + ετx(2 + εx)]
y

σ

⇒
ψ(x, y) = f2(x) + g2(x, y)

θ(x, y) ≡ arctan(g/f)

⎫⎪⎬⎪⎭ ,

(16.180)
with the inverse:⎧⎪⎪⎨⎪⎪⎩

x(ψ, θ) = 1
ε

[√
1 + 2ε

√
ψ cos θ + ε2 − 1

]
y(ψ, θ) = σ

√
ψ sin θ√

(1− 1
4ε

2)(1 + 2ετ
√
ψ cos θ + ε2τ)

. (16.181)

All variables can now be computed in these coordinates. In the limit ε → 0, they
yield straight field line coordinates ψ, ϑ, with the inverse x =

√
ψ cosϑ, y =

σ
√
ψ sinϑ, describing “straight low-beta tokamaks” with elliptical cross-section.
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16.3.3 Numerical equilibria�

In this section, we will discuss two numerical methods for solving the Grad–
Shafranov equation, where the plasma boundary shape is fixed and given a priori as
a bounding flux contour. The emphasis is on computing the nested flux contours in-
terior to this boundary to a high degree of accuracy, ensuring among other things a
continuous representation of ψ and∇ψ. The essential form of the Grad–Shafranov
equation can be written as

Δ∗ψ = F̃ (ψ) , (16.182)

where the nonlinear ψ dependence is found in the right hand side. It is then conve-
nient to use Picard iteration to converge onto the solution such that, from a starting
guess ψ(0)(x, y), the iterate solves the linearized problem

Δ∗ψ(n+1) = F̃ (ψ(n)) , (16.183)

which is stopped when e.g. max |ψ(n+1) − ψ(n)| ≤ εtol. The max-norm runs over
all grid points and tolerances εtol can be taken as low as, or smaller than, 10−8,
depending on machine precision.

Conformal mapping

One of the earlier numerical approaches to tokamak equilibrium exploited a confor-
mal mapping to transform the circular plasma cross-section of a high-beta tokamak
onto itself while shifting the image of the magnetic axis to the centre of the coor-
dinates [142, 162]. The Moebius transformation z ≡ x+ iy → w, and its inverse,
effecting this are given by

w(z) =
z − δ
1− δz ⇔ z(w) =

w + δ

1 + δz
. (16.184)

It is then expedient to exploit polar coordinates in the mapped plane,w ≡ s exp(it),
so that the two-dimensional Laplacian part of Δ∗ψ simply transforms through the
explicitly known scale factor h(s, t):

ψxx + ψyy =
1
h2

(1
s

∂

∂s
s
∂ψ

∂s

)
, h(s, t) ≡ |dz/dw| . (16.185)

To fully exploit the power of analytic functions, it is essential to modify the Pi-
card iterate of the scaled Grad–Shafranov equation (16.160) such that the two-
dimensional Laplacian appears on the LHS,

1
s

∂

∂s
s
∂

∂s
ψ(n+1) +

1
s2

∂2

∂t2
ψ(n+1) = F (n)(s, t)

≡ h2
[
A(n)Γ(ψ(n)) +B(n)x(1 + 1

2εx)Π(ψ(n)) +
ε

1 + εx
ψ(n)
x

]
, (16.186)
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whereas all the terms on the RHS are explicitly known on the (s, t) grid from the
previous step, including the eigenvalues A(n) and B(n), as we will see. (A further
simplification, which we will not exploit here, is to assume the high-beta tokamak
approximation, so that the two terms with ε on the RHS vanish.)

Although the flux surfaces in the mapped plane are not circular (except for the
outermost one), it is clear that mapping the magnetic axis onto the origin is the
crucial step to facilitate Fourier analysis of the solutions with only few harmonics.
This is very much like the Shafranov shifted circle representation, except that the
present one is not restricted to small shifts. Exploiting a truncated Fourier series,

ψ(n+1)(s, t) =
M∑
m=0

(1− 1
2δm0)ψ̂(n+1)

m (s) cosmt , (16.187)

and similarly for F (n)(s, t), the Fourier components of the Picard iterate become
simple ODEs,

1
s

d

ds
s
d

ds
ψ̂(n+1)
m − m2

s2
ψ̂(n+1)
m = F̂ (n)

m , (16.188)

whereas the two boundary conditions (16.161), prescribing the value ψ = 1 at the
plasma boundary, and (16.162), prescribing ψ = ψx = ψy = 0 at the position
x = δ, y = 0 of the magnetic axis, become conditions on the harmonics:

ψ̂(n+1)
m (1) = 2δm0 , ψ̂(n+1)

m (0) = ψ̂(n+1)
m

′(0) = 0 . (16.189)

The solutions of the ODEs (16.188) satisfying all these BCs, except the first one
for m = 0 and the second one for m = 1, are simple integrals:

ψ̂
(n+1)
0 (s) =

∫ s

0
ds′ s′−1

∫ s′

0
ds′′s′′F̂

(n)
0 (s′′) ,

ψ̂(n+1)
m (s) = sm

∫ s

1
ds′ s′−2m−1

∫ s′

0
ds′′s′′m+1F̂ (n)

m (s′′) (m �= 0) . (16.190)

These expressions still contain the unknown values of A and B. They are deter-
mined by the BC on m = 0,

ψ̂
(n+1)
0 (1) = 2 ⇒ A , (16.191)

and the BC on m = 1,

ψ̂
(n+1)
1

′(0) = −1
2

∫ 1

0
(1− s2)F̂ (n)

1 (s) ds = 0 ⇒ B . (16.192)

Thus, the full solution ψ(n+1)(s, t) at the (n + 1)th step is found, requiring no
additional iterations to determine the eigenvalues A and B.

This completes the solution of the Grad–Shafranov equation with conformal
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mapping. For reasonable profiles Γ(ψ) and Π(ψ), the convergence is fast and
accurate with few harmonics. No further operations are needed than fast Fourier
transforms in the angular variable and integrations over the radial variable. Impor-
tant for stability analysis is that the first and second derivatives (magnetic field and
currents) are obtained with the same accuracy as the flux function ψ(s, t) itself.

For the generalization of the conformal mapping technique to arbitrary cross-
sections, pre-mappings could be applied that are known from the design of wings
for airplanes and biplanes. These map an arbitrary simply connected domain onto a
circle, or of a doubly-connected domain onto an annulus, by means of the nonlinear
integral equations of Theodorsen or Garrick, respectively. These integral equations
were converted by Henrici [223] into effective numerical algorithms introducing
the fast Hilbert transform (FHT), a powerful counterpart of the fast Fourier trans-
form (FFT), for conjugate periodic functions. This results in beautiful analysis of
the equilibrium and stability of high-beta tokamaks, in particular when the plasma
current is confined to the surface so that both the plasma region and the vacuum are
described by two-dimensional Laplace equations [163]. In that case, complex anal-
ysis provides the full solution in terms of a one-dimensional variational principle
involving a double angular integral over the plasma boundary. For diffuse cur-
rent distributions, the radial dependence of the perturbations could be effectively
described by means of a new set of polynomials [167] that, together with FFTs,
provide the general solution of incompressible fluid flow in arbitrary domains. Sta-
bility of tokamaks at high beta was extensively analyzed with the resulting program
HBT [153, 179].

One complication of the conformal mapping of an arbitrary domain onto a cir-
cular disk is the fact that the distribution of angular points is not free. For example,
mapping of an elliptical domain onto a circle results in a distribution which is
sparse on the curved parts and crowded on the flat parts of the ellipse (just like
the orthogonal Ψ, χ, ϕ coordinates described in Section 16.1.2), precisely oppo-
site to what is needed in stability analysis. One could remedy this by angular grid
accumulation, but this spoils most of the beauty of obtaining explicit results from
complex analysis. This is one of the reasons to consider the more flexible technique
of the next sub-section.

Two-dimensional finite elements

Later numerical approaches of solving the Grad–Shafranov equation still exploit
the Picard iteration scheme (16.183), but they are more tuned to general solu-
tion strategies, exploiting two-dimensional finite elements and Galerkin methods
with the essential elements of proven implementations, already encountered in Sec-
tion 15.1.3, as found in [238, 30, 29, 320].

To specify the newer solution algorithms, we need to explain the choice of the
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grid on which the solution is computed, the way in which the solution is approx-
imated numerically on this grid, and the manner in which the PDE (16.182) is
turned into a discrete (linear algebraic) problem. A proven strategy which allows
for a continuous∇ψ is to use a third order finite element method (FEM). On a unit
square [−1, 1]2, we can define up to sixteen bicubic Hermite polynomials, four per
corner (x0, y0) = (±1,±1), namely

H00(x, y) = 1
16(x+ x0)2(xx0 − 2)(y + y0)2(yy0 − 2) ,

H10(x, y) = − 1
16x0(x+ x0)2(xx0 − 1)(y + y0)2(yy0 − 2) ,

H01(x, y) = − 1
16(x+ x0)2(xx0 − 2)y0(y + y0)2(yy0 − 1) ,

H11(x, y) = 1
16x0(x+ x0)2(xx0 − 1)y0(y + y0)2(yy0 − 1) . (16.193)

This allows us to approximate any function f(x, y) on [−1, 1]2 by the expansion

f(x, y) =
∑
x0,y0

H00(x, y)f(x0, y0) +H10(x, y)
∂f

∂x
(x0, y0)

+H01(x, y)
∂f

∂y
(x0, y0) +H11(x, y)

∂2f

∂y∂x
(x0, y0) . (16.194)

The function then has a prescribed functional dependence on the square as encoded
in the bicubic expansion polynomials, and the sixteen expansion coefficients are the
local corner values of the function f and its derivatives.

Fig. 16.13 Iso-parametric mapping to the local s, t coordinates for a curved quadri-
lateral on the square [−1, 1]2.

For a given cross-sectional shape, the grid should allow alignment with the usu-
ally curved boundary. In the (x, y) plane, polar coordinates (r, θ) centered at
(x, y) = (0, 0) can be used to represent a given boundary curve in a (suitably
truncated) Fourier series r = fb(θ) =

∑
m am exp(imθ). We can then use an ar-

bitrary “radial” function v(r) from 0 (center) to 1 (boundary) in global coordinates
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Fig. 16.14 Fourth order convergence behavior as observed in the max-norm of the
error E ≡ max|ψ−ψexact| in a computed Soloviev equilibrium for increasing grid
resolution n ≡ nr = nθ.

following the boundary shape where

x = v(r)fb(θ) cos θ , y = v(r)fb(θ) sin θ . (16.195)

Our grid is then formed by taking a discrete number of nr radial points ri, and of
nθ angular points θj . The grid consists of curved quadrilateral elements, while we
discussed the FEM representation of a function on a unit element [−1, 1]2. The
numerical representation of the solution on the boundary-fitted grid is complete
by making use of an iso-parametric mapping, where each curved quadrilateral
is mapped onto [−1, 1]2 by changing from (x, y) to local (s, t) coordinates (see
Fig. 16.13). In fact, this mapping consists of representing both the solution and the
coordinates x, y in the same FEM representation, i.e.

ψ(x, y) =
∑

H00(s, t)ψ(s0, t0) +H10(s, t)
∂ψ

∂s
(s0, t0)

+H01(s, t)
∂ψ

∂t
(s0, t0) +H11(s, t)

∂2ψ

∂s∂t
(s0, t0) ,

x(s, t) =
∑

H00(s, t)x(s0, t0) +H10(s, t)
∂x

∂s
(s0, t0) + · · · ,

y(s, t) =
∑

H00(s, t)y(s0, t0) +H10(s, t)
∂y

∂s
(s0, t0) + · · · . (16.196)

Identifying v(r) ≡ s and θ ≡ t, it is possible to compute the consistent FEM
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Fig. 16.15 The equilibrium flux surfaces of (a) TEXTOR, (b) JET and (c) ITER,
normalized to the same width and calculated for the same normalized pressure and
current distribution.

representation of the coordinates (as one can calculate x, ∂x/∂s etc. at all (s0, t0)).
One can use this flexibility (after each Picard iterate or after Picard convergence) to
take the local s coordinate to become some function of ψ, and align the grid with
ψ flux contours.

Within each Picard step, one solves the discrete equivalent of Eq. (16.183). In
FEM methodology, we formulate the problem in its weak form, where we select a
space of test-functions χ and look for the solution ψ such that for all test functions
we have ∫

V
χ∇ · (R−2∇ψ) dV =

∫
V
χ (R−2F̃ ) dV , (16.197)

where the integral is taken over the plasma volume. In the Galerkin method, the test
functions are simply the finite elements (H00, etc.) which are already used in the
representation for ψ. This reduces the problem to a linear system Kx = b, where
the vector x represents the unknown coefficients in the FEM representation, while
the K matrix and b vector elements are integrals of known functions (involving
the FEM and their derivatives). These integrals can e.g. be evaluated numerically
by Gaussian quadrature. Figure 16.14 shows the expected quartic convergence
reached when a Soloviev solution is determined numerically for increasing grid
resolution n ≡ nr = nθ going from 5 up to 65. As the exact solution is known, the
error can be quantified precisely and the fourth order convergence in ψ shows that
very accurate solutions are already obtained for relatively coarse grids.
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Figure 16.15 shows the flux surface distributions for three “generations” of toka-
maks, calculated with the program HELENA [238]-FINESSE [29] described in this
section. The three cases assumed the same flux profiles and correspond to low-beta
configurations that differ in their geometric parameters: TEXTOR has a circular
cross-section and a = 0.45 m, R0 = 1.75 m; JET has a D-shaped cross-section
(finite ellipticity and triangularity) with a = 1.1 m, R0 = 2.96 m; while ITER will
scale up to a = 2 m, R0 = 6.2 m. Shown are computed pressure distributions and
the nested flux surfaces, where the angular coordinate lines shown represent the
straight field line coordinates. The cover of this book displays the corresponding
3D view for the ITER tokamak case: it combines density iso-surfaces with a pres-
sure contour plot in a cross-sectional view, as well as selected field lines (magnetic
axis in red, with progressively outwards a blue and green field line visualizing the
varying safety factor). At left and right, an impression of the FEM grid is shown,
together with magnetic field vectors (yellow).

16.4 Extensions

16.4.1 Toroidal rotation

The purely static, axi-symmetric, equilibrium can be generalized in several ways.
Avoiding the significant complications due to poloidal flow (see Chapter 18), a
first non-trivial extension of the Grad–Shafranov equilibrium includes the effect of
toroidal rotation and the associated centrifugal force. The toroidal component of
the stationary induction equation ∇ × (v × B) = 0 then dictates that each flux
surface rotates at fixed angular velocity Ω(Ψ) = vϕ/R.

The azimuthal component of the force balance equation still prescribes the cur-
rent stream function I to be a flux function I(Ψ) = RBϕ. However, the poloidal
part now requires two equations to be satisfied simultaneously. In the ∇Ψ direc-
tion, a Grad–Shafranov-like equation is obtained, namely

R
∂

∂R

(
1
R

∂Ψ
∂R

)
+
∂2Ψ
∂Z2

= −I d I
dΨ
− ∂ p

∂Ψ
R2 = Rjϕ , (16.198)

where the pressure is no longer a flux function. The dependence of the pressure
p = p(Ψ, R) is such that along the poloidal flux contours the force balance is
ensured [454] by

∂ p

∂ R

∣∣∣∣
Ψ

= ρRΩ2(Ψ) . (16.199)

The latter equation can, e.g., be solved analytically under the additional assumption
that the entropy is a flux function, S ≡ pρ−γ = S(Ψ), a result which generalizes
to all stationary MHD equilibria since v · ∇S = 0 (with poloidal flows as well).
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Fig. 16.16 The radial pressure profile for a toroidally rotating equilibrium com-
pared to that of a static one. Note the outward shift of the magnetic axis (vertical
dashed lines), and the separation of the pressure maximum from the magnetic axis
when a large rotation is present.

The pressure can then be written as

p(Ψ, R) =

[
R2 γ − 1

γ

Ω2

2S1/γ
+ f

]γ/(γ−1)

, (16.200)

so that for toroidally rotating equilibria four flux functions can be freely chosen:
besides I(Ψ) and Ω(Ψ) we get, e.g., S(Ψ) and f(Ψ).

For the purpose of equilibrium reconstruction for toroidally rotating tokamak
plasmas where diagnostic information on density and temperature profiles is avail-
able, a convenient parameterization uses the corresponding static pressure pst(Ψ)
and density ρst(Ψ) profiles with the same entropy variation S(Ψ), as follows:

p(Ψ, R) = pst(Ψ)

[
(R2 −R2

0)
γ − 1
γ

Ω2ρst

2pst
+ 1

]γ/(γ−1)

. (16.201)

This is useful as long as the toroidal rotation is low and its small influence on
the equilibrium properties is to be quantified in comparison with a similar static
reconstruction. The pressure can be shown to have its maximum shifted radially
outward with respect to the magnetic axis, which in turn is shifted outward due to
toroidal rotation.

As an example, consider the influence of a relatively large toroidal rotation on
the pressure profile, as shown in Fig. 16.16 for a circular tokamak cross-section of
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inverse aspect ratio ε = 0.26, and parameterized as follows:

I2 = A
[
1− 0.01ψ + 0.005ψ2

]
, Ω = 0.075 [1− 0.999ψ] ,

pst = 0.0125A
[
1− 2ψ + 1.001ψ2

]
, ρst = A

[
1− ψ + 0.6ψ2 − 0.5ψ4

]
.

(16.202)

The last two profiles only enter in the computation when rotation is considered. The
eigenvalue A determined numerically is 155 for the rotating equilibrium, versus
164 in the static case. The rotation would correspond to a maximal sonic Mach
number Ms = vϕ/

√
γp/ρ = 1.06, which is rather high but illustrates well the

influence of toroidal rotation.

16.4.2 Gravitating plasma equilibria�

In astrophysical contexts, the influence of external or self-gravity can become very
important in the overall force balance. In accretion disks, for example, the pure
Keplerian disk balances a central gravitational field with centrifugal forces. In
the solar corona, quiescent prominences can be observed suspended above the so-
lar limb, characterized by much denser and much cooler (typical factors 10–100)
plasma than the coronal environment. There, the main force balance is again deter-
mined by Lorentz forces, now opposing gravity and pressure gradients. A recent
analytical solution representative for quiescent prominences can be found in [318].
A similar analysis of the static force balance, now assuming translational invari-
ance in the z-direction, finds for force balance in the ∇Ψ direction

∂2Ψ
∂x2

+
∂2Ψ
∂y2

= −I d I
dΨ
− ∂p

∂Ψ
= jz . (16.203)

Again, I(Ψ) = Bz is a free flux function and p = p(Ψ, y). Along a poloidal flux
contour the equation

∂p

∂y

∣∣∣∣
Ψ

= −ρg (16.204)

should be satisfied when considering a constant external gravitational acceleration
g = −gey. Assuming the temperature to be a flux function T (Ψ), three free flux
functions can be chosen as the pressure is then p(Ψ, y) = k(Ψ) exp[−g y/T (Ψ)].
Using a scaling with respect to half the horizontal diameter a, the outermost flux
value Ψ1 and a reference field strength B0, a suitable scaling writes the governing
Grad–Shafranov-like equation as

∂2ψ

∂x2
+
∂2ψ

∂y2
= −α2

[
I
d I

dψ
+
(
d �

dψ
+
� y

H2

dH

dψ

)
e−y/H

]
, (16.205)
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where α = aB0/Ψ1, and the pressure p = �(ψ)e−y/H uses the scale height H =
T (ψ)/(ag). All quantities appearing are again dimensionless, e.g., (x/a, (y −
y0)/a)→ (x, y) with y0 a reference height in the prominence.

Numerical magneto-hydrostatic solutions describing the gravitationally strati-
fied equilibrium of cool prominence plasma embedded in a near-potential coronal
field are described by Petrie et al. [369]. The solutions are calculated using the
FINESSE equilibrium solver. They describe the morphologies of the magnetic field
distributions in and around prominences and the cool prominence plasma that these
fields support. It reproduces the three-part structure encountered in observations: a
cool dense prominence within a cavity/flux rope embedded in a hot corona.

16.4.3 Challenges

To be able to describe perturbations with minimum field line bending, it is neces-
sary to represent the parallel gradient operator (16.29) as accurately as possible.
An effective method is to replace the poloidal angle θ, which could be any angle as
long as it increases by 2π after one revolution the short way around the torus, by
a poloidal angle ϑ such that the field lines become straight lines in the ϕ–ϑ plane
(Fig. 16.2). This construction has to be carried out on each flux surface labeled by
ψ. To exploit the constructed flux variable ψ and the new angle ϑ as coordinates
for the description of instabilities, inversion of the coordinates is needed,

ψ = ψ(xi, yj)

ϑ = ϑ(xi, yj)

⎫⎬⎭ ⇒
⎧⎨⎩ x = x(ψi, ϑj)

y = y(ψi, ϑj)
, (16.206)

as exemplified by Eq. (16.181) for the Soloviev equilibrium. All quantities occur-
ring in the stability analysis are then to be transformed to ψ, ϑ, ϕ coordinates, e.g.
the normal field line curvature κn, the geodesic curvature κg, the toroidal current
jϕ, etc. (see Section 17.1.2 of the next chapter). These quantities involve second
derivatives with respect to ψ, so that the equilibrium solutions need to be surpris-
ingly accurate for a reliable stability analysis.

In this chapter, we have presented a theoretical description of toroidal equilib-
rium, which involves the required accurate solution of the Grad–Shafranov equa-
tion and a careful choice of the parameters. The experimental counterpart is the
production of accurate equilibrium data by means of all available diagnostics. To
get agreement between these two is a long-term iterative process. The essential
point to notice is that, at the present time, the situation is far from satisfactory:
important parameters and profiles are only known to about 10%. Consequently,
tokamak diagnostics need to be improved if we ever are to arrive at the agreement
between theory and experiment that is standard in physics.
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Fig. 16.17 Uncertainty: electron pressure profile obtained by LIDAR diagnostic at
JET (dashed curve with diamonds) and reconstructed pressure profile by means of
an equilibrium solver (drawn curve). (From Huysmans et al. [239].)

A systematic way of approaching this problem has been called MHD spec-
troscopy [180]; see Section 7.2.4 of Volume [1]. Here, the frequency spectrum of
MHD waves is used to obtain equilibrium information (the inverse spectral prob-
lem). This spectrum is calculated by means of a spectral code with input of an
equilibrium obtained by fitting experimental data to get an approximation of the
free profiles. However, this involves considerable uncertainty as to how to han-
dle deviations from nested flux surfaces, see e.g. the rather crude method of fitting
diagnostic data with a symmetric flux function profile in Fig. 16.17.

We have extensively discussed the problem of the freedom in the choice of equi-
librium profiles. This should be well distinguished from the just mentioned in-
accuracy and uncertainty. In principle, the latter freedom can be eliminated by
experimental data. More substantial are the problems of three-dimensionality of
the equilibrium, associated with deviations from axi-symmetry due to field errors,
saturated nonlinear instabilities, possibly leading to non axi-symmetric equilibrium
states, stochastic field lines, etc. Another area of study is the effect of stationary
flow (v0 �= 0) on equilibria, i.e. departure from static equilibrium in connection
with the effects of neutral beams, pumped divertors, etc. (see Chapter 18). Here,
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three more free equilibrium profiles appear (the velocity and the density). The
problem of infinite freedom remains with us!

16.5 Literature and exercises

Notes on literature

Axi-symmetric equilibrium

– The original papers on tokamak equilibrium by the “founding father” Shafranov [406,
407, 408] remain beautiful examples of down-to-earth theoretical analysis with in-
escapable experimental consequences. Over the years, his approach of general cal-
culations interspersed with explicit applications has widely expanded, as presented in
subsequent volumes of Reviews of Plasma Physics by himself [409], and with collab-
orators Soloviev [414], and Zakharov [494].

– Classical treatises on the structure of magnetic fields by Morozov & Soloviev [338],
in Reviews of Plasma Physics, Volume 2, and on closed magnetic configurations by
Soloviev [413], in Volume 6, contain a wealth of information on stability of magnetic
fields, natural coordinates, equilibria with shaped cross-sections, etc.

Basic equilibrium concepts

– The older textbook Ideal Magnetohydrodynamics by Freidberg [140], Chapters 4–7,
first presents the basic equilibrium considerations and then extends this to cylindri-
cal, 2D (tokamaks), and 3D equilibria (stellarators). The new textbook on Plasma
Physics and Fusion Energy [141], in particular Chapter 11, continues this practical
presentation, always keeping eventual application to fusion energy in mind.

– Axi-symmetric equilibrium theory is presented in the textbooks Plasma Physics for
Nuclear Fusion, Chapter 7, and Plasma Physics and Controlled Fusion, Chapter 6, by
Miyamoto [334, 335]. The latter also discusses the different experimental approaches
of tokamak, reversed field pinch, stellarator and inertial confinement to fusion.

– Chapter 3 of the “manual” on tokamaks by Wesson and collaborators [481] contains
the essential concepts of flux functions, safety factor, beta, and many simple one-
dimensional model calculations (à la Shafranov) on tokamak equilibrium problems.

– Summerschool proceedings [231, 122] present equilibrium theory together with many
experimental contributions, demonstrating the lively research field of controlled ther-
monuclear fusion.

Exercises

[ 16.1 ] Thin plasma slab

In this exercise you will take a look at a thin plasma slab about the mid-plane. In this slab,
it is reasonable to assume that all physical quantities depend only on the radius R. Show
that the Grad–Shafranov equation reduces to

d

dR

(
p+ 1

2B
2
)

+
B2
ϕ

R
= 0 ,

which is the force balance equation of cylindrical plasma as discussed in Chapter 12.
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[ 16.2 ] “Shafranov” shift

In this exercise you are going to derive an analytical expression for the “Shafranov” shift.
This is the difference between the center of each flux surface and the geometric axis. As-
sume that the inverse aspect ratio ε is small (� 1) and that the outer plasma boundary
is circular to first order. In this case the magnetic flux function Ψ can be represented as
Ψ(r̂, θ̂) = Ψ(r̂), where (r̂, θ̂) are non-orthogonal polar coordinates defined with respect to
the center of the flux surface. The connection with the cylindrical coordinates is given by

R = R0 + r cos(θ̂) + Δ(r̂) , Z = r̂ sin(θ̂) ,

where Δ(r̂) is the “Shafranov” shift. This shift has the boundary conditions Δ(0) = Δ0

and Δ(1) = 0, where Δ0 is the shift of the magnetic axis with respect to R = R0.
– Derive expressions for Rr̂, Rθ̂, Zr̂ and Zθ̂.

– Derive the co- and contravariant metric tensors in these new coordinates (r̂, θ̂).
– Derive an expression for the Jacobian J .
– Derive an expression for the covariant magnetic field components.
– Show that

R2∇ ·
( 1
R2
∇Ψ
)
≈ ∂2Ψ

∂r̂2
+

1
r̂

∂Ψ
∂r̂
− cos θ̂

[
2Δ′ ∂

2Ψ
∂r̂2

− 1
r̂

(εr̂ + Δ′ + Δ′′r̂)
∂Ψ
∂r̂

]
,

where all variables are dimensionless.
– Show that

− 1
2

dI2

dΨ
≈ − 1

2R0Bp0

dI2

dr̂
, −R2 dp

dΨ
≈ − R0

Bp0

(
1 + 2

r̂

R0
cos θ̂
)dp
dr̂
,

where Bp0 is the poloidal magnetic field component.
– Show that the zeroth order reduces to

d

dr̂

(
p+ 1

2B
2
ϕ0 + 1

2B
2
p0

)
+
B2

p0

r̂
= 0 .

Compare this with the equation found in Exercise[16.1] and discuss the differences.
– Show that the first order yields the equation for the “Shafranov” shift,

dΔ
dr̂

= − 1
r̂R0B2

p0

∫ r̂

0

(
r̂B2

p0 − 2r̂2
dp

dr̂

)
dr̂ .

– Derive the expression for the Shafranov shift defined by Shafranov himself.

[ 16.3 ] “Shafranov” shift and Wesson profiles

In this exercise, you will derive an analytical expression for the “Shafranov” shift using the
profiles defined by Wesson [481] for the pressure and toroidal current density,

p = p0(1− r2) , jϕ0 = j0(1− r2)ν .
Here, r ≡ r̂/a, where a is the plasma radius. For this exercise we set ν = 1, which means
that both the pressure and the toroidal current density are parabolic functions.

– Derive the expression for the poloidal magnetic field Bp.
– Derive the expression for the toroidal magnetic field Bϕ.
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– From the toroidal magnetic field, derive the expression for the safety factor q.
– Find the expression for the poloidal beta, βp.
– Finally, derive the expression for the derivative of the shift, Δ′.

[ 16.4 ] Equilibria with toroidal flow and gravity

In this exercise, you will extend the equilibrium with toroidal flow and gravity. The ex-
tension with flow is relevant in present tokamak experiments because the plasma rotates
due to neutral beam injection. On the other hand, toroidal flow and gravity are essential
ingredients of accretion disks. The additional inclusion of poloidal flow will be discussed
in Chapter 18. The equilibrium has to satisfy Eqs. (12.24)–(12.27).

– Show that Ω = vϕ/R is a flux function, where vϕ is the toroidal velocity.
– Show that the projection of the momentum equation parallel to the poloidal magnetic

field leads to the following two equations:

∂p

∂R

∣∣∣
Ψ=const

= ρ
(
RΩ2 − ∂Φgr

∂R

)
,

∂p

∂Z

∣∣∣
Ψ=const

= −ρ∂Φgr

∂Z
.

– Show that the projection perpendicular to the poloidal magnetic field lines results in
the extended Grad–Shafranov equation (note the partial derivative on p!)

R2∇ ·
( 1
R2
∇Ψ
)

= −I dI
dΨ
−R2 ∂p

∂Ψ
.

– This extended Grad–Shafranov equation can be further specialized by assuming that
the temperature, the density or the entropy is a flux function. Derive the equation for
the pressure for all three cases.

– Derive the specialized extended Grad–Shafranov equation for all three choices.

[ 16.5 ] Shafranov shift and toroidal flow

In exercise [16.2] you have derived the “Shafranov” shift for static toroidal plasmas. Repeat
this exercise, including toroidal flow now. Show that the three specialized extended Grad–
Shafranov equations just derived result in the same equation for the “Shafranov” shift, i.e.

dΔ
dr̂

= − 1
r̂R0B2

p0

∫ r̂

0

[
r̂B2

p0 − r̂2
d

dr̂

(
2p+ ρv2

ϕ0

) ]
dr̂ .

Comment on this result.
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Linear dynamics of static toroidal plasmas

17.1 “Ad more geometrico”

17.1.1 Alfvén wave dynamics in toroidal geometry

It was shown in Chapters 6–11 of Volume [1] and 12–14 of this volume that spectral
theory of MHD waves and instabilities essentially concerns the dynamics of Alfvén
waves in the environment of magnetized plasmas. Since Alfvén waves travel along
the magnetic field lines, and the field lines in turn are constrained to the nested
magnetic surfaces in an axi-symmetric toroidal plasma, this implies that the geom-
etry of the magnetic field lines and of the constraining magnetic surfaces becomes
the all-determining factor for MHD spectral theory of toroidal plasmas. Recalling
the “grand vision” of Section 12.1.1 on magnetized plasmas occurring everywhere
in the Universe, it is appropriate at this point to call upon the great examples of gen-
eral relativity, where light waves propagate along geodesics, and upon the dream of
philosophers (Spinoza) to construct the theoretical understanding of the world “ad
more geometrico” (in the geometrical manner). As we will see, even when fusion
applications are the main concern, it pays off to exploit the ready-made concepts
of geometry expanded by the great scientists of the past.

Recall that Alfvén wave dynamics is dominated by the gradient operator parallel
to the magnetic field lines, B · ∇. In toroidal geometry, this leads to such intricate
dynamics that a very accurate description is needed of the geometry of the field
lines and of the magnetic surfaces, i.e. of the equilibrium, if one wishes to study
stability. Hence, we will start this chapter by describing the mapping to straight
field line coordinates (Section 17.1.2), which is a nearly compelling representation
for the (numerical) analysis of the stability of toroidal plasmas. We then list the
different characteristics of the equilibrium, which turn out to be really geometri-
cal properties, like the curvatures of the field lines and of the magnetic surfaces
(Section 17.1.3). These play a central role in the waves and instabilities of toroidal
plasmas described in the Sections 17.2–17.3. Broadly speaking, for fusion applica-

307
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tions, the MHD waves of the system are desirable, as they provide information on
the equilibrium distribution through MHD spectroscopy, and the MHD instabilities
are to be avoided, as they lead to premature loss of the plasma.

17.1.2 Coordinates and mapping

To enable accurate description of Alfvén wave dynamics in toroidal geometry, the
following steps should be taken in the analysis (see Fig. 17.1).

(a) Solve the Grad–Shafranov equation (16.81), or the scaled version (16.160) derived in
Section 16.3.1. For the present purpose, we will exploit the unscaled poloidal flux Ψ
(rather than the scaled flux ψ ≡ αΨ), and we will assume that the required solution

Ψ = Ψ(x, y) (17.1)

is known in the relevant portion of the poloidal plane. In practice, this implies that
a numerical equilibrium program has to be available, such as the finite element code
described in Section 16.3.3.

(b) Rather than exploiting an arbitrary poloidal angle θ, or the angle χ belonging to the
orthogonal flux coordinate triad, construct the straight field line coordinates Ψ, ϑ,
ϕ, introduced in Section 16.1.2 (Fig. 16.2). Again, for the present purpose, we will
assume that the solution of this problem, i.e. the distribution of the poloidal angle
coordinate

ϑ = ϑ(x, y) , (17.2)

is explicitly known on a grid in the x, y-plane. For these coordinates, all tangential
information on the field lines has been lumped into the definition of the coordinates,
while the normal behavior is described by the safety factor q(Ψ). As shown below, for
the harmonic dependence ∼ exp i(mϑ+ nϕ) of perturbations, the parallel gradient
operator then becomes a simple multiplier,

F ≡ −iB · ∇ ⇒ F ei(mϑ+nϕ) = J−1(m+ nq) ei(mϑ+nϕ) , (17.3)

so that it can be made to vanish exactly for rational field lines and surfaces (see Sec-
tion 16.1.2). Consequently, straight field line coordinates are the optimal representa-
tion of the geometry of the field lines for the description of Alfvén wave dynamics.
This establishes the Ψ, ϑ, ϕ coordinates as an important analytical tool, but it is not
enough to exploit them for the explicit numerical construction of waves and instabili-
ties. For that purpose one more step is needed.

(c) Invert the poloidal coordinates (17.1)–(17.2), as already announced in Eq. (16.206),

Ψ = Ψ(x, y)

ϑ = ϑ(x, y)

}
⇒
{
x = x(Ψ, ϑ)

y = y(Ψ, ϑ)
, (17.4)

so that we can represent all geometrical and physical quantities on a computational
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Fig. 17.1 The three parts of a numerical stability analysis of toroidal plasmas.

grid {Ψi, ϑj} in the poloidal plane. Once this has been established by construction
(i.e., again having written a numerical program to do this), we can go ahead and study
the waves and instabilities of the system.

17.1.3 Geometrical–physical characteristics

After the straight-field line (SFL) coordinates have been constructed, there really
is no distinction anymore between physical and geometrical quantities. Moreover,
the basic nonlinearity of the equilibrium implies that these quantities do not have
the simple relationship of cause and effect to each other. Therefore, in somewhat
arbitrary order, we now list the different geometrical–physical characteristics that
will be needed in the analysis of MHD waves and instabilities in axi-symmetric
toroidal systems.

(a) It is expedient to exploit the general tensor machinery for curvilinear coordinates (see
Appendix A.3) by denoting the three coordinates as

x1 ≡ Ψ , x2 ≡ ϑ , x3 ≡ ϕ , (17.5)

so that the two sets of basis vectors {ai} and {ai} determine the contravariant and
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covariant elements of the metric tensor,

ai ≡ ∇xi , ai ≡ ∂r
∂xi

⇒ gij = ai · aj , gij = ai · aj , (17.6)

where the latter are directly available in the SFL coordinates:⎛⎜⎜⎝
g11 g12 0

g12 g22 0

0 0 g33

⎞⎟⎟⎠ =

⎛⎜⎝ x2
Ψ + y2

Ψ xΨxϑ + yΨyϑ 0

xΨxϑ + yΨyϑ x2
ϑ + y2

ϑ 0
0 0 R2

⎞⎟⎠ ,

R = ε−1(1 + εx) . (17.7)

The characteristic difference in length scales of the poloidal and toroidal coordinates
is manifest from the expression for the complete Jacobian J in terms of the product
of the distance R from the axis of symmetry and the Jacobian D of the poloidal plane,

J ≡ (∇Ψ×∇ϑ · ∇ϕ)−1 = RD ,

D ≡ ∂(x, y)
∂(Ψ, ϑ)

= xΨyϑ − xϑyΨ =
√
g11g22 − g2

12 , (17.8)

from which the contravariant elements of the metric tensor may be obtained:

g11 = g22/D2 , g12 = −g12/D2 , g22 = g11/D2 , g33 = 1/R2 . (17.9)

We can now compute all geometric–physical quantities of interest.

(b) From Eq. (16.84) of Section 16.2.1, the magnetic field is expressed by

B = ∇ϕ×∇Ψ + I∇ϕ = a3 × a1 + Ia3 = J−1a2 + Ia3 , (17.10)

so that the physical components are given by

Bp = |∇Ψ|/R =
√
g11/R = J−1√g22 , Bϕ = I/R , (17.11)

whereas the contravariant and covariant components are related to them by

B1 = 0 , B2 = J−1 = Bp/
√
g22 , B3 = I/R2 = Bϕ/R ,

B1 = J−1g12 = (g12/
√
g22)Bp , B2 = J−1g22 =

√
g22Bp , B3 = I = RBϕ .

(17.12)

The field line equation (16.14) of Section 16.1.2 then provides the safety factor in SFL
coordinates,

q(Ψ) ≡ dϕ

dϑ

∣∣∣
fl

=
B3

B2
=
√
g22Bϕ

RBp
=
JBϕ
R

=
J I
R2

, (17.13)

so that the expression for the parallel gradient operator becomes

F ≡ −iB · ∇ = −i(B2∂ϑ +B3∂ϕ) = −iJ−1(∂ϑ + q∂ϕ) . (17.14)

This produces the desired effect on harmonic perturbations presented in Eq. (17.3).
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(c) From Eqs. (16.84) and (16.81) of Section 16.2.1, the current density is expressed by

j = −I ′∇ϕ×∇Ψ +Rjϕ∇ϕ , (17.15)

from which the contravariant and covariant components may be constructed, analo-
gous to the above derivation of the components of B. The toroidal component jϕ
is related to the profiles p(Ψ) and I(Ψ) in the RHS of the original Grad–Shafranov
equation (16.81). That equation is supposed to be solved at this stage, so that the
transformed Grad–Shafranov equation in SFL coordinates becomes a first order dif-
ferential relation between the different geometrical–physical quantities that is satisfied
exactly (of course, to the extent that the equilibrium is solved exactly):

Δ∗Ψ(Ψ, ϑ) =
R2

J
(
∂ψ − ∂ϑ g12

g22

)
JB2

p = −II ′ −R2p′ = Rjϕ . (17.16)

Recall that the functions p = p(Ψ) and I = I(Ψ) should be considered arbitrary.

(d) For the propagation of waves and instabilities, the geometry of the magnetic field lines
and magnetic surfaces is important, in particular the different curvatures that appear.
This involves projections onto three different triads of unit vectors, that need to be dis-
tinguished carefully. They refer to the field lines by themselves, the magnetic surfaces
by themselves, and the field lines with respect to the magnetic surfaces, respectively:

(1) The traditional Serret–Frenet triad for the field lines {b,ν,β}, consisting of the
tangent, the normal and the binormal, is defined by

b ≡ B/|B| , ν ≡ b · ∇b/|b · ∇b| , β ≡ b× ν . (17.17)

Only the first of the three Serret–Frenet formulas for the tangential derivatives
is needed. This defines the curvature vector κ of the field line as the tangential
derivative of the tangent,

κ ≡ κν ≡ db
ds
≡ b · ∇b , (17.18)

which, by definition, is pointing in the direction of the normal to the field line.

(2) The magnetic surface symmetry triad {n, t, eϕ}, consisting of the triad of the
normal to the magnetic surface, the tangent to the magnetic surface in the poloidal
plane and the unit vector in the toroidal direction, is defined by

n ≡ ∇Ψ
|∇Ψ| =

a1

RBp
, t ≡ eϕ × n =

a2

JBp
, eϕ ≡ ∇ϕ|∇ϕ| = Ra3 . (17.19)

This determines the principal curvatures, viz. the poloidal and toroidal curvature
of the magnetic surface:

κp ≡ t · (∇n) · t = −t · (∇t) · n = RD†Bp , (17.20)

κϕ ≡ eϕ · (∇n) · eϕ = −eϕ · (∇eϕ) · n = BpDR , (17.21)
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where D and D† indicate the normal derivative and its adjoint:

D ≡ n
RBp

· ∇ = ∂Ψ − g12
g22

∂ϑ , D† ≡ ∇ · n
RBp

=
1
J
(
∂Ψ − ∂ϑ g12

g22

)
J .

(17.22)
The equalities for κp and κϕ are proved below, under Eqs. (17.29)–(17.32).

(3) The mixed field line/magnetic surface triad {b,n,π}, consisting of the tangent to
the field line, the normal to the magnetic surface, and the tangent to the magnetic
surface normal to the field line, is defined by

b ≡ B
|B| =

1
JB (a2 + qa3) , n ≡ ∇Ψ

|∇Ψ| =
a1

RBp
,

π ≡ b× n =
1
JB
(Bϕ
Bp

a2 − q Bp

Bϕ
a3

)
. (17.23)

We have encountered this projection frequently in our spectral studies, and we
will continue to exploit it (in the cyclically permuted order n, π ≡ e⊥, b ≡ e‖)
to distinguish the different components of perturbations. It determines the two
essential projections of the field line curvature vector with respect to the magnetic
surface, viz. the normal and the geodesic curvature of the magnetic field line:

κn ≡ κ · n ≡ b · (∇b) · n = −(B2
p/B

2)κp − (B2
ϕ/B

2)κϕ , (17.24)

κg ≡ κ · π ≡ b · (∇b) · π =
Bϕ

JBpB2

∂B

∂ϑ
. (17.25)

These equalities are proved below, under Eqs. (17.36)–(17.37).

It should be noted that the magnetic surface curvatures κp and κϕ and the field line
curvatures κn and κg, though exploiting the same stem symbol κ, refer to entirely dif-
ferent geometrical objects. What is worse, to stick to the conventions of the literature,
the sign of the magnetic surface curvatures κp and κϕ is chosen positive when the
surface is concave with respect to the plasma, whereas the sign of the normal field line
curvature κn is chosen negative in that case (see Fig. 17.2). The reader be aware!

Fig. 17.2 Relation of the magnetic surface curvatures κp and κϕ to the normal field
line curvature κn: (a) for the poloidal field component, κp = −κn > 0; (b) for the
toroidal field component, κϕ = −κn < 0 (inside) and κϕ = −κn > 0 (outside).
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� Christoffel symbols and curvatures To obtain the expressions for the curvatures of the
magnetic surfaces and of the field lines, we need to calculate the derivatives of the basis
vectors, i.e. the Christoffel symbols (see Appendix A.3):

Γkij ≡ ak · ∂iaj = 1
2g
kl
(
∂iglj + ∂jgil − ∂lgij

)
. (17.26)

There are ten non-vanishing Christoffel symbols, viz. Γ1
11, Γ1

12, Γ1
22, Γ1

33, Γ2
11, Γ2

12, Γ2
22,

Γ2
33, Γ3

13 and Γ3
23, which may be computed from the coordinate definitions (17.4), e.g.

Γ1
11 = (1/D)(yϑxΨΨ − xϑyΨΨ) , Γ1

33 = −(R/D)yϑ , etc. (17.27)

Consequently, all necessary information about the coordinates {x(Ψ, ϑ), y(Ψ, ϑ), ϕ}, i.e.
the first and second derivatives of x and y, is contained in the four metric elements and the
six Christoffel symbols not containing the index 3:

x , xΨ , xϑ , yΨ , yϑ ⇒ g11 , g12 , g22 , g33 ,

xΨΨ , xΨϑ , xϑϑ , yΨΨ , yΨϑ , yϑϑ ⇒ Γ1
11 , Γ1

12 , Γ1
22 , Γ2

11 , Γ2
12 , Γ2

22 . (17.28)

Thus, the expressions for the poloidal and toroidal magnetic surface curvatures reduce to

κp ≡ t · (∇n) · t =
1

J 2RB3
p

∂a1

∂ϑ
· a2 = − 1

J 2RB3
p

a1 · ∂a2

∂ϑ
≡ − 1
J 2RB3

p

Γ1
22,(17.29)

κϕ ≡ eϕ · (∇n) · eϕ =
1

R3Bp

∂a1

∂ϕ
· a3 = − 1

R3Bp
a1 · ∂a3

∂ϕ
≡ − 1

R3Bp
Γ1

33. (17.30)

The explicit expressions for the latter two Christoffel symbols read:

Γ1
22 = 1

2g
1�(∂2g�2 + ∂2g2� − ∂�g22) = R2B2

p

(
∂2g12 − 1

2∂1g22 − 1
2

g12
g22

∂1g22

)
= − JR2B3

p

(
∂Ψ − ∂ϑ g12

g22

)
JBp ⇒ κp = RD†Bp , (17.31)

Γ1
33 = 1

2g
1�(∂3g�3 + ∂3g3� − ∂�g33) = − 1

2R
3B2

p

(
∂1R

2 − g12
g22

∂2R
2
)

= −R3B2
p

(
∂Ψ − g12

g22
∂ϑ

)
R ⇒ κϕ = BpDR , (17.32)

which proves the assertions (17.20) and (17.21).

The curvature of the magnetic field lines may be written in the alternative form

κ ≡ b · ∇b
(A.10)= −b× (∇× b) ⇒ κ · b = 0 , (17.33)

so that we need to express the curls of the tangent vector,

(∇× b)1 = J−1∂2b3 , (∇× b)2 = J−1∂1b3 , (∇× b)3 = J−1(∂1b2 − ∂2b1) ,
(17.34)

in terms of the co- or contravariant components of the unit vectors (17.23):

n1 = 1/(RBp) , n2 = n3 = 0 ,

b1 = 0 , b2 = 1/(JB) , b3 = q/(JB) ,

π1 = 0 , π2 = Bϕ/(JBpB) , π3 = −Bp/(RB) . (17.35)
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Substitution of these equalities leads to the two desired expressions for the normal and the
geodesic curvature of the field lines:

κn = κ · n = −(b× (∇× b)) · n = (b× n) · (∇× b) = π · (∇× b)

= J−1[π1∂2b3 − π2∂1b3 + π3(∂1b2 − ∂2b1)]

= − (B2
p/B

2)κp − (B2
ϕ/B

2)κϕ , (17.36)

κg = κ · π = −(b× (∇× b)) · π = −(π × b) · (∇× b) = −n · (∇× b)

= − n1(∇× b)1 = − 1
JRBp

∂

∂ϑ

(qR2

JB
)

=
Bϕ

JBpB2

∂B

∂ϑ
, (17.37)

where we used the fact that the functions I(Ψ) and q(Ψ) are independent of ϑ in the last
step. This proves the assertions (17.24) and (17.25). �

As compared to cylindrical plasmas (Chapter 9 [1]), two additional curvatures
have now entered the picture, viz. the geodesic curvature κg and the toroidal cur-
vature κϕ. They both play an important role in spectral theory of toroidal plasmas.
The geodesic curvature of the field lines indicates that field lines are no longer
geodesics in toroidal geometry,1 due to the fact that, in general, the magnitude of
the magnetic field is not constant in the magnetic surfaces. Hence, as first noticed
in [161], one may expect that Alfvén waves will have to decide whether to follow
the shortest path (the geodesic) or the field line. As we will see in Section 17.2.3,
they “make the best of it” doing both through coupling to the slow magneto-sonic
modes. This is related to the geodesic acoustic modes (GAMs) [485], which have
become a subject of intense research recently [245] (see Section 17.2.3).

The distinguishing feature of the toroidal curvature is its change in sign on the
inside (“high field side”) of the torus compared to that on the outside. As we have
stressed many times, interchange modes driven by pressure gradients in toroidal
plasmas are only possible if the overwhelming stabilizing field line bending energy
contribution of the Alfvén waves is minimized by modes for which the parallel
gradient operator vanishes. This requires localization to rational magnetic sur-
faces. Interchange modes in toroidal geometry, satisfying this requirement, will
become unstable if a counterpart to Suydam’s cylindrical stability criterion is vio-
lated, viz. Mercier’s toroidal stability criterion (Section 17.2.5). However, a much
more subtle localization of the modes, called ballooning, was theoretically pro-
posed [91] (and, of course, utilized by the plasma) that couples a pressure gradient
to the negative toroidal curvature on the inside. This leads to much more severe sta-
bility limitations of pressure driven toroidal modes since they include ballooning
instabilities, which are absent in a cylinder (Section 17.2.5).

1 To avoid possible misunderstanding: the fact that the field lines are straight in the SFL representation is just a
convenience that has nothing to do with geodesics, which are of course independent of the coordinates. This is
manifest from the occurrence of the coordinate independent length element d	 = J dϑ in the expressions.
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17.2 Analysis of waves and instabilities in toroidal geometry

17.2.1 Spectral wave equation

We will now present the main stages of the analysis of wave propagation and sta-
bility of toroidal plasmas, in close analogy with the analysis of cylindrical plasmas
(Chapter 9 of Volume [1]). Since toroidal equilibria are two-dimensional, we will
obtain partial differential equations, instead of the ordinary differential equations,
like the Hain–Lüst equation, that were obtained for one-dimensional equilibria.

As always, we start from the linearized equation of motion

F(ξ) = ρ
∂2ξ

∂t2
, (17.38)

with the static MHD force operator defined in Eqs. (6.23)–(6.25) [1], and assume
Fourier-normal mode solutions of the form

ξ(r, t) = ξ̂(Ψ, ϑ)ei(nϕ−ωt) , (17.39)

where ξ̂ is the amplitude of the normal modes and n is the toroidal mode number.
As in Chapters 7 and 9 [1], we exploit the field line/magnetic surface projection,
expressed by the field line triad {n,π,b} defined in Eq. (17.23). In this projection,
the gradient operators become

D ≡ 1
RBp

n · ∇ = ∂Ψ − (g12/g22) ∂ϑ ,

G ≡ − iRBpBπ · ∇ = − iRBϕ
J
(
∂ϑ − q(B2

p/B
2
ϕ)∂ϕ

)
,

F ≡ − iBb · ∇ = − i
J (∂ϑ + q∂ϕ) . (17.40)

(Watch out when converting these expressions for vectors ξ: the partial derivatives
∂ϑ and ∂ϕ act not only on the vector components but also on the basis vectors and
the unit vectors!) The projections of the displacement vector will be denoted as

X ≡ RBp ξ · n = ξ1 ,

Y ≡ iB
RBp

ξ · π =
iBϕ
JRB2

p

[
ξ2 − q(B2

p/B
2
ϕ)ξ3
]
,

Z ≡ i
B

ξ · b =
i
JB2

(ξ2 + qξ3) , (17.41)

where the factors i in the components Y and Z are introduced to obtain real ex-
pressions in the final Fourier analyzed form of the spectral equation, whereas the
factors RBp and B, found by trial and error, just simplify that equation.

At this stage in our exposition, we will not give the complete derivations any-
more, but just indicate the steps and give the final result. (The student wishing to
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enter this field is best advised anyway to spend some time deriving these equations
by her- or himself.) The important steps are to first Fourier analyze the spectral
equation (17.38) with respect to ϕ, i.e. to replace ∂ϕ by in, then to project the
equation onto the orthogonal triad {n,π,b}, and finally to eliminate all second
order derivatives of equilibrium quantities by exploiting the properties listed in
Section 17.1.3. For example, the pressure terms entering F and the magnetic field
perturbation Q become

ξ · ∇p = p′X , ∇ · ξ = D†X +GB−2Y + FZ ,

Qn =
i

RBp
X , Q⊥ =

RBp

B

{[
D†(Bϕ

R

)]
X + FY

}
,

Q‖ = −BDX − RBϕ
B

[
D†(Bϕ

R

)]
X − 1

B
GY . (17.42)

After some tedious, but straightforward, algebra one then finds the following for-
mulation of the spectral problem:⎛⎜⎜⎜⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
X

Y

Z

⎞⎟⎟⎟⎠ = −ρω2

⎛⎜⎜⎜⎝
B11X

B22 Y

B33 Z

⎞⎟⎟⎟⎠ , (17.43)

This equation was first derived by Goedbloed [161] exploiting orthogonal Ψ, χ, ϕ
coordinates. (Note that the expression (9) of that paper for the geodesic curvature
should be multiplied by Bp/B to get the correct expression (17.25).)
� Matrix elements The explicit expressions for the matrix elements read:

A11 ≡ D(γp+B2)D† − F 1
R2B2

p

F − E ,

A21 ≡ − γp+B2

B2
GD† − 2

( i
J ∂ϑ

Bϕκϕ
Bp

+ n
Bpκp

R

)
,

A31 ≡ − FγpD† ,

A12 ≡ DG
γp+B2

B2
− 2
(Bϕκϕ

Bp

i
J ∂ϑ +

Bpκp

R
n
)
,

A22 ≡ − 1
B2

GγpG
1
B2
−G 1

B2
G− F R

2B2
p

B2
F ,

A32 ≡ − FγpG 1
B2

,

A13 ≡ DγpF , B11 ≡ 1
R2B2

p

,

A23 ≡ − 1
B2

GγpF , B22 ≡
R2B2

p

B2
,

A33 ≡ − FγpF , B33 ≡ B2 , (17.44)
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where

E ≡ 2
[
D
(Bp

R
κp

)
+
Bϕ
R

†D
(Bϕ
Bp

κϕ

)]
, (17.45)

with D† and (for lack of a better symbol) †D defined by

D† ≡ 1
J DJ =

1
J
(
∂Ψ − ∂ϑ g12

g22

)
J , †D ≡ J

(
∂Ψ + ∂ϑ

g12
g22

) 1
J . (17.46)

The square brackets in the definition ofE indicate that the action of the differential operator
is to be restricted to the terms inside those brackets. �

The two-dimensional spectral equation (17.43) may be considered as the gener-
alization of the cylindrical MHD wave equation (9.28) of Volume [1]. The latter
equation is recovered by exploiting the leading order relationship (16.96) between
Ψ and Bp of the Shafranov shifted circle approximation. This yields the following
translation recipe to the cylindrical wave equation:

Ψ→ R0

∫
Bθdr , ϑ→ θ , ϕ→ z/R0 , J → r/Bθ ,

R→ R0 , n→ kR0 , κp → 1/r , κϕ → 0 , g12 → 0 ,

D → 1
R0Bθ

d

dr
, D† → 1

R0r

d

dr

r

Bθ
, G→ R0BθGcyl , F → Fcyl ,

X → R0Bθξcyl , Y → (B/R0Bθ)ηcyl , X → (1/B)ζcyl . (17.47)

However, the next step, to the construction of a scalar wave equation for the normal
component of ξ, i.e. the analog of the Hain–Lüst equation, is not taken now: the
elimination of the tangential components is no longer algebraic but involves PDEs.
If one wishes to continue along this line, one usually exploits an ordering in a small
parameter, like the low-β tokamak ordering. This involves the counterpart of the
equilibrium expansion described in Section 16.2.2, i.e. expanding the vector wave
equation (17.43) to the first non-trivial order (considering the cylindrical solution
as the trivial leading order; after all, one only goes to toroidal corrections if the
cylindrical basis is fully understood). This generally leads to a system of coupled
ODEs describing the Fourier harmonics of the vector ξ in the angle ϑ. An example
along this line may be found in Section 18.3.3 of the next chapter.

The equation of motion may be used as a starting point for further analysis.
For numerical work, the corresponding quadratic forms of the next section are
to be preferred. In the following Sections 17.2.3 and 17.2.5, we will then use the
representation (17.43) to derive the analytical “core structure” for toroidal systems,
consisting of the ODEs describing the continuous spectra and ballooning stability,
and the explicit Mercier criterion.
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17.2.2 Spectral variational principle

Recall from Section 6.1.1 of Volume [1] that there are two equivalent approaches to
spectral theory, one based on differential equations and the other one on quadratic
forms (as in the Schrödinger and Heisenberg pictures of quantum mechanics). The
quadratic forms approach for MHD was formulated in Eq. (6.90) [1] as a variational
principle for the eigenvalues and eigenfunctions in terms of the Rayleigh quotient,

δΛ = 0 , Λ[ξ] ≡ W [ξ]
K[ξ]

, (17.48)

where W is the potential energy and K is the norm of the perturbations. (The
notation for the norm is changed here to K since I is used for another purpose.)
The eigenvalues ω2 are the stationary values of Λ. Exploiting the same techniques
as in the derivation of the spectral wave equation (17.43), the diligent student will
be able to derive the following explicit expressions for the quadratric forms of the
potential energy and of the norm of the perturbations in the field line projection:

W = π

∫∫ [ 1
R2B2

p

|FX|2 +B2
∣∣∣D†X +

2κn
RBp

X +
1
B2

GY
∣∣∣2

+
R2B2

p

B2

∣∣∣FY +
2Bϕ(κp − κϕ)

R2Bp
X
∣∣∣2 + γp

∣∣∣D†X +G
1
B2

Y + FZ
∣∣∣2

+
2

RBp

{
p′κp +

II ′

R2
(κp − κϕ)

}
|X|2

]
J dΨdϑ , (17.49)

K = π

∫∫
ρ
[ 1
R2B2

p

|X|2 +
R2B2

p

B2
|Y |2 +B2|Z|2

]
J dΨdϑ . (17.50)

As discussed in Chapter 6 [1], these expressions are completely equivalent to the
spectral wave equation when used with the variational principle (17.48). The cylin-
drical expression (9.102) [1] for W may be obtained from the toroidal expres-
sion (17.49) by again exploiting the translation recipe (17.47) (and an integration
by parts to combine the second and third term).

Since W has been the starting point for a substantial number of investigations
in ideal MHD stability of tokamaks, it is of some interest to consider different
alternative expressions for the term in curly brackets, which potentially gives rise
to instabilities:

U ≡ 2
RBp

{
p′κp +

II ′

R2
(κp − κϕ)

}
= − 2

R2Bp

{
jϕ(κp − κϕ)−Rp′κϕ

}
= − 2

R2Bp

{
j‖
Bϕ
B

(κp − κϕ) +Rp′κn
}
. (17.51)

For the reduction, the first order differential form (17.16) of the Grad–Shafranov



17.2 Analysis of waves and instabilities in toroidal geometry 319

equation has been exploited. Clearly, all the ingredients for instability are there,
e.g. the parallel current j‖, driving kink modes, and the pressure gradient–curvature
term p′κn (≈ −p′κϕ), driving ballooning modes, but it is not so clear in what form
they should be presented. There is also a connection with the curvature terms of
the equation of motion (17.43), in particular the expression E, but it is not instruc-
tive enough to reproduce it here. One may wonder what all these expressions are
good for. Actually, the sole purpose of this paragraph is to exhibit the ambiguity
of certain ingrained terminology in tokamak literature. The terms “kink” and “bal-
looning” do not have a unique meaning. There are many ways of transforming the
terms using the equilibrium conditions and which presentation is the most mean-
ingful depends entirely on the approximations made to study a particular case.

The expression for the energy has been used extensively in analytic studies of
MHD stability of internal modes, e.g. the internal kink mode, involving a singular
perturbation at a rational q = 1 surface, which requires delicate balancing of terms;
see e.g. [72], [105]. This has its counterpart in extreme conditions on numerical
accuracy of the equilibrium, its inversion and the spectral representation needed to
describe these modes; see e.g. [272].

17.2.3 Alfvén and slow continuum modes

Recall that the continuous spectra in cylindrical plasmas are obtained by consider-
ing perturbations that are localized to a particular magnetic surface. This construc-
tion can be generalized to toroidal geometry, as first shown by Goedbloed [161]
and, independently, by Pao [359]. Since the equation of motion (17.43) is writ-
ten in the field line projection, which already incorporates one of the essential
properties of the singular Alfvén and slow continuum modes, the construction is
relatively straightforward. The first step is to consider the limit D → ∞ so as
to obtain modes localized to a single magnetic surface. To leading order, the first
component of Eq. (17.43) then becomes a derivative with respect to Ψ, which can
be integrated once to give

D†X ≈ − 1
γp+B2

G
γp+B2

B2
Y − γp

γp+B2
FZ . (17.52)

Substitution of this expression into the second and third component of Eq. (17.43),
and the use of commutation relations like

GB−1 −B−1G = iRBpκg , (17.53)

leads to a system of two ordinary differential equations for Y and Z where the
normal derivatives of the equilibrium (i.e. the curvatures κp and κϕ of the magnetic
surfaces) no longer appear. As a result, a system of equations is obtained that is
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intrinsic to every magnetic surface: a two-dimensional creature living on such a
surface will not notice the three-dimensional embedding. Consequently, we have
effectively obtained modes that are localized about a single magnetic surface, i.e.
of the form

ξ(Ψ, ϑ, ϕ) ≈ −iδ(Ψ−Ψ0) [ η(ϑ)π + ζ(ϑ)b ] einϕ, (17.54)

where the variables

η ≡ i ξ · π ≡ (RBp/B)Y and ζ ≡ i ξ · b ≡ BZ
are more convenient than Y and Z for the present purpose. These variables de-
scribe the Alfvén and slow magnetic surface resonances, satisfying a system of
two coupled ODEs [161]:⎛⎝ α11 α12

α21 α22

⎞⎠⎛⎝ η

ζ

⎞⎠ = ρω2

⎛⎝ η

ζ

⎞⎠ , (17.55)

where

α11 ≡ B

RBp
F
R2B2

p

B2
F

B

RBp
+

4γpB2

γp+B2
κ2

g , α12 ≡ − 2iγpB2

γp+B2
κgF

1
B
,

α21 ≡ i
B
F

2γpB2

γp+B2
κg , α22 ≡ 1

B
F

γpB2

γp+B2
F

1
B
.

(17.56)

The appropriate boundary conditions to impose on these equations are poloidal
periodicity of the variables η and ζ and of their first derivatives.

Notice that the only curvature that has survived in this representation is the
geodesic curvature κg of the field lines inside a particular magnetic surface. The
two-dimensional creature introduced above will be able to draw the correct geo-
metrical and, hence, physical conclusions about the dynamics of the waves on the
magnetic surface, in particular their anisotropy with respect to the field lines. From
the representation (17.55)–(17.56) it is clear that the MHD continuum modes ap-
proximately behave like such two-dimensional creatures. It is also clear, from the
occurrence of the off-diagonal matrix elements ∼ γpκg in the ODEs (17.55), that
the Alfvén waves are no longer polarized purely perpendicular to the field lines (as
they are in the one-dimensional plane slab and cylindrical equilibria), but that they
get a parallel component by coupling to the slow magneto-acoustic modes. Vice
versa, the polarization of the slow waves will no longer be purely parallel to the
field lines due to geodesic coupling to the Alfvén waves. Consequently, in toroidal
configurations, the Alfvén and slow magneto-acoustic modes can no longer be dis-
tinguished on the basis of their polarization.
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Since the determination of the continuous spectra has now been turned into the
construction of the discrete, doubly infinite, set of eigenvalues {ω2

A/S,i(Ψ0)} on
each magnetic surface, we may also obtain those eigenvalues from a variational
principle in terms of the two-vector v ≡ (η, ζ)T:

δΛ̂ = 0 ,

Λ̂[v] ≡

∫ {∣∣∣RBp

B
F

B

RBp
η
∣∣∣2 +

γp

γp+B2

∣∣∣BF 1
B
ζ + 2iκgBη

∣∣∣2}J dϑ∫
ρ(η2 + ζ2)J dϑ

.

(17.57)

This expression shows that the continuous spectra of static toroidal plasmas are
exclusively stable, ω2

A/S,i ≥ 0: geodesic curvature does not create instability. An
additional contribution from the normal curvature is needed to create instability,
but this involves another kind of localization (see Section 17.2.5). On the other
hand, in plasmas with background flow, the continua may become unstable due to
a generalization of the geodesic curvature term (see Section 18.3).

� Geodesic acoustic modes A special example of the Alfvén–slow wave coupling due
to geodesic curvature is the geodesic acoustic mode (GAM), first described by Winsor,
Johnson and Dawson [485]. This is an electrostatic wave in low-beta plasmas (γp� B2),
where the perpendicular displacement [B/(RBp)]η ≈ const in the magnetic surfaces so
that the magnetic (Alfvén wave) perturbations, indicated by the first term of the variational
principle (17.57), are negligible. Note that this does not imply that η is negligible: the
GAM is a slow wave having both perpendicular and parallel components, constrained by
the electrostatic condition. Therefore, it is expedient to convert η and ζ to the density
perturbations ρ̃ that are relevant for these modes:

ρ̃ = −∇ · (ρξ) = −ρ(D†X +GB−2Y + FZ)− (RBp)−2(∇ρ · ∇Ψ)X

≈ − ρ B2

γp+B2
(2iκgη + FB−1ζ) ≈ −ρ(2iκgη + FB−1ζ) , (17.58)

where the localization assumption (17.52) and the commutation relation (17.53) were used
for the reductions to the last line. The ODEs (17.55) then transform into

4γpκ2
gη − 2iγpκgFB

−1ζ = 2iγpκg(ρ̃/ρ) = ρω2η ,

2iγpB−1Fκgη +B−1FγpFB−1ζ = −γpB−1F (ρ̃/ρ) = ρω2ζ . (17.59)

Inserting these expressions into the variational principle (17.57) yields the expression for
the GAM frequencies derived by Winsor et al. [485], except for a different normalization
factor:

ω2 =
γp

ρ

∫ [
|B−1F ρ̃|2 + |2κg ρ̃|2

]
J dϑ∫

|ρ̃|2J dϑ
. (17.60)

As a companion to MHD spectroscopy, Itoh et al. proposed GAM spectroscopy [245],
exploiting these modes to determine the velocity profiles of the different ion species. �
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In the equivalent approach by Pao [359], the continua in toroidal geometry are
obtained by starting from the six first order ODEs for the primitive variables v1,
p1 and B1. In producing a set of equations for the normal component of v1 and
the total pressure perturbation (a generalization of the one-dimensional Appert–
Gruber–Vaclavik [10] representation in terms of ξ and Π), a four by four matrix
operator acting on the tangential components of v1 and B1 has to be inverted. The
continuous spectra are obtained for those frequencies where this inverse does not
exist; see also Kieras and Tataronis [275].

17.2.4 Poloidal mode coupling

In the cylindrical limit, all equilibrium quantities are constant on a magnetic sur-
face, so that the tangential dependence of the perturbations reduces to just the
Fourier amplitude dependence exp(imϑ) with the familiar result of uncoupled
Alfvén and slow continua:

ωA = ± (n+m/q)Bϕ0

R0
√
ρ

, ηA �= 0 , ζA = 0 (Alfvén) ,

ωS = ±
√

γp

γp+B2

(n+m/q)Bϕ0

R0
√
ρ

, ηS = 0 , ζS �= 0 (slow) . (17.61)

In toroidal geometry, as we have noted above, the Alfvén and slow continua are
coupled through the combination of finite compressibility and finite beta (γp terms)
and geodesic curvature (κg). In low-beta plasmas, this coupling is weak. However,
an entirely different, usually much stronger, coupling arises from the fact that all
continua are degenerate at the cylindrical cross-over points r = rcross, where qcross

has a rational value determined by

n+m/q = −n−m′/q ⇒ qcross = −m+m′

2n
. (17.62)

At those values, two Alfvén wave branches (and two slow wave branches, at much
lower frequency) cross, creating the possibility of lifting of the degeneracy by mode
coupling due to poloidal variation of the equilibrium. In particular, the poloidal
modulation of the equilibrium with the large radius R creates coupling between
modes separated by Δm ≡ |m − m′| = 1, the ellipticity of the plasma cross-
section causes Δm = 2, the triangularity causes Δm = 3, etc. This coupling
produces gaps in the continua (see Fig. 17.3), very analogous to the band structure
of electrons in a crystal lattice [121].

An illuminating example of poloidal mode coupling is shown in Fig. 17.4, which
presents the results of an analytic calculation of the spectrum of free-boundary kink
modes (a particular kind of Alfvén waves) of a skin-current low-beta tokamak,
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Fig. 17.3 (a) Poloidal mode coupling of two cylindrical modes, labeled m and m′,
creates (b) a “gap” in the continuous spectrum of a toroidal plasma.

where the toroidal current flows exclusively on the plasma-vacuum surface. The
top part of the figure shows the spectrum for the “zero-order” cylinder, where the
different modes (labeled by the poloidal mode number m) are uncoupled:

ω̄2
m = (nq∗)2 − |m|+ (nq∗ +m)2 . (17.63)

The bottom part shows the results of standard first-order perturbation theory of
the coupling between those modes due to the toroidicity or, what amounts to the
same in the low-beta tokamak ordering, due to beta (causing Δm = 1 splitting)
and due to the ellipticity of the plasma cross-section (causing Δm = 2 splitting).
These couplings are due to a surface energy integral (unstable when S > 0) with
an integrand of the form

S(θ) ≡ [b2p(θ)κp(θ) + εβpκϕ(θ)]/h(θ)

≈ 1
2(3− b2/a2) + 3εβp cos θ − (b2/a2 − 1) cos 2θ , (17.64)

where the three terms correspond to kink, ballooning and ellipticity, respectively.
Due to these splittings, there is a complete reordering of the structure of the spec-
trum, with important effects on the |m| = 1 kink mode (recall that the Kruskal–
Shafranov limit is at q∗ = 1) and elliptical splitting for the axi-symmetric modes
(at q∗ = 0). Mode coupling spectra for diffuse high-beta tokamak equilibria, ex-
ploiting the techniques of conformal mapping and polynomials described in Sec-
tion 16.3.3, and exhibiting even more striking similarity with the electron band
structures, may be found in [280].

Since the continuous spectra really come about from the diffuse inhomogeneity
of the equilibrium, let us now consider the full spectrum of a diffuse low-beta toka-
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Fig. 17.4 Mode coupling of free-boundary kink modes in a skin-current model of a
low-beta tokamak: (a) spectrum of uncoupled modes for circular cylinder, εβp = 0;
(b) spectrum of coupled modes for low-beta tokamak with elliptical cross-section,
εβp = 0.1, b/a = 1.2. (From D’Ippolito and Goedbloed [121].)

mak. Here, “full” is meant is the sense of collecting all values of the continua over
the full range 0 ≤ ψ ≤ 1 (in plots, usually ψ is replaced by the quasi-radial vari-
able s ≡ √ψ). In the calculation of the continuum gaps, important global modes,



17.2 Analysis of waves and instabilities in toroidal geometry 325

Fig. 17.5 Continuous spectrum and gap modes in a model tokamak equilibrium.
(a) The continua, with frequency parameter λ ≡ −iω, are plotted as a function of
s ≡ √ψ; the labels refer to the poloidal mode number m; slow continua crowd at
the bottom of the diagram. (b) Discrete representation of the complete spectrum
with two “gap modes” (indicated by the arrows). (From Poedts et al. [379].)

named toroidal Alfvén eigenmodes (TAEs), were found by Cheng and Chance [87].
These modes are not continuum modes, but discrete global modes with frequencies
located inside the gaps, again very much like the discrete modes that occur in the
forbidden bands of solid state physics. The TAEs should not be confused with the
global Alfvén eigenmodes (GAEs), which are part of possible cluster sequences
that occur at the extrema of the continua, as extensively discussed in Chapters 7
and 9 of Volume [1]. Whereas the GAEs already occur in 1D cylindrical equilib-
ria, the TAEs require poloidal mode coupling to produce the continuum gaps. The
different kinds of TAE caused by cross-sectional shaping, finite beta, and toroidal
rotation are called ellipticity induced Alfvén eigenmodes (EAEs) [38], beta in-
duced Alfvén eigenmodes (BAEs) [448] and toroidal flow induced Alfvén eigen-
modes (TFAEs) [453, 454]. Their importance resides in the fact that they may
be driven unstable by fusion-produced alpha particles [149, 86] and, thus, pose
a threat to alpha particle confinement in future fusion reactors. Their calculation
requires large-scale computations of the low mode number gaps (n,m ∼ 1) and
of the global TAE modes. An example is given in Fig. 17.5, taken from work by
Poedts et al. [379] (exploiting a simple technique to compute the continua with a
finite element spectral code [381]), which shows both the gaps in the continua and
the discrete “gap modes” located in those gaps.
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17.2.5 Alfvén and slow ballooning modes

Alfvén and slow continuum modes are constrained to “live” on the magnetic sur-
faces, where they necessarily remain stable, as is manifest from the expression for
the potential energy in the numerator of the Rayleigh quotient (17.57). However,
this does not exhaust the ways in which MHD waves can follow the magnetic field
lines. In particular, notice that vanishing of the parallel gradient operator expres-
sion, F ∼ m + nq ≈ 0, leads to completely degenerate continua in the origin
ω2 = 0. In the study of MHD stability, this is always the sign that higher order
contributions should be considered. The obvious constraint to be dropped is the
restriction of the displacement vector ξ to be tangential to the magnetic surfaces.
This leads to a different kind of localized modes, called ballooning modes, which
may be considered as Alfvén and slow field line resonances.

The ballooning mode analysis in tokamaks centers about the description of in-
stabilities at finite beta, driven by a combination of the pressure gradient p′ and
the curvature of the field lines which produces a negative potential energy on the
outside of the torus. Hence the name “ballooning”. To properly describe this re-
quires a subtle localization about single magnetic field lines, developed by Con-
nor, Hastie and Taylor [90, 91], and others (see, e.g. Coppi et al. [93, 94]), where
the main difficulty to be resolved is the basic incompatibility of field line local-
ization with poloidal and toroidal periodicity. This is resolved by the so-called
ballooning transformation to an extended domain −∞ < ϑ < ∞ of the poloidal
angle or, equivalently, by the consideration of a covering space; see Dewar and
Glasser [118]. In this section, we will follow the analysis of the latter paper.

To describe modes that are localized to field lines, we exploit a representation of
the magnetic field in terms of the two Clebsch potentials α and Ψ,

B = ∇α×∇Ψ , α ≡ ϕ− qϑ , (17.65)

where α has been chosen such that it varies linearly perpendicular to the straight
field lines in the ϑ–ϕ plane, so that α and Ψ may be considered as field line labels
(see footnote on Section 7.3.2 [1]). Substitution of α in the expression for B repro-
duces the basic magnetic field representation (17.10) for axi-symmetric equilibria:

B = ∇(ϕ− qϑ)×∇Ψ = ∇ϕ×∇Ψ + I(Ψ)∇ϕ . (17.66)

With this representation, the angles ϕ and ϑ can be continued indefinitely: the cov-
ering space [118] corresponding to a magnetic surface. The ballooning equations
will turn out to be a system of two second order differential equations in terms of
the extended angular variable ϑ, for each field line indicated by Ψ0 and α0.

Field line localization is effected by the assumption of large mode numbers, in
particular the toroidal wave number, n 	 1. Hence, we need to expand our equa-



17.2 Analysis of waves and instabilities in toroidal geometry 327

tions in powers of the small parameter n−1 � 1. Such expansions are usually
more conveniently carried out starting from the quadratic forms than from the dif-
ferential equations, since they typically require expanding one order higher for the
latter than is needed with the quadratic forms. Hence, we will work out the conse-
quences of field line localization from the two quadratic forms (17.49) and (17.50)
for W and K.

We now consider WKB solutions of the plasma displacement of the form

X(Ψ, ϑ, ϕ) = X̃(Ψ, ϑ) einS(Ψ,ϑ,ϕ) , (17.67)

and similarly for the components Y and Z, with a split in a slowly varying ampli-
tude X̃ and a rapidly varying phase nS, where S is known as the eikonal [184].
An obvious choice for the eikonal is

S(Ψ, α) = α+ q(Ψ)ϑ0 ≡ ϕ− q(Ψ)(ϑ− ϑ0) = S(Ψ, ϑ, ϕ) , (17.68)

where ϑ0 is an arbitrary constant. Associated with this eikonal is a local wave vec-
tor k = n∇S, which is normal to the field lines since b · ∇S = 0 and, hence,
normal to the eikonal wave fronts, that we will project onto the field line/magnetic
surface triad {n,π,b}. The possible confusion of the distinction between the nor-
mal vector n and the wave number n we eliminate right away by renormalizing k
onto a wave vector k̃ of unit order of magnitude:

k = n∇S ⇒ k̃ ≡ n−1k = ∇S = k̃nn + k̃ππ , (17.69)

k̃n = n · ∇S = n · [−q′(ϑ− ϑ0)∇Ψ− q∇ϑ]

= −RBp[q′(ϑ− ϑ0)− (g12/g22)q ] ,

k̃π = π · ∇S = π · [−q∇ϑ+∇ϕ] = −B/(RBp) . (17.70)

These wave numbers are local wave numbers in the WKB sense, i.e. they depend
on the coordinates, k̃n = k̃n(Ψ, ϑ) and k̃π = k̃π(Ψ, ϑ), and, hence, they become
capricious quantities twisting with the field lines.

� Meaning of the constant ϑ0 One should well distinguish between the two coordinate
dependencies S(Ψ, α) and S(Ψ, ϑ, ϕ) indicated in the equalities (17.68). From the former,
we obtain the following, equally meaningful, expressions for the components of k̃:

k̃ =
∂S

∂Ψ
∇Ψ +

∂S

∂α
∇α = q′ϑ0∇Ψ +∇α = ϑ0∇q +∇α ⇒ k̃q̂ = ϑ0 , k̃α̂ = 1 ,

(17.71)
where k̃q̂ and k̃α̂ are the covariant components of k̃ with respect to the coordinates q and α.
Here, the coordinate Ψ has been replaced by the equivalent coordinate q(Ψ). Hence, ϑ0 is
the covariant component of k̃ with respect to q, considered as a radial coordinate. �

For the analysis of ballooning modes it is expedient to exploit a projection based
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Fig. 17.6 Ballooning triad {b,d, e}, based on the local wave vector k̃ ≡ n−1k,
with dominant perpendicular component ξ̃⊥0 of the ballooning perturbation.

on a new orthogonal triad d, e,b, where d ≡ k/|k| and e ≡ b × d, with cor-
responding components ξ̃d, ξ̃e, ξ̃b of the vector ξ̃. This is illustrated in Fig. 17.6,
where the result of the analysis below (ξ̃d ≈ 0) is already indicated.

We now work out the effects of the operators D, G, F , defined in Eqs. (17.40),
acting on the perturbations X , Y , Z, defined in Eqs. (17.41):

DX = (RBp)−1n · ∇(X̃einS) =
[(
D + ink̃n/(RBp)

)
X̃
]
einS

≡ [D̃X̃ ]einS ⇒ D̃ ≡ D + ink̃n/(RBp) , (17.72)

GX = − iRBpBπ · ∇(X̃einS) = −iRBpB
[
π · ∇X̃ + ink̃πX̃

]
einS

≡ [G̃X̃ ]einS ⇒ G̃ ≡ −iRBϕJ −1∂ϑ − nB2 , (17.73)

FX = − iBb · ∇(X̃einS) = −iB
[
(JB)−1∂ϑX̃

]
einS

≡ [F̃ X̃ ]einS ⇒ F̃ ≡ −iJ −1∂ϑ , (17.74)

and, of course, similarly for Y and Z. The new operators D̃, G̃ and F̃ act on the
slowly varying amplitude functions X̃ , Ỹ and Z̃ only, which is indicated by enclos-
ing them by square brackets. Expanding in the small parameter n−1, it is obvious
that the leading order expressions will be obtained from the terms proportional to
n in the operators D̃ and G̃.

We now substitute these expressions into the quadratic forms (17.49) and (17.50)
for W and K, and reduce them order by order according to the following scheme:

X̃ = X̃0 + n−1X̃1 + · · · , and similarly for Ỹ and Z̃,

⇒ W = n2W0 +W2 + · · · , K = K0 + · · · . (17.75)
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This yields the following lowest order expressions:

W0 = π

∫∫
(γp+B2)

∣∣∣i[k̃n/(RBp)]X̃0 − Ỹ0

∣∣∣2 J dΨ dϑ , (17.76)

K0 = π

∫∫
ρ
[ 1
R2B2

p

|X̃0|2 +
R2B2

p

B2
|Ỹ0|2 +B2|Z̃0|2

]
J dΨdϑ , (17.77)

with the obvious minimizing relation

ik̃ · ξ̃0 ≡ i(k̃nξ̃n0 + k̃π ξ̃π0) = i[k̃n/(RBp)]X̃0 − Ỹ0 = 0

⇒ W0 = 0 . (17.78)

Hence, to leading order, the ballooning perturbation ξ̃d0 = 0 (see Fig. 17.6). The
next order, W2, contains the zero order variables X̃0, Ỹ0 and Z̃0, as well as the first
order variables X̃1 and Ỹ1, in the combination ξ̃d1. The latter variable is eliminated
by minimizing W2 with respect to it. This involves first completing the squares of
the second and fourth term (involving D̃†X̃0) of the expression (17.49) forW , then
combining them into a new square, and finally minimizing the resulting expression
for W2 with respect to ξ̃d1, which now remains finite:

ik̃ · ξ̃1 ≡ i[k̃n/(RBp)]X̃1 − Ỹ1 = − B2

γp+B2

(
D̃†X̃0 +

2κn
RBp

X̃0 +
I

B2
F̃ Ỹ0

)
− γp

γp+B2

(
D̃†X̃0 + IF̃

1
B2

Ỹ0 + F̃ Z̃0

)
. (17.79)

Substitution of this expression back into W2 gives the final result:

W2 = π

∫∫ { 1
R2B2

p

|F̃ X̃0|2 +
R2B2

p

B2

∣∣∣F̃ Ỹ0 +
2Bϕ(κp − κϕ)

R2Bp
X̃0

∣∣∣2
+

γpB2

γp+B2

∣∣∣F̃ Z̃0 − 2κn
RBp

X̃0 + 2i
RBp

B
κgỸ0

∣∣∣2 + U |X̃0|2
}
J dΨ dϑ

= π

∫∫ { 1
R2B2

p

(1 + k̃2
n/k̃

2
π)|F̃ X̃0|2 − 2

RBp
[κn − (k̃n/k̃π)κg]p′|X̃0|2

+
γpB2

γp+B2

∣∣∣F̃ Z̃0 − 2
RBp

[κn − (k̃n/k̃π)κg]X̃0

∣∣∣2}J dΨ dϑ , (17.80)

where U is defined in Eq. (17.51), and the last expression follows by substituting
Ỹ0 from (17.78), integration by parts and use of the relations of Section 17.1.3.

In conclusion, the variational principle (17.48) has been reduced to

δΛ2 = 0 , Λ2[ξ̃0] ≡
W2[ξ̃0]
K0[ξ̃0]

, (17.81)
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with W2 and K0, given by the expressions (17.80) and (17.77), converted into
expressions in terms of the leading order displacement vector ξ̃0 of the ballooning
perturbations. Since this vector is directed perpendicular to k̃, it is appropriate to
convert (ũ, ṽ, ζ̃) to a two-component representation in terms of ṽ and ζ̃:

ξ̃0(Ψ, ϑ) = −i [ṽ(Ψ, ϑ)e + ζ̃(Ψ, ϑ)b] ,

ũ ≡ iξ̃0 · d = (1/k̃)[i(k̃n/(RBp))X̃0 − Ỹ0 ] = 0 ,

ṽ ≡ iξ̃0 · e = (1/k̃)[(B/(R2B2
p))X̃0 − i(RBp/B)Ỹ0 ] = k̃X̃0 ,

ζ̃ ≡ iξ̃0 · b = BZ̃0 . (17.82)

This yields the most symmetric representation of the Euler equations associated
with the variational principle (17.81) in terms of two coupled second order ordinary
differential equations in the extended variable ϑ, with parametric dependence of the
coefficients on Ψ, as derived by Dewar and Glasser [118] (see also [308]):⎛⎝ α̃11 α̃12

α̃21 α̃22

⎞⎠⎛⎝ ṽ

ζ̃

⎞⎠ = ρω2

⎛⎝ ṽ

ζ̃

⎞⎠ , (17.83)

where

α̃11 ≡ B

k̃
F̃
k̃2

B2
F̃
B

k̃
+

4γpB2

γp+B2
κ2
e − 2

B

k̃
κep

′ , α̃12 ≡ − 2iγpB2

γp+B2
κeF̃

1
B
,

α̃21 ≡ i
B
F̃

2γpB2

γp+B2
κe , α̃22 ≡ 1

B
F̃

γpB2

γp+B2
F̃

1
B
.

(17.84)

Here, κe ≡ e · κ = −(k̃π/k̃)κn + (k̃n/k̃)κg is the component of the field line
curvature perpendicular to k̃ and the operator

F̃ ≡ −iB · ∇̃ = −(i/J ) ∂ϑ (17.85)

is just the part of the parallel gradient operator which acts on the slowly varying
amplitude functions. Since the functions ṽ and ζ̃ are defined on an infinite domain
for periodic configurations, the appropriate boundary conditions at ϑ → ±∞ are
that they should decay rapidly enough to remain square integrable.

As compared to the magnetic-surface-localized Alfvén and slow continua of
Eq. (17.56), due to the additional freedom of field line localization, there is now a
new, potentially negative term, proportional to −κep

′, in the upper left diagonal el-
ement of the matrix (17.83). This is the driving term of high-n ballooning modes,
corresponding to the low-n ballooning term εβpκϕ encountered in the coupling
term (17.64) of the high-beta tokamak model of the previous section.
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Finally, the ballooning equation of Connor, Hastie and Taylor [90, 91] is ob-
tained from the two ODEs (17.83) by neglecting the compressibility terms (γp �
B2, appropriate for low-beta) so that ζ̃ = 0 (or Z̃0 = 0). This gives:

− B2

J k̃2

∂

∂ϑ

(
k̃2

JB2

∂X̃0

∂ϑ

)
− 2B

k̃
κep

′X̃0 = ρω2X̃0 . (17.86)

This appears to yield a very simple prescription for the study of the stability of
tokamaks with respect to high-n ballooning modes: just investigate the Sturmian
properties of the eigenfunctions X̃0 on the infinite domain −∞ < ϑ < ∞ and
determine the lowest eigenvalues ω2(Ψ, ϑ0). If they are positive, the configuration
is locally stable, if there is a negative one the configuration is unstable.

One aspect of the ballooning theory presented so far is entirely unclear. How
does this analysis reconcile poloidal periodicity with field line localization? Fol-
lowing Dewar and Glasser [118] again (see also [117], [220], [367] for the asso-
ciated small-scale radial periodicity), this question is answered by observing that
the eigenvalue problem (17.83), or (17.86), is infinitely degenerate with respect to
poloidal periodicity. In particular, notice that the Rayleigh quotient Λ2 is invariant
under a change of the poloidal angle ϑ over a period 2π, provided that the value
of the parameter ϑ0 is replaced by ϑ0 + 2π as well. Exploiting the coordinates Ψ
and α to indicate the field lines, and considering the variable X only (dropping the
subscript 0), this implies the following:

ω2(Ψ, α− 2πq, ϑ0 + 2π) = ω2(Ψ, α, ϑ0) (eigenvalues) ,

X(ϑ+ 2π; Ψ, α− 2πq, ϑ0 + 2π) = X(ϑ; Ψ, α, ϑ0) (eigenfunctions) . (17.87)

Hence, instead of the single non-periodic mode (17.67), the superposition

X(Ψ, ϑ, ϕ) =
∞∑

	=−∞
X̃(Ψ, ϑ+ 2π�)ein[ϕ−q(ϑ+2π	−ϑ0)] (17.88)

is a periodic solution of the ballooning equations, with the eigenvalue ω2, provided
that the amplitude X̃ falls off rapidly enough at infinity to leave the quadratic forms
finite. This behavior is dictated by the indicial equation, which turns out to be
associated with the Mercier criterion at marginal stability (see below).

� Analogies between continuum and ballooning equations The analogy between the
coupled ODEs (17.55), describing the Alfvén and slow continua, and (17.83), describing
the Alfvén and slow ballooning modes, is striking but misleading. Formally, one may
obtain Eq. (17.55) from Eq. (17.83), as noted by Lifschitz [308], by taking the limit ϑ0 →
∞ so that k̃ ≈ k̃n ≈ q′ϑ0 · RBp → ∞, κe → κg, ṽ → η̃ and κep′/k̃ → 0. However,
we then get an equation in terms of F̃ acting on η̃, rather than F acting on η, whereas the
relationship between η and η̃, viz.

η(ϑ) = einqϑ0 · η̃(ϑ) e−inqϑ , (17.89)
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becomes a tricky one in view of the wildly oscillating factor involving ϑ0. In order to
permit the consideration of n ∼ 1 modes one would have to re-interpret a posteriori the
ballooning approximation, which assumed n	 1. Physically, this is related to the absence
in Eq. (17.55) of the most important term in the ballooning equation, viz. the one that
drives instabilities: κep′. In order to derive it, it was necessary to relax on the constraint
of displacements lying in the magnetic surfaces (necessary for Eq. (17.55)), on the one
hand, but to restrict the displacements to be localized around the field lines (implicit in
the Ansatz (17.67)), on the other. The latter constraint is necessary to minimize field line
bending, which is quite appropriate in stability studies but completely spurious for the
study of Alfvén wave heating, where the global exciting wave just enforces the field line
bendings that correspond to their scale lengths. For example, in the case of Alfvén wave
heating of the solar corona, it is a safe assumption that these scale lengths are arbitrary, in
the sense of being dictated by the photospheric convection patterns and not by the field line
structure of the coronal loops. We conclude that each of the formalisms associated with the
two types of equation has its own domain of application, where the typical ballooning term
κep

′ is crucial for stability studies but a minor correction in heating scenarios and, vice
versa, the low mode number structure of the continua (with gaps in the case of tokamaks)
is crucial for heating but strictly lost in the ballooning formalism. �

Mercier criterion The Mercier criterion was originally derived by Mercier [331]
as a generalization of Suydam’s criterion. With the introduction of the ballooning
formalism, it became clear that it can also be interpreted as a condition on the
solutions of the ballooning equation for ϑ→∞. This leads again to a cluster point
analysis, but now in the stretched angular variable ϑ, rather than the radial flux
variable Ψ. The derivation is put in small print.

� Derivation of the Mercier criterion The Mercier criterion may be obtained from the
marginal (ω2 = 0) version of the ballooning equation (17.86),

1
J

d

dϑ

[
1

JR2B2
p

(
1 +

k̃2
n

k̃2
π

)
dX̃0

dϑ

]
+

2
RBp

(
κn − k̃n

k̃π
κg

)
p′X̃0 = 0 , (17.90)

where the equilibrium functions are periodic, but k̃n/k̃π has a secular dependence on ϑ:

k̃n/k̃π = (R2B2
p/B

2)z , z ≡ q′(ϑ− ϑ0)− (g12/g22)q . (17.91)

Splitting periodic and secular dependencies, the ballooning equation is written as

d

dϑ

[
(az2 + b)

dX̃0

dϑ

]
+ (ċz + d)X̃0 = 0 , (17.92)

a ≡ R2B2
p

JB2
, b ≡ 1

JR2B2
p

, c ≡ Ip′

B2
, d ≡ 2J κnp′

RBp
,

where the dot indicates differentiation with respect to ϑ. We try solutions of the form

X̃0 = zν
[
f0(ϑ) +

f1(ϑ)
z

+
f2(ϑ)
z2

+ · · ·
]
, (17.93)

where the fis are periodic functions of ϑ. The task is to determine the index ν (similar to
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the derivation of Suydam’s criterion in Section 9.4.1 [1], but now on the extended angular
domain). This is done by substituting (17.93) into (17.92) and balancing the powers of z :

zν+2 :
d

dϑ

(
a
df0
dϑ

)
= 0 ⇒ f0 = C1 , (17.94)

zν+1 :
d

dϑ

(
a
df1
dϑ

)
= −
[
ν(aż)̇ + ċ

]
f0

⇒ f1 = −C1

[
νz +

∫
(c/a) dϑ

]
+ C2

∫
(1/a) dϑ+ C3 ,

− C1

[
2πνq′ +

∮
(c/a) dϑ

]
+ C2

∮
(1/a) dϑ = 0 , (17.95)

zν :
d

dϑ

(
a
df2
dϑ

)
= −2νaż

df1
dϑ
−
[
(ν − 1)(aż)̇ + ċ

]
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[
ν(ν + 1)aż2 + d

]
f0 ,

− C1

∮ [
cż − (c2/a)− d

]
dϑ+ C2

[
(ν + 1)2πq′ −

∮
(c/a) dϑ

]
= 0 . (17.96)

Here, periodicity of f0 is manifest, periodicity of f1 requires the relationship (17.95) be-
tween the constants C1 and C2, whereas periodicity of f2 requires the relationship (17.96).
Compatibility of the latter two conditions yields the indicial equation:

ν(ν + 1) +D = 0 , D ≡ 1
4π2q′2

{∮
(c/a) dϑ

[
2πq′ −

∮
(c/a) dϑ

]
−
∮

(1/a) dϑ
∮ [

cż − (c2/a)− d
]
dϑ

}
. (17.97)

This implies infinitely oscillatory solutions (local instability with respect to interchanges)
when the indices are complex (D < 1/4) and stability when the indices are real. �

By exploiting the Grad–Shafranov relation (17.16) and the other relations of
Section 17.1.3, many equivalent forms of the Mercier criterion D > 1/4 can be
derived. The following one, due to Pao [358], is probably the most appealing one:

1
2π

2q′2 + p′
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B2

R2B2
p

J dϑ
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κp

RBp
J dϑ

+
∮ 1
R2B2

p

J dϑ
∮ (−κp + κϕ)B2

ϕ

RBp
J dϑ

]
> 0 . (17.98)

In this form, it clearly exhibits the competing contributions of the magnetic shear
(first term), which is stabilizing, and the pressure gradient, which drives inter-
change instabilities if the term in square brackets is positive. In the cylindrical
limit, κϕ = 0 and B2 = const, that term is positive definite and Suydam’s cri-
terion is recovered. In the toroidal case, the term may change sign through the
contribution of the toroidal curvature. In general, numerical analysis of specific
equilibria is needed to determine stability with respect to interchange modes.
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17.3 Computation of waves and instabilities in tokamaks

We now turn to numerical theory to provide us with the procedures that produce
the explicit answers needed in fusion research. Once large-scale computing is em-
braced, some of the analytical methods lose their attraction and new possibilities
present themselves. Thus, we will only discuss ideal MHD in short, since it is
contained in resistive MHD, as far as the numerics is concerned, and its numerical
implementation appears to be too restrictive at the present time.

17.3.1 Ideal MHD versus resistive MHD in computations

There is a long history on the subject of ideal MHD stability of tokamaks. There
appears to be no point trying to summarize this in a few lines. Excellent texts on
this subject exist [140], [481]. The reader is advised to consult those. The present
chapter is more concerned with the structures of the different theoretical methods
than with specific results. We will merely use the results to illustrate the methods.

Troyon beta limit There is also a long history on the development and subsequent
use of toroidal ideal MHD stability programs, the most well known of them being
ERATO [198, 197] and PEST [193]. Again, we will not attempt to summarize the
results reached. There is one famous result, though, that illustrates one of the points
of this section. This is the Troyon beta limit [447] for stability of tokamaks with
respect to ideal MHD kink modes. It summarizes the results of a great number of
numerical optimization studies with respect to high-β stability of tokamaks. The
result is a quite simple scaling law of the maximum value of β with respect to kink
mode stability as a function of the toroidal current Iϕ, the vacuum magnetic field
B0 and the plasma radius a (with the units indicated in brackets):

β (%) < gT
Iϕ (MA)

a (m)B0 (T)
, (17.99)

where gT is a factor obtained from the numerical studies, originally put at gT ≈ 3.
How is it that all the complicated Alfvén wave dynamics in the curved environ-
ment of toroidal confinement systems just leads to such a simple answer? Is it a
genuine scaling law or just a very stimulating way of getting experimentalists to
improve tokamak performance? (Like Moore’s law in computer chips: not a law
of nature, but demonstration of the possibility of obtaining desirable scaling by
intense technological efforts.) Figure 17.7 appears to point in the latter direction,
with the swarm of experimental points continually moving up, in JET reaching
β ≈ 6% in 1990, but soon afterwards (1995) put into the shade by the record val-
ues of β ≈ 12.6% obtained in the DIII-D tokamak [432], with some experimental
points far above the curve. Not surprisingly, the slope of the curve also turned out
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Fig. 17.7 Toroidal beta as a function of normalized current in DIII-D discharges.
The drawn line is a modified form of the Troyon limit. (From Taylor et al. [432]).

to depend on details of the current distribution, parameterized by the internal in-
ductance �i. Thus, ideal MHD computations have served not only as a theoretical
framework for the interpretation of tokamak stability results, but also as a stimu-
lus for experimental progress. (In this respect, the comparison with Moore’s law
should be taken as positive evaluation of the Troyon scaling law.)

� High-beta tokamak scaling The high-beta scaling of Section 16.1.4 actually yields a
quadratic dependence on the toroidal current, following from Eqs. (16.69) and (16.66):

β =
0.04πa2βp

S

(10−6Iϕ
aB0

)2
(all in mks units) . (17.100)

For limiting values βp ∼ ε−1, roughly independent of the toroidal current, this expression
appears not to conflict with the general tendency of the points shown in Fig. 17.7. �

Turning to resistive MHD calculations Progress in computer equipment and com-
putational methods not only served to narrow down the gap between theory of
highly simplified analytical models and numerical analysis of more realistic mod-
els of the magnetic confinement geometry of tokamaks, but it also revealed a false
dilemma between ideal (conservative) and resistive (dissipative) MHD. Histori-
cally, the vast majority of tokamak stability investigations has been done by means
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of the energy principle of ideal MHD [35, 36, 203], and its spectral generaliza-
tions, extensively discussed in this volume and the preceding one. The reason is
obvious: that theory is the simplest and also the most appealing one with respect
to mathematical and physical properties (the power of spectral theory combined
with the beauty of conservation laws). Also, with the velocity representation (or
the displacement vector ξ), reduction to the smallest number of unknowns was ef-
fected, a very desirable feature in the early days of computing with very restricted
central memory sizes. However, it falsely created the impression that computing
for the more extended MHD models, including resistive MHD, would necessarily
be less accurate and also much slower than for ideal MHD. In order to appreci-
ate this misunderstanding, we first need to introduce the newer numerical methods
used in resistive MHD calculations. At the end of this section, we will then return
to an explanation of why and how the superiority of the conservative model over
the dissipative model turned out to be a false dilemma.

Moving to dissipative MHD, we immediately realize that the basic variable ξ

is no longer available since its definition is strictly based on flux conservation.
Therefore, let us return to the basic equations of resistive MHD, Eqs. (4.122)–
(4.125) of Volume [1], already exploited in Section 14.2, but now replacing the
pressure by the temperature using the relation p = (γ − 1)CvρT :

∂ρ

∂t
= −∇ · (ρv) , (17.101)

ρ
dv
dt

= − (γ − 1)Cv∇(ρT ) + μ−1
0 (∇×B)×B , (17.102)

Cvρ
dT

dt
= − (γ − 1)CvρT ∇ · v + μ−2

0 η(∇×B)2 , (17.103)

∂B
∂t

= ∇× (v ×B)− μ−1
o ∇× (η∇×B) , (17.104)

∇ ·B = 0 . (17.105)

We will eliminate the factors Cv and μ0 by defining T̄ ≡ (γ − 1)CvT , η̄ ≡ η/μ0

and B̄ ≡ B/
√
μ0 , but we will drop the bars immediately. The basic equa-

tions (17.101)–(17.104) govern the temporal evolution of the density ρ, the velocity
v, the temperature T and the magnetic field B, whereas Eq. (17.105) is a constraint
on B that should be satisfied with the same accuracy as the other equations. (See
Tóth [440], and Section 19.3.1, for a discussion of the numerical aspects.)

Let us now linearize these equations according to the scheme

f(r, t) ≈ f0(ψ, ϑ) + f1(ψ, ϑ)ei(nϕ−ωt) , (17.106)

where the f0s describe the equilibrium quantities, the f1s are the amplitudes of
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the normal mode solutions and n is the toroidal mode number. Recall that for
ideal MHD, dropping the terms with η and writing v1 ≡ ∂ξ/∂t, three of the four
equations can be integrated directly and the spectral problem

F(ξ) = −ρω2ξ (17.107)

is obtained, where F is the force operator, which is self-adjoint, and the eigenvalues
ω2 are real. For resistive MHD, this scheme does not work and we are forced to
consider the eight components ρ1, v1, T1, B1 describing the perturbed state. In
general, the eigenvalues ω will then have both real and imaginary parts. Instead
of ω, it is customary to exploit the complex eigenvalue parameter λ ≡ −iω , the
real part of which measures the exponential growth rate of instabilities.

We will simply remove the initial condition ∇ · B1 = 0 from the eigenvalue
problem by exploiting the vector potential A1 as a variable, B1 = ∇ ×A1 , and
choosing the gauge condition Φ1 = 0 on the scalar potential. This elimination of
the initial condition will introduce spurious eigenvalues λ = 0, which have to be
removed later on. However, this is a relatively easy numerical task.

The equations of the resulting eigenvalue problem, already presented as Eqs.
(15.63)–(15.66) of Section 15.2.1, are repeated here for convenience:

λρ1 = −∇ · (ρv1) , (17.108)

λρv1 = −∇
(
ρ T1 + (p/ρ) ρ1

)
+ (∇×B)× (∇×A1)

−B× (∇×∇×A1) , (17.109)

λρT1 = − ρv1 · ∇(p/ρ)− p∇ · v1

+2η (γ − 1) (∇×B) · (∇×∇×A1) , (17.110)

λA1 = −B× v1 − η∇×∇×A1 . (17.111)

Here, explicit numerical knowledge of the equilibrium, characterized by the func-
tions ρ(Ψ, ϑ), p(Ψ, ϑ) and B(Ψ, ϑ), is presupposed. Hence, the equilibrium part
of the calculation (Section 16.3.3), the inversion of the coordinates (Section 17.1.2)
and the equilibrium properties (Section 17.1.3) remain in effect, we just discuss a
different implementation of the box labeled “STAB” in Fig. 17.1. Introducing the
basic state eight-vector

u ≡ ( ρ1,v1, T1,A1 )T , (17.112)

the system of equations (17.108)–(17.111) may be written in matrix form as

L · u = λR · u , (17.113)

exploiting the same operators L and R as in Eq. (15.67). (Note again the inter-
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change of LHS and RHS!) This is the basic eigenvalue problem of resistive MHD,
to be compared with Eq. (17.107) of ideal MHD.

Before we discuss the numerical implementation of this analysis, we observe
some simple facts.

(a) The resistive eigenvalue problem (17.108)–(17.111) in terms of state vectors u with
eight rather than three components, implies a substantial increase of necessary mem-
ory size: a distinct disadvantage of resistive MHD compared to ideal MHD. This is
one of the reasons that dissipative spectral computations have become feasible only
recently, with the advent of cheap memory in large-scale computing.

(b) Since no special tricks have been used in the derivation of the resistive equations, the
extension with other dissipation mechanisms like viscosity, heat conduction, etc. is
easy: a distinct advantage of the resistive MHD computations.

(c) The eigenvalue λ appears linearly in the resistive eigenvalue problem (17.113), where-
as the ideal MHD problem (17.107) has a quadratic eigenvalue ω2. For a given accu-
racy of the computed equilibrium and of the eigenvalue solvers exploited, the number
of accurate digits obtained in λ with resistive calculations is of the same order as that
in ω2 with ideal calculations. Hence, for a given time scale of interest, it appears that
the resistive calculations are trivially more accurate than the ideal ones! (A sobering
thought after twenty years of intensive numerical research in ideal MHD.)

(d) Likewise, the spatial derivatives of the equilibrium quantities appearing in the dissi-
pative system are typically first order, versus second order in the ideal case: a distinct
disadvantage for ideal MHD computations. Again, in this respect as well, the resistive
calculations are trivially more accurate than the ideal ones!

To sum it up: we appear to lose a powerful tool, but we get a much more powerful
numerical tool in return.

Let us now see how it works in practice; we here summarize some of the nu-
merical implementations of these ideas by Kerner [268, 269, 270]. The eigenvalue
problem (17.108)–(17.111) is solved by the Galerkin method. A weak form of
Eq. (17.113) is constructed by multiplying with an arbitrary test function v and
integrating over the domain of interest, i.e. the plasma interior (restricting the anal-
ysis to internal modes for the time being):∫

vT · L · u dV = λ

∫
vT · R · u dV . (17.114)

v is a solution of Eq. (17.113) in the weak sense if Eq. (17.114) is satisfied for every
test function v of the appropriate space, i.e. the space of functions that satisfy the
pertinent boundary conditions.

The set of test functions v in the weak form (17.114) is chosen to be the same as
used in the discretization of the physical variables u. For both of them, we exploit
a finite element representation, extensively discussed in Section 15.1.3, with pairs
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Fig. 17.8 Block structure of the CASTOR eigenvalue matrices: (a) tridiagonal
structure due to finite element radial discretization; the finite elements can be accu-
mulated at positions where the modes tend to localize (e.g. at the locations of the
ideal MHD singularities); (b) block structure due to cross-products of the physical
variables; (c) block structure due to poloidal mode coupling. The blocks of (b) and
(c) are essentially full, sparseness is solely due to the finite element discretization in
the radial direction. This discretization reflects the difference of wave propagation
inside and across magnetic surfaces. On each grid point two kinds of finite element
are exploited so that there are (2×8× (M2−M1 +1))2×3×N non-zero complex
matrix elements, where N is the number of radial points, and M1 and M2 are the
lower and upper limit of the range of the poloidal mode number m.

of quadratic and cubic finite elements on each grid point labeled j. For simplicity,
we first consider the 1D cylindrical case with radial variations only. Hence, if the
ith component of u is approximated by

ui � ũi =
2N∑
j=1

xij h
i
j(r) (i = 1, . . . , 8) , (17.115)

where N is the number of pairs of finite elements employed (which is the same as
the number of radial grid points), the following set of equations is obtained for the
coefficients xij :∑

i′

∑
j′

( ∫
hij L

ii′hi
′
j′ dV

)
· xi′j′ = λ

∑
i′

∑
j′

( ∫
hij R

ii′hi
′
j′ dV

)
· xi′j′ . (17.116)
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These equations lead to the non-symmetric eigenvalue problem

A · x = λB · x , (17.117)

where A and B are large non-Hermitian matrices and λ ≡ −iω is the complex
eigenvalue. The ideal MHD spectral problem is contained as a special case (η = 0),
with Hermitian matrices and λ purely real or purely imaginary.

In the toroidal case, except for the radial finite elements, one also needs a dis-
cretization of the poloidal variation. Because of poloidal periodicity, it is most
effective to exploit fast Fourier transforms for this purpose, so that the volume in-
tegrations of Eq. (17.116) also contain angular integrations over products of Fourier
harmonics involving the poloidal variation of the equilibrium quantities. The re-
sulting block-tridiagonal structure of the matrix A is illustrated in Fig. 17.8 for the
particular implementation used in the pair of codes HELENA-CASTOR [238, 272]
for the calculation of static axi-symmetric equilibria in tokamaks and their ideal or
resistive spectra of waves and instabilities. For the computation of external kink
modes, extension with an external vacuum region surrounded by a conducting wall,
or a boundary of a prescribed shape, has been constructed using the same numerical
discretization methods [239]. Those methods have also been used in the succeed-
ing pair of codes FINESSE-PHOENIX [29, 52] for toroidally and poloidally rotating
plasmas, that are exploited in the next chapter.

In conclusion, numerical computation starting from the resistive spectral set of
equations (17.108)–(17.111) is much more flexible, and even more accurate, than
starting from the corresponding ideal MHD spectral equation (17.107). There is
also no need to develop separate codes for ideal MHD since it is contained by
means of the simple switch η = 0. This does not imply that ideal MHD stability is
now superceded. Actually, quite the opposite: as we will see in the following sec-
tions, all ideal MHD instabilities remain present, and even much more pronounced,
since accurately computable.

17.3.2 Edge localized modes

Edge-localized modes (ELMs) typically occur in the H-mode confinement regime in
tokamaks. This operating regime, discovered in ASDEX [471], is characterized by
a factor of two improved energy confinement as compared to the L-mode regime,
due to the suppression of plasma edge turbulence and large edge gradients of the
temperature and the density (and also in the shear flow and the associated radial
electric field) [195]. The H-mode may be degraded by ELMs of large magnitude,
destroying the desired transport barrier. On the other hand, ELMs of small magni-
tude may have the effect of providing a control mechanism of the impurity content,
so that quasi-stationary state H-mode operation is facilitated.
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Fig. 17.9 MHD stability limits for toroidal mode number n = 1–40 as a func-
tion of the edge pressure gradient α and the edge current density, relative to the
experimental value, for a low triangularity JET H-mode discharge. Black squares
indicate n =∞ ballooning instability, colored squares indicate peeling–ballooning
instability with the most unstable n indicated by the color. (From Huysmans [236].)

The traditional, over-simplified, approach to MHD stability of tokamaks is to
separately consider the global external kink modes, with toroidal mode number
n = 1, and the highly localized ballooning modes, with n = ∞. However, to
properly describe ELMs in the H-mode regime, the full variety of combined modes
should be considered. In particular, the large gradients of the pressure and of the
current density at the plasma edge give rise to mixed peeling–ballooning modes
with a wide range of intermediate values of n; see Huysmans [236]. The peeling
mode proper is an external kink mode, with extreme localization at the edge, that
is driven by a finite current density, or its derivatives, at the edge of the plasma; see
Frieman et al. [146]. In the intermediate n range, these modes couple to pressure
gradient driven ballooning modes, so that the distinction between the two becomes
meaningless; hence, the terminology “peeling–ballooning”.

The stability diagram for these modes is shown in Fig. 17.9. Whereas n = ∞
ballooning modes become unstable if the pressure gradient parameter α > 3.7
(black squares) and become stable again when the edge current density becomes
larger than 65% of the experimental value, the intermediate n peeling–ballooning
modes clearly are unstable for parameters that are experimentally relevant for the
onset of ELMs (colored squares). It should be noted, though, that, whereas the
maximum pressure gradient observed before the occurrence of ELMs is a rather
well known quantity, the edge current density is really dependent on details of the
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equilibrium reconstruction that are much less known. Furthermore, the shape of the
plasma boundary, in particular its triangularity, may significantly enhance stability
with respect to these modes.

Fig. 17.10 (a) Growth rate of the n = 1 peeling–tearing instability for two shapes
of the plasma boundary: ψb = 0.99 (modest triangularity, red dots) and ψb = 0.998
(high triangularity, blue triangles), resistivity η = 2× 10−8; (b) ideal peeling mode
for ψb = 0.99, q0 = 1.45, qb = 4.06; (c) resistive peeling–tearing mode for
ψb = 0.998, q0 = 1.54, qb = 4.4. (From Huysmans [235].)

Obviously, this does not exhaust the dynamics of different MHD modes in the
plasma edge. For example, low n external kink modes have been observed during
an initially ELM free period. Because these modes are driven by the edge current
density, or its gradient, they should be classified as peeling modes as well. Since
their instability hinges on the proximity of a rational surface in the vacuum, the
plasma boundary shape strongly influences the growth rate of these instabilities;
see Fig. 17.10(a). For example, the presence of the X point of a divertor close
to the plasma boundary stabilizes the ideal n = 1 peeling modes (mode structure
shown in Fig. 17.10(b)), whereas it has little influence on resistive n = 1 peeling–
tearing modes (mode structure shown in Fig. 17.10(c)). Hence, peeling–tearing
instabilities may be considered as a possible mechanism for the more benign, small
magnitude, ELMs.

The parameterization of Fig. 17.10 requires some explanation. In stability codes
exploiting straight field line coordinates, like CASTOR, the separatrix region itself
cannot be studied because the Jacobian diverges. Instead, the geometry close to an
X point is mimicked by considering boundaries parameterized by the flux ψb as a
fraction of the flux ψ = 1 at the X point. Also, because qb is a rather poor measure
for kink modes (q∗ would have been better; see Section 16.1.4), the total current
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has been parameterized by the safety factor on axis, q0. One then finds instability
of ideal peeling modes in the range 1.2 < q0 < 1.45 (red peak in Fig. 17.10(a)) and
of resistive peeling modes in the range 1.45 < q0 < 1.54 (blue curve, indicating
even increased growth rate for higher triangularity). As illustrated in Fig. 17.10(b)
and (c), these two types of mode are similar in the bulk of the plasma, but exhibit a
distinct parity difference in the immediate neighborhood of the X point.

Fig. 17.11 Separatrix geometry and a peeling mode current perturbation computed
with the nonlinear evolution code JOREK. (From Huysmans & Czarny [237].)

The eventual effect of ELMs on plasma confinement has to be studied for mode
amplitudes that have grown into the nonlinear regime. This requires a nonlinear
evolution code, possibly with input of initial data from an equilibrium-spectral
code such as HELENA-CASTOR. A popular model to reduce the complexity of the
nonlinear calculation is Strauss’ reduced MHD model [425], further developed by
many authors, see e.g. [246], [69]. A direct extension of the above analysis into the
nonlinear regime has been initiated by the development and application of the non-
linear evolution code JOREK by Huysmans and Czarny [237], based on such a re-
duced resistive MHD model. The equations solved are evolution equations for the
poloidal flux, the poloidal vorticity, the density and the temperature, with a number
of transport coefficients, such as resistivity, viscosity and heat conductivity. Signif-
icant is the fact that most of the discretization methods, like two-dimensional finite
elements for the poloidal plane, Fourier transformation for the toroidal direction,
grid refinement techniques, etc. are the same as, or developments of, the methods
used in the spectral code. The time evolution is treated fully implicitly (see Sec-
tions 15.4 and 19.4). Most important is the incorporation of the X point geometry
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characteristic for divertor tokamaks, like JET and ITER, since ELMs usually con-
sist of an external kink mode component of the peeling mode kind, as discussed
above. Consequently, these modes are very sensitively dependent on the separatrix
geometry. Fig. 17.11 shows the flux aligned finite element grid used in JOREK
and the localized current perturbation of a peeling mode that is ideally stable, but
resistively still unstable, in agreement with the linear results [235]. An example of
a peeling–ballooning mode computed with this code is shown in Fig. 17.15.

17.3.3 Internal modes

Tearing modes Plasmas with a fixed boundary display internal modes, like the
tearing modes and resistive interchanges discussed in Sections 14.2.2 and 14.2.3.
These modes can be stabilized by the combined effect of good average curvature
of the field lines and finite pressure of the plasma [158]. In toroidal geometry, as
shown by Glasser et al. in [158], the dependence of the growth rate on the resistivity
is much more complicated than suggested by the simple tearing scaling (14.84) or
the interchange scaling (14.90) of Section 14.2. In particular, the eigenvalues of the
resistive modes become complex and exhibit an intriguing pattern of coalescence
and splitting in the complex λ plane, as shown in Fig. 17.12. For η = 10−6, the
frequency of one stable mode (imaginary λ⇒ real ω) decreases as η decreases and
the frequency of a second stable mode increases as η decreases. At η = 2.3×10−7,
the two modes coalesce and split into two overstable modes (complex conjugate in
terms of ω) which become purely exponential for η = 4 × 10−8. Finally, if the
resistivity is still further decreased, the two modes approach the origin with the
resistive interchange power η1/3 of Eq. (14.90).

The influence of the pressure (parameterized by βp) on the growth rate of the
internal m = 2, n = 1 tearing mode is shown in Fig. 17.13. As is evident from
this figure, the pressure has a stabilizing influence on the internal tearing modes,
so that an increase of βp results in a decrease of the instability window in the plot
of the growth rate versus the safety factor at the edge. In contrast, the pressure
has almost no effect on the external, free boundary, tearing modes, which means
that those modes are essentially incompressible. At zero pressure the instability
window of the external tearing modes is much larger than for the internal modes,
and at βp = 0.26 the growth rates are four times larger than for the internal, fixed
boundary, modes. Thus, the stabilizing influence on the tearing mode, which can
be very effective for modes in the plasma center, is not effective for tearing modes
at the plasma edge [239].

Infernal modes The long term prospect of steady state operation in tokamaks, fa-
cilitated by bootstrap currents (see Wesson [481], Section 4.9), has led to intense
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Fig. 17.12 Locus of the eigenvalue λ (≡ −iω) of the internal, m = 2, n = 1,
resistive tearing mode in the complex plane as a function of resistivity; q1 = 2.65,
βp = 0.26. (From Huysmans et al. [239].)

Fig. 17.13 Growth rate versus total current for an internal, m = 2, n = 1, resistive
tearing mode for three values of the poloidal beta, for fixed resistivity η = 10−6.
(From Huysmans et al. [239].)

research of the advanced Tokamak (AT) scenario (see e.g. Freidberg [141], Sec-
tion 13.7.4). This scenario requires unusual (hollow) current and q-profiles, i.e.
negative shear in the plasma center, and, thus, reopened many questions of MHD
stability of tokamaks with respect to these new profiles. We discuss one example.
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Fig. 17.14 Safety factor profiles and corresponding growth rates of the infernal
mode. (From Holties et al. [228, 230].)

The standard ballooning theory, discussed in Section 17.2.5, leads to the one-
dimensional problem of solving an ODE for the ballooning perturbation, which
may be investigated for each magnetic surface separately. This approach is justi-
fied for toroidal mode numbers n	 1, and may be extended to lower values of n,
provided that the magnetic shear is large enough (the standard tokamak scenario).
In that case, growth rates of ballooning instabilities decrease with decreasing n,
so that establishing high-n ballooning stability is sufficient. However, for the low
shear region that is unavoidable in the AT scenarios, stability with respect to inter-
mediate values of n is completely unrelated to the standard ballooning conditions.
For those low-shear q-profiles, even when the ballooning stability criterion is satis-
fied, a new class of unstable pressure-driven modes, called infernal modes (a play
on words), was found by Manickam et al. [325]. For those modes, the growth rate
is a wildly oscillating function of n with instability in low-n regions sensitively
dependent on the value of q.

The infernal modes were investigated for advanced tokamak regimes in JET ob-
tained with pellet injection [228, 230]. The improved confinement turned out to be
transient and ended in a collapse due to an MHD instability. The infernal mode
was considered a likely candidate for this MHD instability since it is driven by the
large pressure gradient in the region of negative shear. Increasing the shear around
qmin reduces the growth rates of the infernal mode but enlarges the instability win-
dow as the infernal mode becomes more localized and gives a less deteriorating
effect on the plasma (Fig. 17.14). Broadening the pressure profile, i.e. moving the
pressure gradient away from qmin, has a stabilizing effect. It is possible to com-
pletely stabilize the infernal mode by making the pressure gradient equal to zero in
a large enough region around qmin. One might hope that the effect of the instability
is precisely this switching off (therefore called “self healing”).
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Ballooning modes A complete nonlinear evolution study of medium-n ideal bal-
looning instabilities was performed by Huysmans and Czarny [237] by means
of the JOREK code. The initial, linearly unstable, mode structure is shown in
Fig. 17.15. The initial equilibrium has a large pressure gradient (the edge pedestal)
inside the separatrix. However, as time proceeds in the computation, the modes
more and more stretch out into the “vacuum”, so that the distinction between inter-
nal and external modes becomes meaningless. In effect, the medium-n ballooning
modes develop into “blobs” or density filaments, very similar to the experimentally
observed ELMs.

Fig. 17.15 Initially unstable linear mode structure of an n = 6 ballooning mode.
(From Huysmans & Czarny [237].)

17.3.4 Toroidal Alfvén eigenmodes and MHD spectroscopy

Toroidal Alfvén eigenmodes We have encountered the TAE modes in connection
with the poloidal mode coupling of the Alfvén and slow continua in toroidal sys-
tems (Section 17.2.4, Fig. 17.3). Due to this coupling, gaps appear in the continua
in which the TAEs may be found (see Fig. 17.5). They are naturally excited by
energetic particles (neutral beam injection, fusion α-particles) and, in turn, these
destabilized TAEs may cause severe losses of α-particles in future ignited plasmas.
Hence, a lot of research is devoted to possible damping mechanisms [449].

TAE modes not only pose a threat to plasma confinement for future fusion ma-
chines, but they may also be used for a positive purpose, viz. to diagnose the plasma
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Fig. 17.16 Power absorbed by the plasma as a function of the normalized antenna
frequency (n = 1, η = 10−7, VA/R = 332 kHz). (From Huysmans et al. [240].)

by means of measurements of the magnetic signals they produce. This activity, pro-
posed by Goedbloed et al. [165, 180], has been called MHD spectroscopy. Recall
from our discussion of the example of helioseismology in Section 7.2.4 of Vol-
ume [1] how agreement between observed Doppler shifts of spectral lines, due to
solar oscillations [89], could be brought into agreement with the calculated ones
for a standard solar model to within 0.1%! This impressive agreement may serve
as an example for what is possible in a purely classical, fluid dynamical, kind of
spectroscopy and, hence, in the MHD spectroscopy of plasmas.

External excitation of TAEs At JET, TAEs could be artificially excited by means
of an external antenna. To that end, the saddle coils for disruption control were
adapted to permit scanning of the driving frequency in the Alfvén frequency range
of 30–500 kHz. The frequencies of the TAE modes then showed up as resonances
of the power absorbed by the plasma, as measured by the antenna impedance.

The theoretical counterpart of this activity was undertaken by means of a mod-
ification of CASTOR. Replacing the spectral problem (17.117) by a representation
for external driving,

(A + iωdB) · x = f , (17.118)

where ωd is the driving frequency and f is the driving term, the response of the con-
tinuous spectra and other modes could be calculated. The response of the plasma
due to an n = 1 magnetic field perturbation which would be induced by the sad-
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dle coils is shown in Fig. 17.16. On top of the broad continuum shoulders several
sharp peaks are found labeled with TAE (toroidicity induced: Δm = 1 couplings
dominate in the eigenfunctions), EAE (ellipticity induced: Δm = 2 couplings)
and BAE (β induced, actually compressibility induced: γp). As may be deduced
from the corresponding eigenfunctions, these peaks in the antenna impedance are
indicative of the background plasma equilibrium profiles [241, 271]. Observing
such peaks and correlating them with the background profiles would be an exam-
ple of active MHD spectroscopy. We will see below how a more effective, passive,
way of MHD spectroscopy was advanced later at JET.
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Fig. 17.17 Toroidal flow induced Alfvén eigenmode (TFAE): (a) Alfvén and slow
continua plotted against s =

√
ψ; (b) large gap in the Alfvén spectrum with TFAE

(indicated by the cross); (c) for the corresponding static equilibrium, the gap is
much narrower and no TFAE occurs. (From van der Holst et al. [453].)

Toroidal flow induced Alfvén eigenmodes One particular kind of TAE mode,
which might become important in MHD spectroscopy because it occurs at very
low frequencies (in the slow magneto-sonic range), is the toroidal flow induced
Alfvén eigenmode (TFAE), found by van der Holst et al. [453, 454]. It is illus-
trated in Fig. 17.17. The mode occurs in the Δm = 0 gap caused by the coupling
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of the Alfvén and slow continua, similar to the geodesic coupling described in
Section 17.2.3. However, this gap is not caused by geodesic coupling but by cen-
trifugal and Coriolis forces, and it is significantly wider than the static Δm = 0
gap. Because of the flow, the continua are Doppler shifted and the symmetry
with respect to the Doppler shifted frequency nΩ is broken through the Cori-
olis effect. In Fig. 17.17(b), the Alfvén part of the spectrum is highlighted by
omitting the slow continua. Inside this gap, the TFAE is found with a frequency
Re(ω) = −0.202. For comparison, the gaps for the corresponding static case are
shown in Fig. 17.17(c) (omitting two symmetric BAEs in the narrow Δm = 0
gap). It is evident that toroidal flow changes the low-frequency part of the con-
tinuous spectra completely. The gap is determined by a three mode interaction
involving a central Alfvén mode and two sideband slow modes.

Fig. 17.18 MHD spectroscopy: magnetic perturbations measured at the vessel wall
for determination of the toroidal mode numbers of TAEs in JET discharge #40369.
(From Sharapov et al. [411].)

MHD spectroscopy in rotating plasmas In principle, measurement of the frequen-
cies of TAEs yields information about the safety factor profile q(Ψ) since the TAE
frequency is determined by plasma parameters in a narrow range of width associ-
ated with the magnetic cross-over surface (Fig. 17.3), as shown in many studies,
see e.g. Holties et al. [229]. Neutral beam injection in tokamaks causes the plasma
to rotate in the toroidal direction and, thus, the TAE frequencies are Doppler shifted
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Fig. 17.19 MHD spectroscopy: TAEs observed with magnetic pick-up coils (left)
and resulting safety factor and rotation profiles (right) for JET discharge #40369.
(From Sharapov et al. [411].)

with a factor that depends on the toroidal mode number n times the rotation fre-
quency. Information about the radial profile of the rotation frequency may be ob-
tained from independent (charge-exchange) measurements. From these combined
data, the q profile may be obtained, as shown by Sharapov et al. [411]. Figure 17.18
shows the measured magnetic field perturbations at the vessel wall in JET for dif-
ferent values of n. The TAEs occur in the frequency range 300–400 kHz, whereas
low frequency MHD instabilities occur in the range 0–80 kHz. The profiles of the
safety factor and of the rotation profile that were obtained by inversion of these
data are shown in Fig. 17.19.

One may also use the unstable Alfvén waves in the lower frequency range, ex-
cited by energetic ions, for the purpose of determining the q profile [411]. In toka-
maks with a non-monotonic profile of the safety factor, these occur in the form of
Alfvén wave cascades where the frequency changes upward or downward when the
minimum value of the safety factor decreases in time during the discharge. This re-
cently discovered class of modes offers an additional way of identifying the plasma
parameters from the dependence on the Alfvén wave spectrum, another example
of MHD spectroscopy [411].

At the end of Chapter 16, we noted the lack of accurate information on the profile
of the safety factor q, a crucial parameter for the operation of future fusion reactors.
This deficiency is presently being addressed by a rapidly growing body of research
devoted to the mentioned Alfvén wave cascades, also called chirping modes, see
e.g. Edlund et al. [129], which provide information on the precise location of the
q = 1 surface in reversed shear profiles (relevant for advanced tokamak scenarios).
Clearly, MHD spectroscopy is well underway in tokamaks.



352 Linear dynamics of static toroidal plasmas

17.4 Literature and exercises

Notes on literature

Basic papers on MHD stability

– ‘Zur Stabilität eines Plasmas’ by Hain, Lüst & Schlüter [203] and ‘An energy prin-
ciple for hydromagnetic stability problems’ by Bernstein, Frieman, Kruskal & Kul-
srud [35] are the first (and very unevenly cited) papers on the subject.

– ‘Hydromagnetic stability of a plasma’ in Volume 2 of Reviews of Plasma Physics by
Kadomtsev [252] is one of the first overviews of the subject.

– ‘Kink instabilities in a high-β tokamak’ by Freidberg & Haas [143].
– ‘Study of the MHD spectrum of an elliptic plasma column’ by Chance, Greene,

Grimm & Johnson [82].

Textbook chapters on MHD stability of toroidal plasmas

– Ideal Magnetohydrodynamics (Chapter 10) by Freidberg [140], and Plasma Physics
and Fusion Energy (Chapter 12 and Section 13.7) by Freidberg [141].

– Theory of Toroidally Confined Plasmas (Chapter 4) by White [483].
– Magnetohydrodynamics and Spectral Theory (Chapter 9) by Lifschitz [308].
– Plasma Confinement (Chapter 7) by Hazeltine and Meiss [221].
– Tokamaks (Chapters 6 and 7) by Wesson [481].

Ballooning modes

– ‘Ballooning effects and plasma stability in tokamaks’ in Volume 11 of Reviews of
Plasma Physics by Pogutse & Yurchenko [382] is a very broad overview of ballooning
effects on tokamak stability with many references up to 1980.

– Clear expositions of the ballooning representation may be found in Ideal Magneto-
hydrodynamics (Sections 10.5.3–10.5.5) by Freidberg [140] and Plasma Confinement
(Sections 7.10–7.12) by Hazeltine and Meiss [221].

Exercises

[ 17.1 ] Mapping for stability�

According to Section 17.1.2, stability analysis preferably should be done in straight field
line coordinates. In this exercise, we will investigate how one can invert the coordinates.

– Derive the co- and contravariant metric tensor by making use of the transformation

gij =
∂x̃μ

∂xi
∂x̃ν

∂xj
g̃μν ,

where x̃μ and g̃μν are the coordinates and the metric tensor of the old coordinate
system (R,Z, ϕ), while xi are the coordinates of the new system (Ψ, ϑ, ϕ).

– Express the covariant elements of the magnetic field in the new coordinate system in
terms of the old one, by means of

Bi =
∂x̃μ

∂xi
B̃μ ,
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and also the other way around.
– Derive expressions for RΨ, Rϑ, ZΨ, Zϑ, and for the co- and contravariant elements

of the metric tensor.
– Derive an expression for the Jacobian J . Is it defined everywhere?
– Now we have derived the basic geometric elements for stability analysis in straight

field line coordinates. As an extra, also derive the expressions for the co- and con-
travariant magnetic field components in terms of the metric elements.

– For toroidal plasmas, the safety factor q(Ψ) is defined as

q(Ψ) =
B · ∇ϕ
B · ∇ϑ .

Show how that this can be written in terms of the equilibrium quantities derived.

[ 17.2 ] The magnetic axis

In this chapter, the powerful spectral equation (17.43) has been derived using straight field
line coordinates. Special care is required at the magnetic axis. Here, you will see why.

– What kind of properties does the magnetic field have on the magnetic axis?
– What consequences does this have for the metric elements gij and the Jacobian J ?
– What does this all mean for the spectral equation (17.43)?
– How would you solve this problem?

[ 17.3 ] Projections of the displacement field

In this exercise, you will derive expressions for the projectionsX , Y ,Z of the displacement
vector in straight field line coordinates. This is the first step in the derivation of the spectral
equation (17.43).

– Derive the expressions for the co- and contravariant components of the vector n.
Show that the toroidal contravariant component is equal to zero.

– Do the same for the vectors π and b. Show that one contravariant component of each
vector vanishes.

– Convert the unit vector pair {π,b} into {n, eϕ}. Show that the projections X , Y , Z
can be written in terms of the physical components ξn, ξp, ξϕ as

X = RBpξn , Y =
i

RBp
(Bϕξp −Bpξϕ) , Z =

i
B2

(Bpξp +Bϕξϕ) .

Also write the inverse relations.

[ 17.4 ] Thin plasma slab

Similar to Exercise[16.1], you are going to consider a thin plasma slab about the mid-plane.
You will show that the spectral equation (17.43) reduces to the spectral equation (9.28) [1].
It is reasonable to assume that all physical quantities only depend on the radius R in this
approximation. Furthermore, R ≈ R0 + r , Z ≈ aθ, where a is small.

– Derive the expression for RΨ, Rθ, ZΨ and Zθ.
– Derive the expressions for the elements of the metric tensor gij .
– Show that the Jacobian reduces to J = a/BZ .
– Show that the poloidal and toroidal curvature are zero and 1/R, respectively. Explain

why the poloidal curvature is zero.
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– Reduce the projections X , Y , Z of the displacement field for this case.
– Show that the matrix elements Aij and Bij reduce to the ones of Eq. (9.28) of Vol-

ume [1], up to a factor. Make use of k = m/a.

[ 17.5 ] Small inverse aspect ratio

In the previous exercise, you have investigated a thin plasma slab about the mid-plane.
Now, you do the same for a plasma with small inverse aspect ratio, ε � 1. As stated in
Exercise [16.2], assume that the outer plasma boundary is circular up to first order. Under
these two conditions, the magnetic flux function Ψ can be represented as Ψ(r̂, θ̂) = Ψ(r̂).
Here, (r̂, θ̂) are non-orthogonal polar coordinates defined with respect to the center of the
flux surfaces. The relation with the cylindrical coordinates is the following:

R = R0 + r̂ cos θ̂, Z = r̂ sin θ̂ .

Furthermore, the relation between the angle θ̂ and the straight field line angle ϑ is θ̂ = ϑ.
– Derive the expressions for RΨ, Rϑ, ZΨ, Zϑ and the elements of the metric tensor ĝij .
– Show that the Jacobian reduces to J = r̂/Bp.
– Show that the poloidal and toroidal curvature are 1/r̂ and zero, respectively. Explain.
– Derive the expressions for the projections X , Y , Z in these coordinates.
– Derive the matrix elements Aij and Bij in these coordinates. When it is not really

necessary do NOT replace R with the expression above.
– Show that these matrix elements are the same as the ones of Eq. (9.28) [1] using that
R0 	 r̂ and defining k ≡ n/R0.

[ 17.6 ] Alfvén and slow continuum modes

In Chapter 12, a new method was developed to determine the eigenvalues of the Frieman–
Rotenberg equation, which was applied in Chapter 13 to a 1D equilibrium. Here, you will
apply the same ideas to the Alfvén and slow continuum equations.

– Show that ∮
J v∗(Fw)dϑ =

∮
J (Fv)∗w dϑ− i [v∗w]2π0 ,∮

J v∗(FαFw)dϑ =
∮
J (Fv)∗α(Fw) dϑ− i [v∗αFw]2π0 ,

where v and w are complex functions depending on the straight field line angle ϑ, and
α = α(Ψ0, ϑ) is a real function. The latter function only depends on the equilibrium
quantities. For what kind of function does the term in square brackets vanish?

– Now we define an inner product as follows:

〈v∗,w〉 ≡
∮

v∗ ·wJ dϑ .

Substitute the vector (η, ζ)T for v and w, and show that the spectral equation for the
MHD continua can be written as

ω2 = β(γ1 − iγ2) .

Derive expressions for β, γ1 and γ2. What are their properties?
– What do you know of the eigenfrequency ω?
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Linear dynamics of stationary toroidal plasmas�

18.1 Transonic toroidal plasmas

Waves and instabilities of transonically rotating axi-symmetric plasmas is a highly
complex problem that is of interest for the two unrelated fields of laboratory plasma
confinement, aimed at eventual thermonuclear energy production, and the dynam-
ics of a vast number of astrophysical plasmas rotating about compact objects,
broadly indicated as accretion disks. The complexity comes from the transonic
transitions of the poloidal flow which causes the character of the rotating equi-
librium states to change dramatically, from elliptic to hyperbolic or vice versa,
when the poloidal velocity surpasses certain critical speeds. Associated with these
transitions the different types of magnetohydrodynamic shocks may appear (see
Chapter 20). Obviously, at such transitions the possible waves and instabilities
of the system also change dramatically. We here describe these changes for the
two mentioned classes of physical systems, starting from the point of view that the
continuous spectrum of ideal MHD presents the best organizing principle for the
structure of the complete spectrum of waves and instabilities since it is the most
robust part of it. It provides the simplest approach to local waves and instabilities
of the system and, possibly, to the onset of MHD turbulence.

The equilibrium problem of translation symmetric and axi-symmetric plasmas
was formulated by Goedbloed and Lifschitz [181] in terms of three generic func-
tions (see Section 18.2) that permit analysis of the different singularities and the
resolution of the concomitant discontinuities that occur in transonic MHD flows. In
the present chapter, we exploit that equilibrium formulation and summarize what-
ever expressions are needed to perform a spectral analysis of the waves and insta-
bilities of these plasmas.

A cartoon of the physical system is sketched in Fig. 18.1, which shows the com-
pact central object generating the gravitational acceleration g = −∇Φgr (absent
for the tokamak case), and a toroidal plasma with poloidal (indicated by the sub-
script p) and toroidal (subscript ϕ) velocity and magnetic field components. For the

355
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purpose of the present study, treating rotating laboratory and astrophysical plasmas
on an equal footing, two important restrictions have to be made.

(a) We neglect the dynamics external to the toroidal plasma and assume the outer plasma
boundary to be fixed in space. For tokamaks, this condition is evidently justified by
the presence of a conducting wall and current-carrying coils fixed to the laboratory
which absorbs the mechanical forces. For accretion disks, this may be justified by
considering the toroidal plasma to be embedded in a gas which toroidally rotates at
approximately the Kepler velocity. This assumption amounts to the neglect of the ac-
cretion flow itself, i.e. we assume that the external accretion process proceeds on a
much slower time scale than the internal plasma rotations. In this manner, we con-
centrate our study on the internal plasma dynamics as influenced by the toroidal and
poloidal rotations and the gravitational field.

(b) We assume the PDEs describing the background flow to be elliptic. To our knowledge,
this assumption has always been made, explicitly or implicitly, in wave and stability
studies of axi-symmetric systems. In fact, this appears to be basic to the classical
paradigm of splitting the study of the dynamics of a system in a time-independent
equilibrium and the linear perturbations of it [168]. Certainly, all numerical programs
for studying linear stability of tokamaks start from an equilibrium with nested flux
surfaces, where prescription of the shape of the outer boundary is sufficient to deter-
mine the solutions. In this chapter, using the numerical programs FINESSE [29] and
PHOENIX [173, 52] which exploit algorithmic techniques explained in Chapters 15–
17, we will stay with this paradigm. Entering the hyperbolic flow regime appears to
require a full nonlinear evolution study, without making the split in equilibrium and
perturbations. Such studies, exploiting the Versatile Advection Code (VAC) [439], are
also carried out at present [257, 80]. However, here we push the spectral approach
as far as possible by studying the linear dynamics in the elliptic flow regions while
approaching the boundaries of transition to hyperbolic flow. We will see that this
method produces convincing evidence of qualitatively new linear dynamics caused by
the transonic transitions.

In current astrophysical terminology, configurations like that of Fig. 18.1 are
called “thick accretion disks” or “accretion tori” [361, 139]. However, whereas
the cited authors are concerned with accretion disks that are thick because of pres-
sure effects, so that the thermal speed approaches the toroidal rotation velocity
(vth ∼ vϕ), we are here concerned with magnetically dominated accretion tori,
where the magnetic pressure causes the accretion disk to be thick (vth ∼

√
β vA �

vϕ � vA). As opposed to the extreme high-β regime where the magneto-rotational
instability operates [18, 19] (see discussion for 1D disk equilibria in Secton 13.4),
in this regime, where magnetic fields dominate (β � 1), anomalous dissipation
mechanisms due to local MHD instabilities have not been investigated. Such dis-
sipation processes are needed to set up turbulence that would cause the co-moving
condition of plasma and magnetic field to be broken so that jets could emerge from
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Fig. 18.1 Magnetized plasma rotating about a compact object (forming a thick ac-
cretion disk) or inside a tokamak (where g = 0). Lower case b indicates the Alfvén
speed in the direction of the magnetic field.

the disk (discussed in more detail in Sections 20.4 and 21.3). We analyze the high-
β regime from a fundamental point of view, i.e. we formulate the equations for
tokamaks and astrophysical objects on the same theoretical footing and investi-
gate their similarities and differences with respect to local modes of the continuous
spectrum.

Whereas transonic poloidal flow substantially upsets “intuition” obtained from
static tokamak equilibrium, one extremely important feature remains intact: the
poloidal velocity and magnetic field are parallel so that flow surfaces and magnetic
surfaces coincide! This feature alone justifies the study of modes of the continuous
spectrum since these modes are preferentially localized on these surfaces.

On first reading, the reader may want to jump to the concluding Section 18.4.3.

18.2 Axi-symmetric equilibrium of transonic stationary states�

18.2.1 General equations and toroidal rescalings�

(a) General equations We start from the MHD equations for stationary equilib-
rium, Eqs. (12.24)–(12.27), and exploit a right-handed system of cylinder coordi-
nates R, Z, ϕ, where R is the distance to the symmetry axis (see Appendix A.2.4).
For stationary axi-symmetric equilibrium flows, the poloidal components of the
magnetic field and of the velocity may be expressed in terms of the poloidal mag-
netic flux function Ψ and the poloidal velocity stream function χ :

B =
1
R

eϕ ×∇Ψ +Bϕeϕ , (18.1)

v =
1
ρR

eϕ ×∇χ+ vϕeϕ . (18.2)
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The six physical variables ρ, p, Bp, Bϕ, vp and vϕ, which are 2D functions of
R and Z, are then determined by the unknown flux function Ψ(R,Z) and five
arbitrary, but considered to be known, 1D functions of Ψ alone [486, 210]:

χ′(Ψ) ≡ ρvp/Bp , (18.3)

H(Ψ) ≡ 1
2v

2
p

B2

B2
p

+
γ

γ − 1
p

ρ
− 1

2R
2Ω2 + Φgr , Φgr = − GM∗√

R2 + Z2
, (18.4)

S(Ψ) ≡ ρ−γp , (18.5)

K(Ψ) ≡ R[vϕ − (1/χ′)Bϕ] , (18.6)

Ω(Ψ) ≡ 1
R

[vϕ − (χ′/ρ)Bϕ] . (18.7)

Here, χ′ ≡ dχ/dΨ is the derivative of the poloidal velocity stream function, H is
the Bernoulli function, S is the entropy, K is the poloidal vorticity–current density
stream function (see below), Ω ≡ −Φ′

el is minus the derivative of the electric po-
tential and M∗ is the mass of the central object. For the final determination of the
physical variables, GM∗ is to be considered as an additional (constant) flux func-
tion. As we will see, judicious exploitation of the intricate relationship between
the 2D physical variables and the 1D flux functions is the key to a proper analysis
of equilibrium and stability of axi-symmetric transonic flows.

� Poloidal vorticity–current density stream function We propose to abandon the mis-
nomer “specific angular momentum” that has been used to indicate the flux function K by
quite a number of authors [475, 49, 386, 317, 224, 452, 55], including ourselves [256]. The
point is that the angular momentum density vector L ≡ r×ρv (or the specific angular mo-
mentum when divided by ρ) has no magnetic contributions. Such contributions enter the
general expression for the angular momentum of relativistic matter and field, but they are
negligible in non-relativistic MHD; see Jackson [247], p. 288 (2nd edition, p. 264). Also,
in two-fluid plasma theory [169], the canonical angular momenta of the separate electron
and ion fluids obtain a contribution of the toroidal component of the vector potential, i.e.
of the poloidal magnetic flux. However, in one-fluid MHD, these contributions add up to
the angular momentum (Rvϕ �= K) where the magnetic contributions cancel out because
of quasi charge-neutrality. The magnetic field does enter in a relevant manner in the com-
pletely different physical quantity of the angular momentum flux tensor M ≡ −T × r,
where T ≡ ρvv + (p + 1

2B
2)I − BB is the stress tensor. In equilibrium, omitting the

gravitational term, the torque N ≡ r×F = ∂L/∂t = −∇·M vanishes, where the vertical
component yields

NZ = − 1
R

∂

∂R
(RMRZ)− ∂MZZ

∂Z

= − 1
R

∂

∂R

( ∂χ
∂Z

K
)

+
1
R

∂

∂Z

( ∂χ
∂R

K
)

= v · ∇K = χ′B · ∇K = 0, (18.8)

showing that K must be a flux function and that there is a relation with two components of
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the angular momentum flux tensor. However, this is just the toroidal force balance, Fϕ =
−(∇·T)ϕ = −(1/R)v ·∇K = 0, which also exhibits a relation with two components of a
tensor, viz. the stress tensor. All this does not reveal the essential physical connection with
vorticity and current density, whichK expresses. The poloidal components of the vorticity
w ≡ ∇× v and the current density j ≡ ∇×B may be derived from stream functions V
and I ,

wp = − 1
R

eϕ ×∇V , V ≡ Rvϕ
[

=
(χ′2/ρ)K −R2Ω

χ′2/ρ− 1

]
,

jp = − 1
R

eϕ ×∇I , I ≡ RBϕ
[

=
χ′(K −R2Ω

)
χ′2/ρ− 1

]
, (18.9)

which, separately, are not flux functions, but the combination

K ≡ V − I/χ′
(
⇒ K∇χ = V∇χ− I∇Ψ

)
(18.10)

is a flux function. This function exhibits the proper limits to both hydrodynamics (HD),
where I = 0, and static MHD, where V = 0 and angular momentum is not a relevant
concept. Hence, the new name: poloidal vorticity–current density stream function. �

The transonic poloidal flow field is best characterized by the value of the square
of the poloidal Alfvén Mach number:

M2 ≡ ρv2
p

B2
p

=
χ′2

ρ
, (18.11)

which is another unknown function, with different dependence on the poloidal co-
ordinates R and Z than Ψ has. Exploiting this quantity, the relationship between
the plasma velocity and the vectorial Alfvén velocity b ≡ B/

√
ρ may be written

as

v = Mb +RΩeϕ , (18.12)

so that vp = Mbp, but the toroidal velocity consists of a Mach number compo-
nent Mbϕ and a supplementary component RΩ (Fig. 18.2). Hence, the physical
interpretation of the quantityRΩ is quite different here from both HD and MHD in
the absence of poloidal rotation (where it represents the complete toroidal rotation
velocity): RΩ is the toroidal velocity of the rotating frame in which the plasma
velocity becomes parallel to the Alfvén speed.

We now scale the flux functions H , S, K, Ω and GM∗ by means of χ′ to obtain
five scaled flux functions Λi(Ψ):

Λ1 ≡ χ′2H , Λ2 ≡ γ

γ − 1
(χ′2)

γ
S ,

Λ3 ≡ 1√
2
χ′K , Λ4 ≡ 1√

2
χ′Ω , Λ5 ≡ GM∗χ′2 , (18.13)
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v

poloidal

toroidal

RΩeϕ

bp

vϕ

b

Mb

Mbϕ

vp = Mbp

Fig. 18.2 Representation of the plasma velocity relative to the vectorial Alfvén
speed b ≡ B/

√
ρ . The poloidal velocity is measured in terms of the poloidal

Alfvén Mach number: vp = Mbp , but the toroidal velocity has an additional con-
tribution: vϕ = Mbϕ +RΩ .

where only the first four are needed to describe the equilibrium of laboratory plas-
mas. Prescribing the (completely arbitrary) functions Λi(Ψ), the only remaining
constraints on the physical variables come from the two poloidal components of
the momentum equation. They may be cast in the form of a variational principle,

δ

∫ [ 1
2R2

(1−M2) |∇Ψ|2 − Π1

M2
+

Π2

γM2γ
+

Π3

M2 − 1

]
dV = 0 , (18.14)

giving as Euler–Lagrange equations a nonlinear PDE for the poloidal flux Ψ(R,Z):

∇ ·
(1−M2

R2
∇Ψ
)

+
1
M2

∂Π1

∂Ψ
− 1
γM2γ

∂Π2

∂Ψ
− 1
M2 − 1

∂Π3

∂Ψ
= 0 , (18.15)

and an algebraic Bernoulli equation for the squared poloidal Alfvén Mach number
M2(R,Z):

1
2R2
|∇Ψ|2 − Π1

M4
+

Π2

M2(γ+1)
+

Π3

(M2 − 1)2
= 0 . (18.16)

Here, three generic functions Πj appear that depend on the five scaled flux func-
tions and on the coordinates as follows:

Π1(Ψ;R,Z) ≡ Λ1 +R2Λ2
4 +

Λ5√
R2 + Z2

= M2
(

1
2M

2B2 +
γ

γ − 1
p
)
,

Π2(Ψ) ≡ Λ2 =
γ

γ − 1
M2γ p ,
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Π3(Ψ;R) ≡ (R−1Λ3 −RΛ4)2 = 1
2(M2 − 1)2B2

ϕ . (18.17)

The utmost right expressions show the relationship with the physical variables. The
equations (18.15) and (18.16) determine the spatial dependence of Bp(R,Z), and
of the five remaining physical variables through the five flux functions. Hence,
solution of these two equations constitutes the core of the equilibrium problem.
The rest is trivial algebra, except for the choice of meaningful magnitudes for the
free functions. This is our next topic.

(b) Toroidal rescalings We introduce a reference point R = R0 , Z = 0 some-
where in the plasma, and exploit the plasma half-width a and the magnetic fieldB0

at the reference point as units of length and magnetic field strength. Dimensionless
coordinates with respect to the reference point are then given by

x ≡ (R−R0)/a , y ≡ Z/a , (18.18)

⇒ R = R0(1 + εx) , Z = ay , ε ≡ a/R0 , (18.19)

where εmay be used for small inverse aspect ratio expansions (ε� 1). For the time
being, we will not make this assumption. However, it is clear that the dependence
on this geometric factor has a big influence on what the magnitudes of the five flux
functions physically represent. Since there is hardly any observational information
on those functions, it is expedient to separate their influence as much as possible
from that of the geometric factors that occur. This is done similar to the poloidal
flux scaling of Section 16.3.1.

(1) All quantities are made dimensionless by putting a = 1 and B0 = 1:

a∇ → ∇ ≡ ex∂x+ey∂y , (a2B0)−1ψ → ψ , B−2
0 Πj → Πj (j = 1, 2, 3) ,

(18.20)
i.e. we indicate dimensionless variables by the same symbol as the original dimen-
sional variables. This trivial operation is well to be distinguished from the non-trivial
rescalings with ε and the total dimensionless flux Ψ1, to be discussed now. Here (in
contrast to Chapter 16), we fix the reference point to be the (unknown) location x = δ,
y = 0 of the magnetic axis, where δ is the shift relative to the geometric center of the
plasma, and assume the plasma shape to be up–down symmetric. Since Ψ = Ψ0 = 0
at this reference point, we obtain a dimensionless flux variable of unit range by nor-
malizing with respect to the flux Ψ1 at the plasma boundary:

ψ ≡ Ψ/Ψ1 . (18.21)

Next, we rescale the generic functions and the flux functions with respect to ε and Ψ1:

Π̄j ≡ (εΨ1)−2Πj (j = 1, 2, 3) , Λ̄1,2 ≡ (εΨ1)−2Λ1,2 ,

Λ̄3 ≡ Ψ−1
1 Λ3 , Λ̄4 ≡ (ε2Ψ1)−1Λ4 , Λ̄5 ≡ (εΨ2

1)
−1Λ5 . (18.22)
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In effect, Eqs. (18.15) and (18.16) transform to the following dimensionless represen-
tation of the core equations for ψ(x, y) and M2(x, y):

∇ ·
[

1−M2

(1 + εx)2
∇ψ
]

+
1
M2

∂Π̄1

∂ψ
− 1
γM2γ

∂Π̄2

∂ψ
− 1
M2 − 1

∂Π̄3

∂ψ
= 0 , (18.23)

1
2(1 + εx)2

|∇ψ|2 − Π̄1

M4
+

Π̄2

M2(γ+1)
+

Π̄3

(M2 − 1)2
= 0 , (18.24)

where the relationship of the rescaled generic functions and flux functions will be
given below, after a further rescaling. In this manner, the arbitrary shapes of the five
rescaled flux functions Λ̄i(ψ) become well-defined, the parameter ε only describes the
(usually small) effects of toroidicity, and the value of Ψ1 appears to have vanished
from the equilibrium core equations. (This looks analogous to the similar scaling with
respect to Ψ1 developed for static equilibria [164], as explained in Section 16.3.1.
There, by means of that scaling, the value q0 (∼ Ψ−1

1 ) of the safety factor on axis
could be fixed after solving the rescaled Grad–Shafranov equation for ψ. However,
in the present case, a particular choice of the rescaled flux functions indirectly also
fixes the value of Ψ1 through the Bernoulli equation since the magnetic field on the
magnetic axis is normalized to unity, Bϕ(x = δ, y = 0) ≡ B0 = 1. Hence, counter to
appearances, the rescaled equilibrium equations are not independent of Ψ1 now. See
the paragraph below in small print for how this may be used for an optimal parameter-
ization of the flux functions.)

(2) The problem (18.23)–(18.24) still suffers from cancellations of large factors associ-
ated with the gravitational potential and the toroidal rotation. This may be cured by
extracting the separate horizontal (x) and vertical (y) dependencies of those factors to
facilitate maximal orderings for thin accretion disks (both effects appearing in lead-
ing order), thick accretion disks (vertical gravity negligible), and tokamaks (horizontal
gravity absent as well). This is effected by redefining the first flux function,

Λ̄∗
1

(
≡ (εΨ1)−2Λ∗

1 ≡ (εΨ1)−2χ′2H∗
)
≡ Λ̄1 + Λ̄2

4 + Λ̄5 , (18.25)

i.e. by introducing a modified Bernoulli functionH∗ that incorporates the large leading
order rotational and gravitational flux function contributions, and that may be assumed
to be positive definite:

H∗ ≡ H + 1
2R

2
0Ω

2 +R−1
0 GM∗

≡ 1
2v

2
p

B2

B2
p

+
γ

γ − 1
p

ρ
+ 1

2 (R2
0 −R2)Ω2 +

( 1
R0
− 1√

R2 + Z2

)
GM∗ .

(18.26)

The rescaled generic functions then become

Π̄1(ψ;x, y) ≡ Λ̄∗
1 + ε e

(
2Λ̄2

4 − Λ̄5

)
+ ε2f Λ̄5 ,

Π̄2(ψ) ≡ Λ̄2 ,

Π̄3(ψ;x) ≡ [Λ̄3 − Λ̄4 − ε
(
gΛ̄3 + hΛ̄4

)]2
, (18.27)
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where four geometry functions appear,

e(x) ≡ x(1 + 1
2εx) ≈ x ,

f(x, y) ≡ ε−2
{[

(1 + εx)2 + ε2y2
]−1/2 − 1 + εx+ 1

2ε
2x2
}
≈ 1

2 (3x2 − y2) ,

g(x) ≡ x(1 + εx)−1 ≈ x ,

h(x) ≡ x = x , (18.28)

that have order unit magnitude as shown by the approximations (valid for ε � 1) on
the right. In the limit of vanishing toroidicity (ε → 0), the three generic functions
become flux functions and the previous translation symmetric equations of Goedbloed
and Lifschitz [181] are recovered. This completes the separation of flux functions and
geometry dependencies as far as possible without solving the differential equations.

We will use the rescaled flux functions Λ̄i in the rest of the analysis, where we
exploit ε as a small parameter to obtain analytical results but we keep ε arbitrary
in the numerical analysis. Since e ∼ f ∼ 1, assuming Λ̄i ∼ 1 implies that
horizontal gravity and toroidal rotation effects (factor e) will enter to first order, but
vertical gravity effects (factor f ) only to second order. To get horizontal gravity
and toroidal rotation to appear in leading order (for tokamaks and thick accretion
disks), we may keep Λ̄∗

1 ∼ Λ̄2 ∼ 1 but we need to push the orders of magnitude of
the other flux functions:

Λ̄3 ≈ Λ̄4 ∼ ε−1/2 , Λ̄5 ∼ ε−1 , such that Λ̄3 − Λ̄4 ∼ 1 . (18.29)

To get vertical gravity to appear in the leading order as well (for thin accretion
disks), we need to push the orders of magnitude of those flux functions even further:

Λ̄3 ≈ Λ̄4 ∼ ε−1 , 2Λ̄2
4 ≈ Λ̄5 ∼ ε−2 ⇒ Λ̄3 − Λ̄4 ∼ 1 , 2Λ̄2

4 − Λ̄5 ∼ ε−1 .

(18.30)
In this manner, we guarantee that explicit results from ε � 1 analysis may be
generalized immediately to “exact” results by means of the numerical codes.

Note that the physical meaning of the different geometrical terms is not straight-
forward because of the flux function constraints on the variables. In particular, the
horizontal force balance, which requires approximate Keplerian toroidal rotation
in HD, is determined by the flux function combination 2Λ̄2

4 − Λ̄5 in MHD:

(εΨ1/χ
′)2 (2Λ̄2

4 − Λ̄5) ≡ R2
0Ω

2 −R−1
0 GM∗

→ v2
ϕ −R−1

0 GM∗ when either M = 0 or Bϕ = 0 . (18.31)

Only in the absence of poloidal flow or toroidal magnetic field, one obtains the stan-
dard Keplerian expression on the second line of Eq. (18.31). In general, horizontal
force balance is determined by the expression on the first line of Eq. (18.31), i.e.
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instead of vϕ only the toroidal deviation RΩ from the Alfvén speed (see Fig. 18.2)
appears to count.

The transonic equilibrium problem (18.23), (18.24), (18.27), (18.28) is solved
by first choosing the functional dependencies of the five rescaled flux functions
Λ̄i(ψ) (based on whatever theoretical or observational evidence is available) and
then iteratively solving the nonlinear PDE (18.23) for the flux ψ(x, y) in an elliptic
flow domain, subject to the boundary conditions

ψ = 0 on the magnetic axis , ψ = 1 on the plasma boundary , (18.32)

while inserting the algebraic solutions M2(ψ(x, y);x, y) of the Bernoulli equation
(18.24) for each step of the iteration. This internal equilibrium problem is strictly
determined by the shape of the boundary curve, which, in turn, should be deter-
mined by the external dynamics. The latter part we take for granted at present and
we simply prescribe it to be a circle or an ellipse (to study the influence of exter-
nal flattening of the disk). Thus, the external flattening dominates the internal one
described by the geometry function f and the flux function Λ̄5.

The reader will have noticed that the elliptic problem (18.23), (18.32) is overde-
termined. The implication for the parameterization of the flux functions Λ̄i(ψ) is
discussed below.

� Parameterization of the flux functions Λ̄i(ψ) The price for the convenience of dealing
with a poloidal magnetic flux ψ of unit range is overdetermination of the boundary value
problem (18.23), (18.32) by two conditions on ψ. One of the amplitudes of the Λ̄′

is is no
longer a free parameter but becomes an eigenvalue of the flux equation, to be determined
together with the solution ψ. Two other complications in the coupled flux-Bernoulli equa-
tions appear to be the absence of control over the value ofM2 to remain in a certain chosen
flow domain and the indirect dependence on Ψ1 mentioned above. These apparent compli-
cations may be turned into an advantage by building them into the parameterization of the
flux functions Λ̄i(ψ), as follows.

For the parameter to be used as an eigenvalue we take the amplitude of −Λ̄∗′
1 and call

it C. To isolate it from the rest, we introduce shape functions σi(ψ) of unit amplitude on
axis (or some other convenient normalization, e.g. at the plasma boundary), but arbitrary
otherwise. These functions enter with amplitudes Ai (where A1 = 1) in the functions Λ̄i
in the flux equation. In the Bernoulli equation, the integrals of the functions σi(ψ),

λi(ψ) ≡
∫ ψ

0

σi(ψ) dψ , σi(0) ≡ 1 , (18.33)

then appear with integration constants Bi and a common multiplication factor C:

Λ̄∗
1 = C [B1 − λ1(ψ)] ,

Λ̄2,5 = C [B2,5 −A2,5 λ2,5(ψ)] ,

Λ̄3,4 =
√
C [B3,4 −A3,4 λ3,4(ψ)] . (18.34)

In this manner, we obtain control over the different orders of M2 appearing in the flux
equation and the Bernoulli equation. On the magnetic axis, the constants Ai determine the
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orders of magnitude of the flux functions derivatives Λ̄′
i, and the constants Bi determine

the orders of magnitude of the flux functions Λ̄i themselves.
Since Bp ∼ |∇ψ| = 0 on the magnetic axis, the Bernoulli equation (18.24) gives the

following relationship between the constants Bi and M2
0 ≡ M2(δ, 0), not involving the

unknown eigenvalue C:

B1 + εe0(2B2
4 −B5) + ε2f0B5

M4
0

− B2

M
2(γ+1)
0

− [B3 −B4 − ε(g0B3 + h0B4)]2

(M2
0 − 1)2

= 0 ,

(18.35)
where e0, etc., are the values of e, etc., on the magnetic axis. Rather than solving for
M2

0 , this relationship may be used to prescribe M2
0 (giving control over the flow regime)

by eliminating one of the constants Bi (e.g. B1). On the other hand, since the toroidal
magnetic field on the magnetic axis is normalized to unity,

B0 ≡ Bϕ(x = δ, y = 0) =
√

2εΨ1

|1−M2
0 |
√
C
∣∣∣ B3

1 + εδ
− (1 + εδ)B4

∣∣∣ = 1 , (18.36)

we obtain control over the value of the safety factor on axis, q0 = (Ψ1)−1(r/ψ′)0 ∼√
CB3, by means of the parameter B3 (or B4, or both). This requires knowledge of the

equilibrium solutions ψ and C so that prescribing q0 can only be done by iterating on the
value of B3 in the numerical solution procedure of the equilibrium equations. Similarly,
one may prescribe the position δ of the magnetic axis by iterating on one of the constants
Ai (e.g. the amplitude A2 associated with the pressure gradient). In this manner, we have
obtained a complete classification of the free parameters with a clear relationship to the
original physical flux functions (18.3)–(18.7) through the definitions (18.13) and (18.22).

Finally, the sixth flux function Λ̄0(ψ), associated with χ′2 by the definition (18.109),
may be parameterized as

Λ̄0 = 1−A0λ0(ψ) , λ0(0) = 0 . (18.37)

For accretion disks, this parameterization represents no further freedom of choice since it
has to be consistent with that of Λ̄5(ψ), so that A0 ≡ A5/B5 and λ0(ψ) ≡ λ5(ψ). �

18.2.2 Elliptic and hyperbolic flow regimes�

As stated in Section 18.1, we will have to restrict the analysis to flow regimes
described by elliptic partial differential equations. This is a complication since
the condition for ellipticity or hyperbolicity is determined by the solutions ψ and
M2 of Eqs. (18.23) and(18.24) themselves, according to the following expression
involving the Alfvén Mach numbers [181]:

Δchar = (M2 − 1)
Π̄1 − 1

2 [γ + 1− (γ − 1)M2]M−2(γ−1)Π̄2

Π̄1 − 1
2(γ + 1)M−2(γ−1)Π̄2 −M6(M2 − 1)−3Π̄3

=
γp+B2

B2
p

(M2 − 1)2(M2 − M̃2
c )

(M2 − M̃2
s )(M2 − M̃2

f )

⎧⎪⎨⎪⎩
< 0 : elliptic
= 0 : parabolic ,
> 0 : hyperbolic

(18.38)
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M̃2
c ≡

γp

γp+B2
, M̃2

f,s ≡
γp+B2

2B2
p

[
1±
√

1− 4γpB2
p

(γp+B2)2

]
. (18.39)

The quantity Δchar appears as a square root in the directional derivatives of the
characteristics, giving two real characteristics in the hyperbolic flow regimes and
no characteristics at all in the elliptic flow regimes. Hence, the transitions from
ellipticity to hyperbolicity [495, 210, 4] occur at positions on the magnetic/flow
surfaces where either the numerator or the denominator of Δchar vanishes. The
tildes on the quantities indicate that the explicit expressions for the transition values
of M2 are only obtained after solving an implicit relation, e.g.

M2 − M̃2
c (M2, ψ;x, y) = 0 ⇒ M2 = M2

c (ψ;x, y) , (18.40)

from the numerator expression on the first line of Eq. (18.38), and, similarly,
M2 = M2

f,s(ψ;x, y) are obtained from the denominator expression. The numerical
aspects of this problem are discussed in [29] and implemented in FINESSE.

Fig. 18.3 Elliptic (hatched) and hyperbolic (dark) flow regimes corresponding to
the value of the poloidal Alfvén Mach numberM . Flow should be in the 1st elliptic
(Ess: sub-slow), the 2nd elliptic (Es: slow), or the 3rd elliptic (Ef : fast) flow regime
for the spectral results of this chapter to be valid.

As follows from the definitions (18.39), the transition values for M2 are well-
ordered in magnitude giving five different flow regimes (Fig. 18.3). We just need to
specify the flow to be either in the first (sub-slow) elliptic flow regime (Ess, where
M2 < M2

c ), or the second (slow) elliptic flow regime (Es, where M2
s < M2 < 1),

or the third (fast) elliptic flow regime (Ef , where 1 < M2 < M2
f ). Since the

effects of transition through a hyperbolic flow regime should be first noticeable in
the regime Es, we will pay special attention to equilibria in that regime.

18.2.3 Expansion of the equilibrium in small toroidicity�

(a) Small inverse aspect ratio expansion We assume the inverse aspect ratio to
be small, ε � 1, and impose the outer plasma boundary to be circular, and try
to find solutions of the equilibrium equations (18.23) and (18.24) in the form of
the Shafranov shifted circle approximation, where the poloidal magnetic flux/flow
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surfaces are assumed to have circular cross-sections that are shifted by an amount
Δ(r̂) with respect to the center of the plasma (see Section 16.2.2, Fig. 16.9). To
first order, these solutions may then be represented as

ψ(r̂, θ̂) ≈ ψ0(r̂) , (18.41)

M2(r̂, θ̂) ≈ M2
0 (r̂) + μ(r̂) cos θ , (18.42)

where r̂, θ̂ are non-orthogonal polar coordinates defined with respect to the cen-
ters of the flux surfaces. Note that ψ1(r̂) ≡ 0 since the perturbation of the flux
surfaces is absorbed in the definition of the coordinates, i.e. it is represented by
the shift Δ(r̂). The latter quantity satisfies the boundary conditions Δ(0) = δ and
Δ(1) = 0, where δ is the shift of the magnetic axis. The perturbation of the squared
poloidal Alfvén Mach number is denoted by μ ≡ M2

1 (r̂). Due to the shifted cir-
cle approximation (18.41), the flux functions will now be determined by the radial
dependence ψ0(r̂):

Λ̄i(ψ) ≈ Λ̄i(ψ0(r̂)) ≡ Λ̄i,0(r̂) . (18.43)

Since we have uniquely settled the notation, we will drop the subscript 0 on ψ0 and
M2

0 from now on. (This is not only done for convenience, but also because we will
need the subscripts 0 and 1 later on to indicate equilibrium values on the magnetic
axis and at the boundary.) The expansion procedure will then consist of a zeroth
order part determining the radial dependencies of ψ(r̂) and M2(r̂) and a first order
part determining the shift Δ(r̂) ∼ ε (and, hence, δ) and the Alfvén Mach number
perturbation μ(r̂) ∼ ε.

As in Section 16.2.2, the connection with the Cartesian coordinates is given by

x = x(r̂, θ̂) = r̂ cos θ + Δ(r̂) ,

y = y(r̂, θ̂) = r̂ sin θ . (18.44)

To convert the equations to the r̂, θ̂, ϕ coordinates, we insert these into Eq. (18.19):

R = R(r̂, θ̂) = ε−1 + r̂ cos θ + Δ ,

Z = Z(r̂, θ̂) = r̂ sin θ , (18.45)

from which the metric tensor, poloidal field and Jacobian follow, to first order:

ĝij ≈

⎛⎜⎜⎜⎝
1− 2Δ′ cos θ (Δ′/r̂) sin θ̂ 0

(Δ′/r̂) sin θ 1/r̂2 0

0 0 ε2(1− 2εr̂ cos θ)

⎞⎟⎟⎟⎠ , (18.46)

Bp ≈ r̂Ψ1ψ
′/Ĵ , Ĵ ≡ (∇r̂ ×∇θ̂ · ∇ϕ)−1 ≈ ε−1r̂[1 + (εr̂ −Δ′) cos θ̂] .

(18.47)
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The hats distinguish these metric coefficients from the ones for the straight-field-
line coordinates, that we will eventually exploit in Section 18.3.

(b) Zeroth and first order solutions Choosing Λ̄∗
1 ∼ Λ̄2 ∼ · · · ∼ Λ̄5 ∼ 1, the

expansions of the generic functions, accurate to first order, are given by

Π̄1(r̂, θ̂) ≈ Λ̄∗
1,0 + εx(2Λ̄2

4,0 − Λ̄5,0) ,

Π̄2(r̂) ≈ Λ̄2,0 ,

Π̄3(r̂, θ̂) ≈ (Λ̄3,0 − Λ̄4,0)
2 − 2εx(Λ̄2

3,0 − Λ̄2
4,0) , (18.48)

where three flux function combinations appear in zeroth order:

(εΨ1)2Λ̄∗
1,0 = 1

2M
4B2 +

γ

γ − 1
M2p ,

(εΨ1)2Λ̄2,0 =
γ

γ − 1
M2γp ,

(εΨ1)2(Λ̄3,0 − Λ̄4,0)
2 = 1

2(M2 − 1)2B2
ϕ , (18.49)

and two in first order:

(εΨ1)2(2Λ̄2
4,0 − Λ̄5,0) = M2[(

√
ρvϕ −MBϕ)2 − ρR−1

0 GM∗] ,
(εΨ1)2(Λ̄2

3,0 − Λ̄2
4,0) = − 1

2(M2 − 1)Bϕ[(1 +M2)Bϕ − 2M
√
ρvϕ]. (18.50)

We have again omitted the subscript 0 on the original physical variables.
As compared to the original 2D problem, where the flux surfaces ψ(r̂, θ̂) =

const and the Bernoulli surfaces M2(r̂, θ̂) = const intersect, in the present 1D
problem ψ(r̂) and M2(r̂) trivially label the same surfaces. This implies that there
is a much closer relationship now between the free flux functions and the physical
variables (both being functions of r̂ alone). In the zeroth order, the choice of the
three functions (18.49) determines three of the four physical variables p, Bp, Bϕ
and M2 (leaving room for only one extra condition: see below). In the first order,
the choice of the two functions (18.50) determines the two remaining physical
variables ρ and vϕ (except for the contribution of GM∗).

Inserting the metric coefficients (18.46)–(18.47) and the flux function expres-
sions (18.48)–(18.50) into the equilibrium equations (18.23) and (18.24), we obtain
two simple equations for ψ and M2 in the zeroth order and two more complicated
ones for Δ and μ in the first order. The zeroth order flux equation is a second order
ODE for ψ(r̂):

ψ′

r̂
[(1−M2)r̂ψ′]′ +

Λ̄∗′
1,0

M2
− Λ̄′

2,0

γM2γ
− (Λ̄3,0 − Λ̄4,0)2

′

M2 − 1
= 0 , (18.51)
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where the primes now denote differentiation with respect to r̂. SinceBp ≈ (εΨ1)ψ′

to leading order, this yields the cylindrical equilibrium relation (cf. Eq. (12.30)):

d

dr̂
(p+ 1

2B
2)− (M2 − 1)

B2
p

r̂
= 0 . (18.52)

However, the zeroth order Bernoulli equation reduces to an identity so that there is
no longer an equilibrium restriction on the choice of M2(r̂). Hence, Eq. (18.52) is
the only condition now on the six physical equilibrium functions (of r̂).

After some lengthy, but straightforward, reductions the first order magnetic flux
and Bernoulli equations yield two coupled differential equations for Δ and μ:

[(1−M2)r̂B2
pΔ′ ]′ + (r̂B2

pμ)′ = −εr̂E , (18.53)

M2(M2 − 1)B2
pΔ′ +

B2
p

M2
(M2 −M2

s )(M2 −M2
f )μ = −εr̂F , (18.54)

where the two expressions on the RHS (with respect to their dimension recall that
ε ≡ R−1

0 ) are defined by

E ≡ − (M2 − 1)B2
p − r̂[2p+ ρ(v2 −R−1

0 GM∗)]′ , (18.55)

F ≡ (M2 − 1)ρ(v2 −R−1
0 GM∗) + 2MBϕ(

√
ρvϕ −MBϕ) . (18.56)

The appearance in Eq. (18.54) of the transition values ofM2 defined in Eqs. (18.39)
is no accident, as will be explained below. (BecauseM2 = M2(r̂) to leading order,
according to Eq. (18.42), there is no need to solve an implicit equation in this case
so that the tildes have been dropped.) Rather than integrating Eqs. (18.53) and
(18.54) directly, it is more instructive to first decouple them to a separate second
order ODE for Δ(r̂) and a first order ODE for μ(r̂):

d

dr̂

[
(γp+B2)(M2 − 1)(M2 −M2

c )
(M2 −M2

s )(M2 −M2
f )

r̂
dΔ
dr̂

]

= ε

{
r̂E +

[
M2r̂2F

(M2 −M2
s )(M2 −M2

f )

]′}
, (18.57)

d

dr̂

[
(γp+B2)(M2 −M2

c )
M4

r̂μ

]
= −ε

{
r̂E +

(
r2F

M2

)′}
. (18.58)

Integration yields

Δ′ = − εr̂ (M2 −M2
s )(M2 −M2

f )I +M2F

(γp+B2)(M2 − 1)(M2 −M2
c )

, (18.59)

μ

M2
= − ρ1

ρ
= −εr̂ M2I + F

(γp+B2)(M2 −M2
c )
, (18.60)
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where

I ≡ 1
r̂2

∫ r̂

0
Er̂ dr̂ . (18.61)

In the spectral analysis of the following sections, only Δ′ and μ appear, so that
no further integration is needed. Of course, for the limiting case of static tokamak
equilibria, the well-known expression for Δ′ is recovered [481].

At this point, a truly amazing confluence of apparently completely unrelated top-
ics may be noted. The coefficient in front of the highest derivative of the differen-
tial equation (18.57) for Δ is of exactly the same form as the analogous coefficient
appearing in the spectral Hain–Lüst equation for cylindrical plasmas [204, 160],
where the eigenvalue ω2 of the latter is now replaced by the squared poloidal
Alfvén Mach number, M2. As we have seen in Section 18.2.2, the transonic tran-
sitions from elliptic to hyperbolic flows occur at the values M2 = 1 (recall that
this 1 just corresponds to the normalization with respect to the poloidal Alfvén
speed), M2 = M2

c , M2 = M2
s , and M2 = M2

f , defined in Eq. (18.39). On the
other hand, in the Hain–Lüst equation, the spectrum of MHD waves is concentrated
about continua [450, 187] at the Alfvén and slow (or cusp) frequencies ω2 = ω2

A

and ω2 = ω2
S, whereas the special values ω2 = ω2

s and ω2 = ω2
f do not correspond

to continua [10] but to monotonicity transitions in the spectrum [183, 166]. Appar-
ently, there is a deep correspondence between the linear waves and the non-linear
stationary states. This is another example of the recent insight that equilibrium
and perturbations are not really separate issues in transonic magnetohydrodynam-
ics [168]. We will see more of this in the following sections.

Obviously, for the shifted circle approximation (Δ′ � 1) to be valid, the singu-
larities M2 = 1 and M2 = M2

c must be avoided. However, as in the analogous
spectral case, the denominator zeros of Eq. (18.57) just constitute apparent singu-
larities of the differential equation so that approaching M2 ↓ M2

s or M2 ↑ M2
f

from within the elliptic flow regimes poses no fundamental problem. We will use
this fact in the following sections where we will investigate the effect of the tran-
sonic transition from sub-slow to slow flow on changes of the continuous spectra
in the second elliptic flow regime.

(c) Approximate solutions in the second elliptic flow regime We will simplify the
solutions obtained above by means of approximations that are valid in the second
elliptic flow regime by extending the usual low-β tokamak approximation (Bϕ ∼
1, Bp ∼ ε, β ≡ p/(2B2) ∼ ε2 ) with poloidal rotation effects. So far, we have
made no assumption on the magnitude of M2. Now, we will push the value of M2

in the region M2
s ≤M2 < 1 as much as possible within the low-β approximation.

Since M2
s ≈ M2

c (1 +O(ε4)) ∼ ε2 and M2
f ∼ ε−2, the validity of the expressions
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(18.59) and (18.60) for Δ′ and μ/M2 demands that M2 is larger than O(ε2) but
smaller than O(ε):

M2 ∼ ε2−ν (0 ≤ ν < 1) . (18.62)

Hence, we may choose ν such that the poloidal Alfvén Mach number squared,M2,
represents flows much faster than the slow but much slower than the Alfvén speed:

1
2γβ ≈M2

c �M2 � 1 . (18.63)

As we will see, this ordering is quite effective to study a particular type of violent
instability caused by the coupling of slow and Alfvén modes and driven by poloidal
flows in the second elliptic flow domain. Let us call it the trans-slow poloidal flow
ordering (the adjective “super-slow” being technically more precise, but intuitively
contradictory).

From the equilibrium equations (18.23) and (18.24) and the definitions (18.27)
of the generic functions, it is obvious that we must then choose

Λ̄∗′
1 ∼M2(Λ̄3 − Λ̄4)2

′
, Λ̄∗

1 ∼M4(Λ̄3 − Λ̄4)2 , (18.64)

in order to balance the magnetic terms. This dictates how the orders of magnitude
of the different parameters appearing in the flux functions Λ̄i (see paragraph in
small print at the end of Section 18.2.1) have to be chosen to be consistent with the
trans-slow ordering.

For our present purpose, we will consider a particular class of equilibria with
negligible pressure (p ≈ 0) and negligible non-parallel velocity (Ω ≈ 0). These
additional assumptions are not necessary for the trans-slow ordering, but they sim-
plify the equilibrium expressions considerably:

Δ′ ≈ ε

r̂B2
p

∫ r̂

0
r̂2 [M2B2(1− Γ)]′ dr̂ , (18.65)

μ

M2
= − ρ1

ρ
≈ εr̂(1− Γ) . (18.66)

Here, the flux function Γ(ψ(r̂)) measures the relative strength of the gravitational
interaction:

Γ(ψ) ≡ Λ̄5(ψ)
2Λ̄∗

1(ψ)
≈ ρGM∗
R0M2B2

, (18.67)

where we have restored the dimensional factors in the last expression.
Since we have assumed approximately parallel flow (Ω ≈ 0), M2 now repre-

sents both the poloidal and the toroidal Alfvén Mach number, M2 ≡ ρv2
p/B

2
p ≈

ρv2
ϕ/B

2
ϕ, so that Γ ≈ GM∗/(Rv2

ϕ) becomes a measure for the deviation from
Keplerian flow (where Γ = 1). However, there is no need to stick to Keplerian
flow in the presence of poloidal rotation, so that we obtain a class of equilibria that
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(A)

(B)

(C)

(D)

Fig. 18.4 Contours of the squared poloidal Alfvén Mach number M2 and of the
density ρ: (A) tokamak (Γ0 = 0); (B) thick accretion disk, small central mass
(Γ0 = 0.25); (C) thick accretion disk, large central mass (Γ0 = 2); (D) flat accretion
disk, large central mass (Γ0 = 2).

may be changed continuously from tokamak (Γ = 0) to accretion disk (Γ �= 0).
From Eqs. (18.65) and (18.66) it is clear that weak gravitational “tokamak-like”
equilibria (Γ < 1) have a density that is larger on the inside than on the outside
of the torus (ρ1 < 0), as is well known for poloidal flows in the second elliptic
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(A)

(B)

(C)

(D)

Fig. 18.5 Safety factor q versus s ≡ √ψ for the equilibria of Fig. 18.4.

regime [496]. For strong gravitational interaction (Γ > 1), the opposite holds: the
density is larger on the outside, i.e. in the region of smaller gravity in order to bal-
ance the stronger gravitational pull of the inner region. Note that the trans-slow
ordering (18.63) permits the study of the effects of very massive central objects,
as long as the expressions (18.65) and (18.66) for Δ′ and μ remain small, e.g. by
considering Γ ∼ ε−1/2 	 1.

The mentioned features are confirmed by the solutions shown in Figs. 18.4 and
18.5, obtained using the transonic equilibrium program FINESSE [29]. In the code,
no small ε approximations were made, but the parameters of the flux functions were
chosen to agree with the trans-slow ordering. (Explicit parameters may be found in
[173], where the functions Λ̄3 and Λ̄4 should be corrected to have opposite sign.)
As a result, there is perfect agreement between the numerical results and the present
analysis. The solutions shown are representative examples of transonic equilibria:

(A) Tokamak (Γ0 = 0);

(B) Thick accretion disk with a small central mass (Γ0 = 0.25);

(C) Thick accretion disk with a massive central object (Γ0 = 2);

(D) Flat accretion disk with a massive central object (b/a = 0.5,Γ0 = 2).

The stability of these equilibria will be discussed in Sections 18.3 and 18.4, after
we have developed the theory of continuous spectra for transonic equilibria.
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18.3 Equations for the continuous spectrum�

18.3.1 Reduction for straight-field-line coordinates�

The perturbations of the stationary equilibria of Section 18.2 will be described by
the force-operator formalism in terms of the displacement ξ developed by Frie-
man and Rotenberg [147], as discussed in Chapters 12 and 13. Recall from Sec-
tion 12.2.2 that, for normal modes ∼ e−iωt, the spectral equation takes the form

F(ξ) +∇ · (ρξv · ∇v − ρvv · ∇ξ) + 2iρωv · ∇ξ + ρω2ξ = 0 , (18.68)

where

F(ξ) ≡ ∇(γp∇ · ξ + ξ · ∇p)−B× (∇×Q)

+ (∇×B)×Q + (∇Φgr)∇ · (ρξ) , (18.69)

with Q ≡ ∇×(ξ×B), the usual force-operator for static equilibria [35]. Note that
the eigenvalue problem (18.68) is quadratic (involving both ω and ω2), in contrast
to the static spectral problem, which is linear in the eigenvalue ω2.

The Frieman–Rotenberg equation (18.68) will be expressed in straight-field-line
coordinates Ψ, ϑ, ϕ, with Jacobian J ≡ (∇Ψ ×∇ϑ · ∇ϕ)−1, where the poloidal
angle ϑ is constructed such that the magnetic field lines are represented by straight
lines in the ϑ–ϕ plane so that the inverse rotational transform of the field lines (the
“safety factor”) is constant on the magnetic/flow surfaces:

q(Ψ) ≡ dϕ

dϑ

∣∣∣
field line

=
JBϕ
R

=
J
R2

√
ρM(K −R2Ω)
M2 − 1

. (18.70)

As compared to static plasmas or plasmas with toroidal flow only, where q =
(J /R2)I with the constant factor I ≡ RBϕ, there is now a complicated quotient
which is not constant on the magnetic/flow surfaces. In the straight-field-line coor-
dinates, the flow lines are not represented by straight lines in general (except when
Ω = 0, see Fig. 18.2) so that their inverse rotational transform is not constant on
the magnetic/flow surfaces:

u(Ψ, ϑ) ≡ dϕ

dϑ

∣∣∣
flow line

=
J√ρvϕ
MR

=
K −M−2R2Ω
K −R2Ω

q(ψ) . (18.71)

Obviously, one could also construct a poloidal angle such that the flow lines be-
come straight. In that case, the roles of q and u would be interchanged. However,
the field lines turn out to play the more fundamental role in transonic MHD, as will
become clear from the spectral analysis in the next section.

We now project the spectral equation (18.68) onto the three preferred physical
directions expressed by the magnetic surface/field line triad

n ≡ (RBp)−1∇Ψ , π ≡ b× n , b ≡ B/B . (18.72)
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The displacement vector ξ will be represented by the three components

X ≡ RBp ξ · n , Y ≡ iB(RBp)−1 ξ · π , Z ≡ iB−1 ξ · b , (18.73)

and the gradient operator, for toroidal harmonics ∼ e−inϕ, will be represented by
the three scalar operators

D ≡ (RBp)−1n · ∇ =
∂

∂ψ
− g12

g22

∂

∂ϑ
,

G ≡ − iRBpBπ · ∇ = −i
RBϕ
J

∂

∂ϑ
− nB2

p ,

F ≡ − iBb · ∇ =
1
J
(
− i

∂

∂ϑ
+ nq

)
, (18.74)

where gij is the covariant metric tensor of the Ψ, ϑ, ϕ coordinate system. Recall
that the main reason for exploiting straight-field-line coordinates is the fact that
the operator F has the simple representation J −1(m + nq) for single poloidal
harmonics eimϑ so that resonant modes are well represented.

Associated with the magnetic field and flow lines, two parallel gradient operators
enter the formalism, viz. the parallel field operator F ≡ −iB ·∇, just defined, and
the parallel flow operator

E ≡ −iv · ∇ = − iM
J√ρ

∂

∂ϑ
+
nvϕ
R

=
M

J√ρ
(
− i

∂

∂ϑ
+ nu

)
= (M/

√
ρ)F + nΩ .

(18.75)
Here, the very last expression represents a bit of luck since nΩ is constant on
magnetic surfaces. Whereas the parallel gradient operator F enters as usual when
converting the expression for the static force operator part F , the qualitatively new
features of rotating plasmas originate from the inertial term v ·∇v and the Doppler
shift operator ω+iv ·∇ (second and third term of the first line of Eq. (18.68)). The
latter expression involves the parallel flow operator E , but it may be transformed in
terms of F by means of Eq. (18.75):

ω + iv · ∇v = ω − E = ω̃ − (M/
√
ρ)F , (18.76)

where we have introduced a frequency ω̃ that represents the Doppler shifted fre-
quency for a frame rotating with the angular frequency Ω:

ω̃ ≡ ω − nΩ . (18.77)

Note that this frequency is not the one corresponding to the full toroidal rotation
velocity vϕ, but only the part that represents the deviation from the Alfvén speed
(see Fig. 18.2). Consequently, the optimal representation of the parallel field oper-
ator F for straight-field-line coordinates is also fully exploited for the parallel flow
operator. Moreover, for the present calculation of continuous spectra, where modes
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are localized on a single magnetic surface, by using the Doppler shifted frequency
ω̃ we may eliminate most of the terms with Ω so that the characteristic dependence
on the poloidal Alfvén Mach number M becomes manifest.

By means of the projection (18.72), the eigenvalue problem (18.68) becomes a
3× 3 matrix equation, involving the gradient operators D, G and F , acting on the
three-vector X ≡ (X,Y, Z)T:

A ·X = B ·X , (18.78)

where the matrix B contains all terms involving ω−E . To get the equations for the
continuous spectrum, we exploit the same technique as used in Section 17.2.3 for
the similar problem in the static toroidal case [161] (where the alternative method
of exploiting the primitive variables [359] leads to the same result). We consider
modes that are localized around a particular magnetic surface Ψ = Ψ0 by taking
the limit ∂/∂Ψ→∞. For finite ω̃, the normal component of the spectral equation
(18.78) then reduces to a derivative with respect to Ψ that may be integrated to give
the following leading order relation, similar to Eq. (17.52) of the static case:

D†X ≈ − 1
B2

GY + i
γp

γp+B2

1
ρ

[
∂
(ρRBϕ

B2

)]
Y − γp

γp+B2

1
ρ
FρZ . (18.79)

Here, we exploit a short-hand notation for the invariant tangential derivative:

[∂f ] ≡ [Bp · ∇f ] =
1
J
∂f

∂ϑ
, (18.80)

where the square brackets are used to indicate that the derivative only acts on the
quantity inside. Eq. (18.79) implies that ∂X/∂Ψ, Y and Z are of the same order,
so that X itself is small compared to Y and Z. Hence, these modes are dominantly
polarized tangential to the flux surfaces.

Substituting Eq. (18.79) into the tangential components of the spectral equation
(18.78) then leads to a 2× 2 matrix eigenvalue problem in terms of the two-vector
V ≡ (Y,Z)T that only involves the parallel operators F and E , i.e. it no longer
contains derivatives of V with respect to Ψ. Due to this property, the reduced 2×2
problem is non-singular. Therefore, it is advantageous to separate the improper
Ψ-dependence from the proper tangential dependence:⎛⎝ Y (Ψ, ϑ)

Z(Ψ, ϑ)

⎞⎠ einϕ ≈ δ(Ψ−Ψ0)

⎛⎝ Ŷ (ϑ)

Ẑ(ϑ)

⎞⎠ einϕ . (18.81)

In this manner, a proper eigenvalue problem is obtained for each magnetic/flow
surface. The collection of discrete eigenvalues obtained from this reduced one-
dimensional problem in terms of Ŷ (ϑ), Ẑ(ϑ) will map out the continuous spectra
of the original two-dimensional problem in terms of Y (ψ, ϑ), Z(ψ, ϑ).
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We will omit the details of the formidable amount of manipulations needed to
reduce the expressions to the compact form of the continuum equations that will be
presented in the following subsection. The reductions basically consist of commut-
ing the parallel gradient operators with equilibrium quantities while consistently
exploiting the invariance properties of the magnetic/flow surfaces based on the five
basic equilibrium flux functions (18.3)–(18.7). Some of the crucial geometrical
properties needed are presented in the paragraph in small print below. Here, the
basic handicap in the derivation has been the bias of the previously derived expres-
sions for the case of toroidal flow in the absence of poloidal flow [454]. Only when
it was realized that the case of poloidal flow is fundamentally different (since it has
entropy conservation built into the equilibrium equations so that the previous pos-
sibility of entropy instabilities is absent now), the necessary freedom of expression
was obtained to produce the beautiful expressions (18.88)–(18.90) where poloidal
flow completely changes the picture obtained previously for static, toroidally rotat-
ing, and gravitating equilibria [453, 454].

� Intrinsic properties of the magnetic/flow surfaces A two-dimensional creature (cf.
Section 17.2.3) living on a magnetic/flow surface would be able to test the validity of:

(a) relationships between the physical variables due to the flux functions (18.3)–(18.7):

∂M2 = −(M2/ρ
)
∂ρ ,

∂
(

1
2M

2B2/ρ− 1
2Ω2R2 + Φgr

)
= −(1/ρ) ∂p ,

∂p =
(
γp/ρ
)
∂ρ ,

(M2 − 1) ∂(RBϕ) = −RBϕ ∂M2 −√ρMΩ ∂R2 ,

∂Ω = 0 ; (18.82)

(b) the presence of a normal vorticity and a normal current density (i.e. non-divergence-
free vorticity and current density in the two dimensions of the surface):

wn =
1

RBp
∂(Rvϕ) ; jn =

1
RBp

∂(RBϕ) =
√
ρMwn ; (18.83)

(c) a relationship between the coupling factor of the matrix Â and the Coriolis coupling
factor of the matrix B̂ occurring in the eigenvalue problem (18.88)–(18.90) below:

M2B2

ρ
∂
(ρRBϕ

B2

)
= Mα− ∂(rBϕ) ; (18.84)

(d) the geodesic curvature of the magnetic field lines:

κg ≡ b · (∇b) · π = − 1
RBp

∂
(RBϕ

B

)
; (18.85)
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(e) and, finally, the most surprising intrinsic, Gaussian, curvature of the magnetic/flow
surface:

K ≡ κpκϕ = − 1
RBp

∂
( 1
Bp

∂R
)
, (18.86)

where the two principal curvatures of the surface,

κp ≡ RD†Bp =
R

J

( ∂

∂Ψ
− ∂

∂ϑ

g12
g22

)
JBp , κϕ ≡ BpDR = Bp

( ∂

∂Ψ
−g12
g22

∂

∂ϑ

)
R ,

(18.87)
would be beyond his understanding, but he would highly appreciate the last part of
Eq. (18.86). And so did we, when we tried to derive the equations for the transonic
continua and got stuck with products of normal derivatives, that should not be there in
tangential equations, until we realized the beauty of this equation.

With these geometric counterparts of Section 17.1.3, we are now prepared to analyze the
continuous spectra of stationary transonic equilibra. �

18.3.2 Continua of poloidally and toroidally rotating plasmas�

By means of the magnetic surface localization technique described in the previ-
ous sub-section, we arrive at the following formulation. The continuous spectra of
axi-symmetric plasmas, transonically rotating in both the toroidal and the poloidal
direction and gravitating about a massive object, are obtained by solving the fol-
lowing set of ordinary differential equations on each magnetic/flow surface:

Â · V̂ = B̂ · V̂ , V̂ ≡
⎛⎝ Ŷ

Ẑ

⎞⎠ , (18.88)

where the matrix operator Â represents the magnetic contributions,

Â ≡

⎛⎜⎜⎜⎝
F
R2B2

p

B2
F − (M2 −M2

c )B2U2 −i(M2 −M2
c )
B2

ρ
UFρ

iρF (M2 −M2
c )
B2

ρ
U FM2

cB
2F + V

⎞⎟⎟⎟⎠ ,

U ≡ 1
ρ

[
∂
(ρRBϕ

B2

)]
, V ≡ ρ

[
∂
(
(M2 −M2

c )
B2

ρ2
∂ρ
)]
, (18.89)

and the matrix operator B̂ represents the hydrodynamic ones,

B̂ ≡

⎛⎜⎜⎝ (
√
ρ ω̃ − FM)

R2B2
p

B2
(
√
ρ ω̃ −MF ) − iα

√
ρ ω̃

iα
√
ρ ω̃ (

√
ρ ω̃ − FM)B2(

√
ρ ω̃ −MF )

⎞⎟⎟⎠ .
(18.90)
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The off-diagonal elements of the latter matrix contain the Coriolis coupling factor

α ≡ 2
√
ρ
[
Rvp∂(arctan (Bϕ/Bp)) + vϕ∂R

]
= M

B2

RBϕ

[
∂
(R2B2

ϕ

B2

)]
+
√
ρΩ[∂R2] , (18.91)

where we have transformed the expression involving vp and vϕ to an equivalent
form in terms of M and Ω (as we have consistently done in all of the analysis; see
above paragraph in small print for further intrinsic properties of the magnetic/flow
surfaces). For economy of representation, the parallel field operator F , rather than
the parallel flow operator E , has been exploited in the matrix B̂ so that the Doppler
shifted frequency ω̃ ≡ ω − nΩ appears instead of ω itself. Transforming the
diagonal elements of B̂ back to the original form,

(
√
ρ ω̃ − FM) · · · (√ρ ω̃ −MF ) = ρ(ω − E) · · · (ω − E) , (18.92)

clearly demonstrates that these contributions are, in fact, the hydrodynamic ones:
the eigenvalue parameter ω is Doppler shifted by an amount determined by the
operator E . Recall the extensive analysis of Chapters 12 and 13 on this topic.

In the matrix Â, the critical “cusp” value of the square of the poloidal Alfvén
Mach number,

M2
c ≡

γp

γp+B2
(18.93)

(omitting the tilde for simplicity), has been introduced to highlight the main issue
of this chapter. WhenM2 > M2

c , there is a big negative definite contribution in the
upper diagonal element, i.e. precisely in the location where the driving terms of all
usual MHD instabilities (including ballooning modes) are to be found. Considering
field-aligned modes, giving small contributions of the F operator terms, appears to
be sufficient to bring out the instability mechanism: no subtle ballooning-type lo-
calizations are necessary. It is not quite that simple, though, because the Coriolis
coupling factor α in the matrix B̂ not only strongly couples the two possible po-
larizations Ŷ and Ẑ of the modes (as do the off-diagonal elements of the matrix
Â), but also makes the system non-Hermitian. We will investigate the peculiar
consequences of this fact in the explicit analytical and numerical examples of Sec-
tions 18.3.3 and 18.4.

Where does the gravitational potential reside in this formulation? It has been
eliminated by making use of the invariance of the Bernoulli function, ∂H = 0
(see paragraph in small print in Section 18.3.1), so that it is mainly hidden in the
resultant density variations over the magnetic/flow surfaces. However, those cause
very significant differences in the stability properties of tokamaks and accretion
disks, as we will see.
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The previously derived expressions for the continuous spectra of static toroidal
equilibria [161] (Section 17.2.3) are recovered in the limit of vanishing poloidal
and toroidal velocities (M → 0, Ω → 0). In that case, the functions ρ and RBϕ
become constant on the magnetic surfaces and the remaining poloidal variation
∂B2 becomes proportional to the geodesic curvature (17.37), which becomes the
sole cause of coupling between the two polarizations Ŷ and Ẑ. In the presence of
poloidal flow, the expression ∂(ρRBϕ/B2) no longer represents the geodesic cur-
vature (see paragraph in small print in Section 18.3.1) and the density variations
become the more important effect. The other relevant limits of static toroidal equi-
libria with gravity [377], toroidally rotating θ-pinches [222] and tokamaks [454]
are not fully recovered from the present formulation since those cases admit equi-
libria with ∂S �= 0, which may drive a kind of Brunt–Väisäläa instability of the
continuum modes. As in the convection zone of the Sun, one might expect these
instabilities to switch off when they have generated a constant entropy distribution
on the magnetic/flow surfaces. Such instabilities are absent from the present anal-
ysis since the poloidal flow itself imposes the constraint ∂S = 0. The mentioned
cases are recovered for equilibria that obey this additional constraint.

The present analysis is actually closer to the one by Hameiri and Hammer [213]
for incompressible plasmas. They showed that a poloidally rotating straight θ-
pinch with a non-circular cross-section has an unstable continuous spectrum for
super-Alfvénic speeds, M2 > 1, which is caused by parametric instability due to
coupling of the continuum modes with the plasma rotation. The generalization to
toroidal plasmas, and to general cylindrical plasmas with a poloidal magnetic field
component [351], may be obtained from Eqs. (18.88)–(18.90) by taking the limit
γ →∞, so that M2

c → 1. In the incompressible limit, the hyperbolic flow regimes
disappear and the elliptic flow regimes coalesce, with M2 = 1 in the middle.
Hence, our present instability threshold M2 = M2

c moves to M2 = 1 and the
poloidal variation of the poloidal magnetic field, ∂Bp �= 0 due to the non-circular
cross-section, becomes the driving force of the instability.

(a) Cylindrical limits of the continua With respect to the meaning of the domi-
nant diagonal terms in the spectral equations (18.88)–(18.90), recall the asymptotic
spectral structure of one-dimensional configurations in the limit of large normal
“wavenumbers” (rapid variations in the direction of inhomogeneity). For static
plasmas, the structure of the spectrum then proves to center about the slow con-
tinua ω2

S, the Alfvén continua ω2
A, and the fast continua ω2

F ≡ ∞, where the three
MHD waves become purely polarized in the three orthogonal directions associ-
ated with the magnetic surfaces and the field lines. Considering the limit of an
infinitely slender torus (ε→ 0), or a periodic cylinder with longitudinal coordinate
ϕ = z/R0, the tangential dependence of the modes becomes ei(mϑ+nϕ), where m
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and n do not couple, so that

ωS ≡Mc ωA , ωA ≡ (
√
ρ)−1F , F ≡ J −1(m+ nq) = ε(m/q + n) ,

(18.94)
where F is the algebraic multiplication factor resulting from the parallel field op-
erator F . For stationary plasmas, the left–right symmetry with respect to the origin
ω = 0 is lifted by the Doppler shift Ω0, and the continuum frequencies become
(see Chapter 13):

Ω±
S ≡ Ω0 ± ωS , Ω±

A ≡ Ω0 ± ωA , Ω±
F ≡ ±∞ . (18.95)

In plane slab geometry, Ω0 ≡ k · v, where k is the horizontal wavenumber. In
the periodic cylinder, according to Eq. (18.75), Ω0 is the result of the parallel flow
operator E :

Ω0 ≡ E ≡M(J√ρ)−1(m+nu) = nΩ+M(
√
ρ)−1F = nΩ+MωA . (18.96)

For fixed m and n, the spectrum becomes schematically as indicated in Fig. 13.3,
with essential asymmetry between the continuum modes propagating in the for-
ward (+) and in the backward (−) directions with respect to the background flow.
We stress that Fig. 13.3 is essentially restricted to small inhomogeneity in 1D sys-
tems (as obtained in a thin slab) so that the different parts of the spectrum do not
overlap and the continua remain purely real. Under these restrictions, monotonicity
of the discrete spectra on the real axis outside the continua and separator frequen-
cies was proved by a modification of the proof for static 1D systems [183]; see
Section 13.1.3.

In the limit of infinitely large aspect ratio (ε→ 0), all poloidal variations disap-
pear from the matrices Â and B̂. This directly yields the two continua associated
with singular perturbations tangential to the magnetic/flow surfaces:

(1) the Alfvén continua A±
m, with polarizations Ŷ �= 0, Ẑ = 0 and frequencies

(
√
ρ ω̃ −MF )2 − F 2 = 0 ⇒ ω = Ω±

A ≡ Ω0 ± ωA = nΩ + (M ± 1)ωA ;
(18.97)

(2) the slow continua S±
m, with polarizations Ŷ = 0, Ẑ �= 0 and frequencies

(
√
ρ ω̃−MF )2−M2

c F
2 = 0 ⇒ ω = Ω±

S ≡ Ω0±ωS = nΩ+(M±Mc)ωA .

(18.98)
Note that, in the limit of vanishing magnetic field (ωA → 0), the matrix Â disap-
pears and the matrix B̂ yields the usual hydrodynamic flow continua [77] at Ω0,
which may be considered as degeneracies of the Alfvén and slow continua in that
limit. In other words: contrary to statements in the literature [416, 222, 40], there
are no separate, additional, flow continua in MHD, but they are absorbed by the
Alfvén and slow continua when a magnetic field is present. As already discussed
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in Section 13.1.3, this is consistent with the fact that the Alfvén and slow polar-
izations represent all possible degrees of freedom tangential to the magnetic/flow
surfaces. Accordingly, in MHD, the frequencies Ω0 are not continua but just act
as separator frequencies, similar to the frequency ranges Ω±

s0 and Ω±
f0 indicated by

the grey boxes with labels below the axis in Fig. 13.3. (Recall that the elimination
of the latter two frequency ranges as possible continua also has been the subject of
prolonged controversy; see Goedbloed [166] for a final account on this.)

One more fundamental issue (also discussed in Section 13.1.3) remains to be
addressed. Describing plasma perturbations by means of the primitive Eulerian
variables ρ1, v1, p1, B1, instead of in terms of the Lagrangian variable ξ, an
additional class of continua is obtained, viz. continua with entropy perturbations
S1 ∼ p1 − (γp0/ρ0)ρ1 �= 0. This class of continua is excluded in the Frieman–
Rotenberg formalism because they are not representable in terms of ξ and they just
represent initial entropy perturbations that are passively carried by the plasma flow,
without influencing the rest of the dynamics (v1 = 0, B1 = 0). Hence, these con-
tinua do not represent important physics. Nevertheless, they are extremely useful
for bookkeeping purposes, as we will see below when we compare the results of
our Lagrangian analysis with the numerical results from the PHOENIX code, which
exploits an Eulerian representation. Hence, we also list this third class of continua:

(3) the Eulerian entropy continua Em, with δS �= 0, Ŷ = Ẑ = 0, and frequencies

ω = ΩE ≡ Ω0 = nΩ +MωA . (18.99)

Although their frequencies coincide with the mentioned frequencies of the hydro-
dynamic flow continua, they should not be confused with the latter. The flow con-
tinua are transformed into the Alfvén and slow continua when B �= 0, but the
Eulerian entropy continua are unaffected by the magnetic field. (Actually, the lat-
ter were even absent in the original analysis of the HD flow continua by Case [77]
because he assumed incompressibility.)

(b) Poloidal mode couplings We now have the necessary labels A±
m, S±

m and Em at
our disposal to discuss the different mode couplings that occur in stationary toroidal
plasmas. These couplings are caused by the poloidal variation of the quantities in-
side the square brackets in Eqs. (18.89) and (18.91), which will be explicitly calcu-
lated in Sections 18.3.3 and 18.4. Anticipating those calculations, we just present
one result of a full numerical calculation with PHOENIX (or, rather, CSPHOENIX,
see Section 18.4) of the continuous spectra of a tokamak equilibrium in the second
elliptic flow regime, viz. equilibrium (A) of Fig. 18.4. Fig. 18.6 shows the real part
of the normalized continuum frequencies ω̄ ≡ ε−1ω, together with the labels of the
modes wherever this is possible (i.e. away from mode crossings). Every point in
the plot (the appearance of curves is just the result of many runs of the code with
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Fig. 18.6 Poloidal mode labeling and coupling of the real parts of the continuum
frequencies ω̄ ≡ ε−1ω as a function of the radial flux coordinate s ≡ √ψ for
equilibrium (A) of Figs. 18.4 and 18.5; toroidal mode number n = −1, poloidal
mode numbers −2 ≤ m ≤ 6.
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small increments of s) corresponds to one constituent frequency of the continuous
spectrum corresponding to an improper mode that becomes singular at the indi-
cated position s. Note that the curves for the entropy continua Em do not interact
with the other ones, as expected, but they do provide a very convenient indication
of the radial variation of Ω0 (mainly due to ρ(s) and q(s)), which is the central
frequency for both the Alfvén and the slow modes, according to Eqs. (18.97) and
(18.98). For all the numerical examples of the equilibria A–D (corresponding to
Figs. 18.4 and 18.5), parameters have been chosen such as to agree with the trans-
slow ordering (18.63), whereas the contribution Ω of the non-parallel toroidal flow
has been chosen to be negligible so that

ωS/ωA ≡Mc (≈ 0.008) � Ω0/ωA ≈M (≈ 0.1) � 1 . (18.100)

As a result, the spacing ΔΩE ∼ M of the entropy curves Em is just intermediate
between the narrow spacing ΔΩS ∼ Mc of the slow curves S±

m and the very wide
spacing ΔΩA ∼ 1 of the Alfvén curves A±

m: triplets S+
m, Em, S−

m are easily distin-
guished, but the complete quintuplets A−

m, S+
m, Em, S−

m, A+
m are hardly visible on

the scale of Fig. 18.6.
Of course, the main point of Fig. 18.6 is the illustration of how poloidal mode

coupling completely upsets the near cylindrical radial variation of the triplets S+
m,

Em, S−
m by the crossing of the lower m Alfvén branches at the rational surfaces

q = 1 (at s ≈ 0.3) and q = 2 (at s ≈ 0.98), where ωA vanishes for the m = 1
and m = 2 harmonics, respectively. In a wide neighborhood of the q = 1 rational
surface, the slow modes S±

2 and S±
0 are pushed far apart by the A±

1 harmonics and,
similarly, strong mode interaction around the q = 2 surface pushes the S±

3 and S±
1

modes apart by the A±
2 modes. More spectacular yet is the merging of the S−

2 and
A−

1 branches (at s = 0.46) and of the A+
1 and S−

0 branches (at s = 0.43), where
the frequency ω̄ becomes complex (the reader may want to glance at Fig. 18.10)
and the instabilities originate which are the main subject of this chapter. Through
the six mode interaction S±

m+1, A±
m, S±

m−1 at the rational surfaces, the continuous
spectra of transonically rotating plasmas become unstable. (Fortunately, for the
analysis, the slow modes S±

m, which are also degenerate at the rational surfaces,
ωS = 0, appear not to interact with the six modes.) We will investigate these six-
mode interactions analytically in Section 18.3.3 and numerically in Section 18.4.

Another interesting feature of the continuous spectra shown in Fig. 18.6 is the
avoided crossings of the A+

m and A−
m−1 Alfvén modes and of the A−

m and A+
m−1

Alfvén modes at

q = − 1
n

[
m− 1

2(1∓M)
]
, (18.101)

resp., i.e., for m = 1: q = 1.55 (at s = 0.86) and q = 1.45 (at s = 0.82). The
resulting |Δm| = 1 gaps in the continuous Alfvén spectra are well-known for static
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tokamak equilibria. Equation (18.101) shows that poloidal rotation removes the
forward/backward degeneracy of the gap frequencies with important consequences
for the discrete gap modes that may be found there.

18.3.3 Analysis of trans-slow continua for small toroidicity�

(a) Fourier representation (exact) We exploit the equilibria of Section 18.2.3 to
study the transonic continuous spectra by means of the formalism of Section 18.3.2.
To that end, we write the matrix eigenvalue problem (18.88) as⎛⎝ K M

N L

⎞⎠⎛⎝ Ŷ

Ẑ

⎞⎠ = 0 , (18.102)

where the elements

K ≡ J −1[(ω̃ − JFf2) f1 (ω̃ − f2JF )− JFf3 JF + f4] ,

M ≡ J −1[− if5 ω̃ + if6 JF + f7] ,

N ≡ J −1[if5 ω̃ − iJFf6 + f7] ,

L ≡ J −1[(ω̃ − JFf2) f8 (ω̃ − f2JF )− JFf9 JF − f10] (18.103)

need evaluation of the following functions of ϑ:

f1 ≡
J ρR2B2

p

B2
, f2 ≡ M

J√ρ , f3 ≡
R2B2

p

JB2
, f4 ≡ J (M2 −M2

c )B2U2,

f5 ≡ Jα√ρ , f6 ≡ (M2 −M2
c )B2U , f7 ≡ J (M2 −M2

c )
B2

ρ
U [∂ρ],

f8 ≡ J ρB2 , f9 ≡ M2
cB

2

J , f10 ≡ J V . (18.104)

Fourier analysis of Eq. (18.102) yields an infinite matrix eigenvalue problem,

∑
m′

⎛⎝ Kmm′ Mmm′

Nmm′ Lmm′

⎞⎠⎛⎝ Ym′

Zm′

⎞⎠ = 0 , (18.105)

where Ym′ and Zm′ are the Fourier components of Ŷ (ϑ) and Ẑ(ϑ), and the matrix
elements

Kmm′ ≡ 1
2π

∮
dϑe−imϑJKeim′ϑ ≡ 1

2π

∮
K(m,m′;ϑ)e−i(m−m′)ϑ dϑ , etc. ,

(18.106)
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involve integrands with the operators K, etc., that are converted into algebraic ex-
pressions K(m,m′;ϑ), etc., by means of integration by parts:

K ≡ f1[ω̃ − f2(m+ nq)][ω̃ − f2(m′ + nq)]− f3(m+ nq)(m′ + nq) + f4 ,

M ≡ − if5 ω̃ + if6(m′ + nq) + f7 ,

N ≡ if5 ω̃ − if6(m+ nq) + f7 , (18.107)

L ≡ f8[ω̃ − f2(m+ nq)][ω̃ − f2(m′ + nq)]− f9(m+ nq)(m′ + nq)− f10 .

Obviously, M should not be confused here with the Alfvén Mach number.
Before we can continue with the evaluation of the matrix elements for small

toroidicity, we need to consider the way in which the density enters the problem.
Recall that ρ did not enter the equilibrium core equations (18.23) and (18.24).
However, the spectral equation (18.88) manifestly depends on ρ, both through the
weight factor

√
ρ in front of the eigenvalue parameter ω̃ and through the angular

derivative ∂ρ, that is crucial for the instabilities analyzed here. At this point, we
introduce a third dimensional unit (after length a and magnetic field strength B0),
viz. the density ρ0 on the magnetic axis. Similar to the transformations (18.20), we
will exploit ρ0 to make all density-dependent quantities dimensionless by putting
ρ0 = 1 without indicating this by further subscripts:

ρ/ρ0 → ρ , (a
√
ρ/B0)ω → ω . (18.108)

The radial and angular dependencies of the dimensionless density are determined
by M2 and χ′2, according to Eq. (18.11). Whereas M2 should be a solution of the
Bernoulli equation (18.24), χ′2(ψ) is an arbitrary function, except that its ampli-
tude is given by the value of M2 on the magnetic axis: χ′2(0) ≡ M2

0 . Hence, it is
expedient to introduce a sixth flux function, with unit amplitude:

Λ̄0(ψ) ≡M−2
0 χ′2(ψ)

[
≡ Λ̄5(ψ)/Λ̄5(0)

]
, Λ̄0(0) = 1 , (18.109)

where we have indicated in brackets that this flux function is not really an addi-
tional free function, for accretion disks, since it has to have the same shape as
Λ̄5(ψ) according to Eq. (18.13). The density is then determined by

ρ = Λ̄0(ψ) (M2/M2
0 )−1 , (18.110)

so that the radial variation is due to both Λ̄0 and M2, but the more important
angular variation is solely due to M2.

Since we are concerned with continuum modes in the Alfvénic range of frequen-
cies, according to Eq. (18.94) we need to rescale ω with ε to get O(1) expressions:

ω̄ ≡ ε−1ω

[
≡ R0

√
ρ

B0
ω

]
. (18.111)
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We have not used the smallness of ε yet, so that the expressions so far are exact.

(b) Expansion in small toroidicity We now apply the trans-slow poloidal flow
ordering (18.63) to the equilibrium expressions fi defined in Eqs. (18.104). This
requires conversion of the metric derived in Section 18.2.3 to the straight-field-line
coordinates Ψ, ϑ, ϕ:

ϑ ≈ θ̂ − (εr̂ −Δ′ − σ) sin θ . (18.112)

Here, σ is the angular variation of RBϕ,

RBϕ ∼ 1 + σ cosϑ , σ ≈ −2εr̂
Λ̄4,0

Λ̄3,0 − Λ̄4,0
, (18.113)

which we may neglect in the present case (Λ̄4 � Λ̄3). The metric tensor and the
Jacobian then become

ĝ11 ≡ ψ′2(1− 2Δ′ cos θ) , ĝ12 ≡ −ψ′2[ε− r̂−1(r̂Δ′)′ − σ′] sinϑ ,
ĝ22 ≡ r̂−2[1− 2(εr̂ −Δ′ − σ) cosϑ] , ĝ33 ≡ ε2(1− 2εr̂ cos θ) ,

J ≡ (∇ψ ×∇ϑ · ∇ϕ)−1 ≈ (εΨ′)−1r̂[1 + (2εr̂ − σ) cosϑ] . (18.114)

In these coordinates, we may remove all factors ψ′ in favor of the safety factor q:

q ≡ JBϕ/R ≈ r̂/Ψ′ , Bp ≈ εrq−1[1− (εr̂ + Δ′) cosϑ] . (18.115)

Finally, the most crucial quantity is the perturbed density,

ρ(r̂)[1− (μ/M2) cosϑ] = ρ(r̂)[1− ε(1− Γ)r̂ cosϑ] , (18.116)

where now, in contrast to the previous subsection, ρ(r̂) only indicates the zeroth
order radial density profile. The gravitational interaction coefficient Γ, defined in
Eq. (18.67), determines the first order angular variation of the density.

We evaluate the factors fi of Eqs. (18.104) to first order in terms of Δ′ and Γ:

f1 ≈ (εq)−1ρr̂2 (1 + εa1r̂ cosϑ) , a1 ≡ 3 + Γ− 2(εr)−1Δ′ ,

f2 ≈ εM(q
√
ρ)−1 (1 + εa2r̂ cosϑ) , a2 ≡ −1− Γ ,

f3 ≈ εr̂2q−3 (1 + εa3r̂ cosϑ) , a3 ≡ −2(εr̂)−1Δ′ ,

f4 ≈ εM2q−1 a2
4r̂

2 sin2 ϑ , a4 ≡ −1− Γ ,

f5 ≈ − (
√
ρM + ε−1ρΩ) a5r̂ sinϑ , a5 ≡ 2 ,

f6 ≈ εM2q−1 a6r̂ sinϑ , a6 ≡ −1− Γ ,

f7 ≈ ε2M2q−1 a6a7r̂
2 sin2 ϑ , a7 ≡ 1− Γ ,
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f8 ≈ ε−1ρq (1 + εa8r̂ cosϑ) , a8 ≡ −1 + Γ ,

f9 ≈ εq−1M2
c ,

f10 ≈ ε2M2q−1 a10r̂ cosϑ , a10 ≡ 1− Γ . (18.117)

Scaling the matrix elements and the eigenvector as

K̄ ≡ (εr̂2)−1q K , M̄ ≡ (εr̂)−1M , N̄ ≡ (εr̂)−1N , L̄ ≡ (εq)−1L ,

Ȳ ≡ r̂q−1Y , Z̄ ≡ Z , (18.118)

the transformed matrix eigenvalue problem (18.105) will contain the following ma-
trix elements (accurate to first order):

K̄mm′ ≈
{
[
√
ρω̄ −M(m/q + n)]2 − (m/q + n)2

}
δmm′

+ 1
2M

2a2
4(δmm′ − δm,m′−2 − δm,m′+2) ,

M̄mm′ ≈ − 1
2

{
Ma5

√
ρ ω̄ +M2a6(m′/q + n)

}
(δm,m′−1 − δm,m′+1) ,

N̄mm′ ≈ 1
2

{
Ma5

√
ρ ω̄ +M2a6(m/q + n)}(δm,m′−1 − δm,m′+1) ,

L̄mm′ ≈
{
[
√
ρ ω̄ −M(m/q + n)]2 −M2

c (m/q + n)2
}
δmm′ . (18.119)

Since Ω is negligible in that order for the equilibria we are considering, ω̃ ≈ ω, so
that we do not need to distinguish the two in the normalized eigenvalue ω̄.

(c) “Dispersion equation” for trans-slow Alfvén continuum modes The matrix
elements (18.119) give rise to two separate coupling schemes, with either the
Alfvén waves or the slow waves as the central perturbation. Since the most im-
portant instabilities result from the first scheme, we will concentrate on that. The
Alfvén wave coupling scheme⎛⎜⎜⎜⎜⎝

L̄m−1,m−1 N̄m−1,m 0

M̄m,m−1 K̄m,m M̄m,m+1

0 N̄m+1,m L̄m+1,m+1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Z̄m−1

Ȳm

Z̄m+1

⎞⎟⎟⎟⎠ = 0 , (18.120)

precisely provides us with the means to analyze the interaction of the six modes
A±
m, S±

m−1 and S±
m+1 that we encountered in Fig. 18.6 of Section 18.3.2. In the

neighborhood of the Alfvén resonance m/q + n ∼ ε this gives the following “dis-
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persion equation” (quotation marks to remind us of the contradiction in terms):∣∣∣∣∣∣∣∣∣∣
(
√
ρ ω̄ +M/q)2 C 0

C ρ ω̄2 − (m/q + n)2 + 1
2M

2 a2
4 C

0 C (
√
ρ ω̄ −M/q)2

∣∣∣∣∣∣∣∣∣∣
= 0 ,

C ≡ 1
2Ma5

√
ρ ω̄ − 1

2(M2/q) a6 . (18.121)

Inserting the explicit expressions for a4, a5, a6 derived in Eq. (18.117), and defin-
ing a rescaled eigenvalue ω̂ ≡ (

√
ρq/M) ω̄, and a measure Q ≡ (n/M)(m/n+ q)

for the “distance” to the rational value of q, the “dispersion equation” becomes∣∣∣∣∣∣∣∣∣∣
(ω̂ + 1)2 q[ω̂ + 1

2(1 + Γ)] 0

q[ω̂ + 1
2(1 + Γ)] ω̂2 −Q2 + 1

2q
2(1 + Γ)2 − q[ω̂ − 1

2(1 + Γ)]

0 − q[ω̂ − 1
2(1 + Γ)] (ω̂ − 1)2

∣∣∣∣∣∣∣∣∣∣
= 0 ,

(18.122)
which turns out to be a cubic equation in ω̂2,

ω̂6−[2+Q2+ 1
2q

2(1−Γ)(3+Γ)]ω̂4+[1+2Q2+ 1
2q

2(1−Γ)(1+3Γ)]ω̂2−Q2 = 0 ,
(18.123)

that may be solved by means of the Cardano expressions.
At a rational surface, Q2 = 0 and we get two marginal modes ω̂2 = 0 and four

solutions

ω̂2 = 1 + 1
4q

2(1− Γ)(3 + Γ)± q|1− Γ|
√

1 + 1
16q

2(3 + Γ)2 . (18.124)

These correspond to four stable waves (ω̂2 > 0) when Γ < 1, but two solutions
may become exponentially unstable (ω̂2 < 0) when Γ > 1. Clearly, Γ = 1 marks
a qualitative change in the continuous spectrum, corresponding to the qualitative
change in the equilibria given by Eq. (18.66) and illustrated in Fig. 18.4.

The solutions ω̄ ≡M(
√
ρq)−1ω̂ of Eq. (18.123) are plotted as a function of q in

Figs. 18.7 and 18.8 for four representative values of Γ, roughly corresponding to
the equilibria (A) and (C) of Fig. 18.4, for which the “exact” numerical continuous
spectra will be discussed in Section 18.4 (Figs. 18.9–18.12). Starting with Γ = 0
(tokamak, i.e. no gravitating central object, Fig. 18.7(a)), the six-mode interaction
S±

2 , A±
1 , S±

0 describes the real part of the “exact” spectrum shown in Fig. 18.6
quite well around the q = 1 resonance (where ωA = 0 for n = −1, m = 1).
Away from the resonance (increasing Q2), the curves Re (ω̄) of the pair S−

2 , A−
1

and of the pair A+
1 , S−

0 coalesce (at the same value of q: the asymmetry present
in the “exact” solution of Fig. 18.6 is due to higher order contributions that are
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Fig. 18.7 Real and imaginary part of the roots of the “dispersion equation” (18.123)
for the trans-slow Alfvénic continuous spectrum of (a) tokamak (Γ = 0) and (b) Ke-
plerian accretion disk (Γ = 1) for n = −1, m = 1, M = 0.1, ρ = 1.

neglected here) and an imaginary contribution Im (ω̄) emerges (indicated in red):
the trans-slow continuous spectrum becomes overstable. The growth rate of the in-
stability is roughly M× the real part of the Alfvén frequency: quite sizeable! The
spectrum for an accretion disk with moderate central mass (rougly corresponding
to equilibrium (B) with Γ = 0.25, not shown) is similar to that of the tokamak, but
has smaller imaginary parts (corresponding to the reduction of the density vari-
ation expressed by Eq. (18.66)). This tendency continues until Γ = 1, which
is completely stable (Fig. 18.7(b)): Eq. (18.123) degenerates into two solutions
ω̄ = ±(

√
ρ)−1(m/q + n) corresponding to the Alfvén modes A±

1 and four so-
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Fig. 18.8 Real and imaginary part of the roots of the “dispersion equation” (18.123)
for the trans-slow Alfvénic continuous spectrum of accretion disks with massive
central object: (a) Γ = 2 for n = −1, m = 1 and (b) Γ = 10 for n = −3, m = 4;
M = 0.1, ρ = 1.

lutions ω̄ = ±(
√
ρq)−1M corresponding to the degenerate slow modes S±

2 , S±
0

(since the contribution of Mc has been neglected). Beyond Γ = 1, an entirely
different spectral structure emerges. For Γ = 2 (roughly corresponding to equilib-
rium (C), Fig. 18.8(a)), far away from the resonance, two real and four complex
roots (i.e. four overstable modes) are found. In the neighborhood of the resonance
q = 1, the complex roots coalesce two by two to produce two purely imaginary
roots, i.e. instabilities with maximum growth rate at the resonance. These growth
rates are enormous, of the same order of magnitude as the Alfvén frequency!
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Note that the solution ω̂2 = ω̂2(Q, q,Γ) of the “dispersion equation” (18.123)
involves the equilibrium parameters q, M , Γ, but that Q also brings in the mode
numbers n and m in a physically significant manner. This is shown by taking the
limits

|n| → ∞ ,
m

n
+ q → 0 , for fixed Q ≡ n

M

(m
n

+ q
)
, (18.125)

which implies that the instabilities of the plots shown, obtained for certain values of
the parameter Q, will be obtained for any sextuple A±

m, S±
m−1, S±

m+1: all toroidal
mode numbers n are unstable close to or at the rational surfaces q = −m/n
for trans-slow (M2 > M2

c ) Alfvénic continuum modes. Their growth rates are
just determined by the values of the equilibrium parameters ρ (the density), q (the
inverse rotational transform of the magnetic field lines), M (the poloidal Alfvén
Mach number of the flow) and Γ (the strength of the gravitational interaction) at
that particular location.

To demonstrate this, we have plotted the roots of the “dispersion equation”
for mode numbers corresponding to a rational surface, at q = 4/3, for Γ = 10
(Fig. 18.8(b)). In that case, the very massive central object drives the growth of the
instability to values far in excess of the Alfvén frequency. We obtain the following
estimate of the asymptotic growth rate for Γ	 1 from Eq. (18.123):

ω̄ ≈ ±iMΓ/
√

2ρ . (18.126)

In this limit, the modes become dominantly Alfvénic (|Ym| 	 |Zm−1|, |Zm+1|)
and the growth rates are so large that nonlinear effects soon should take over.
Hence, these modes might produce the levels of MHD turbulence in thick magneti-
cally dominated accretion disks with trans-slow poloidal velocities that are needed
to break the co-moving constraint of the poloidal flow and magnetic field in order
to produce accretion and jets.

18.4 Trans-slow continua in tokamaks and accretion disks�

In this section, we turn to a full numerical study of the trans-slow Alfvénic contin-
uous spectrum for the sequence of equilibria (A)–(D) of Figs. 18.4 and 18.5, where
the gravitational strength parameter Γ0 ≡ Γ(0) is increased from 0 (tokamak) to
2 (thick accretion disk with massive central object). The effect of flattening of the
cross-section of the disk was also studied, but it is not shown here (see [173]).

We exploit the numerical programs FINESSE [29] and PHOENIX [173, 52], de-
veloped in the context of MHD spectroscopy for laboratory and astrophysical plas-
mas [180], relying on the techniques discussed in Chapters 15–17. The first code
computes the equilibrium of an axi-symmetric plasma with transonic rotations in
both the toroidal and poloidal direction in the presence of the gravitational field of
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a central object. The discretization techniques for the flux equation are the same
as exploited in the HELENA code [238] for static equilibria. However, the addi-
tional implementation of the Bernoulli equation required a careful monitoring of
the parameters of the new flux functions Λ̄i(ψ) to remain in a particular elliptic
flow regime. The second code, PHOENIX, computes the complete ideal or resis-
tive MHD spectrum of this equilibrium, exploiting an Eulerian representation so
that the Eulerian entropy continua are computed as well, as we have seen in Sec-
tion 18.3.2. This spectral code is a further development of the CASTOR code [272]
for static plasmas, with the addition of the rotational and gravitational contribu-
tions and implementation of the powerful Jacobi–Davidson algorithm [412] (see
Section 15.3.4) for scanning the spectrum of non-Hermitian operators in the com-
plex ω-plane. Here, the resistivity was switched off. For the computation of the
continuous spectrum, the auxiliary program CSPHOENIX was exploited. Through
a special limiting procedure [381] (also exploited to construct Fig. 17.5), this pro-
gram uses the same discretized matrix elements as PHOENIX, but evaluated on a
single magnetic/flow surface only. In this manner, we obtain the continuous spec-
trum of transonic equilibria, characterized by the flux functions Λ̄i(ψ), in the form
of plots of Re(ω̄) and Im(ω̄) as a function of the radial flux coordinate s ≡ √ψ.

These plots are shown in two ways, viz. (1) as separate plots of Re(ω̄) and
Im(ω̄) versus s or q (Figs. 18.9 and 18.11); (2) as plots in the complex ω̄ plane,
with s as parameter, in color coding (Figs. 18.10 and 18.12). We have restricted the
analysis to one toroidal harmonic (n = −1), with a band of nine coupling poloidal
harmonics (−2 ≤ m ≤ 6), and a flux range that usually contains only one rational
surface q = 1 (except for the tokamak case of Fig. 18.9, which also contains the
q = 2 rational surface). The numerical results clearly exhibit the central six-mode
interaction analyzed in Section 18.3.3, but without neglect of the higher order terms
inM2 andM2

c . Hence, asymmetries arise in the continuous spectra and many more
unstable roots become visible. When comparing the numerical values of ω̄ shown
in Fig. 18.9 with the analytical solutions of the “dispersion equation” (18.123)
shown in Fig. 18.6, one should realize that, in the latter plots, only q varies with
the radial position whereas the equilibrium quantities ρ, M2 and Γ have been kept
constant. Of course, in the numerical solutions of the present section, the full 2D
dependencies of the equilibrium quantities have been used. When this is taken into
account, the quantitative agreement between the two approaches is excellent.

18.4.1 Tokamaks and magnetically dominated accretion disks�

The continuous spectra for the tokamak equilibrium (A), where Γ0 = 0, are shown
in Fig. 18.9. Figure 18.9(a) represents the central interaction region of the larger
plot already shown in Fig. 18.6 with the mode labels. The imaginary parts of the
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(a)
_

(b)

_

Fig. 18.9 (a) Real and (b) imaginary parts of the frequencies ω̄ of the trans-slow
continuous spectrum as a function of the radial flux coordinate s ≡ √ψ for a toka-
mak with circular cross-section, equilibrium (A); n = −1.

continuum frequencies in Fig. 18.9(b) show the sudden onset of instability, with
complex values of ω̄ (i.e. overstability), at s ≈ 0.43–0.45 that we have already
interpreted as due to the six-mode interaction S±

2 , A±
1 , S±

0 . However, some addi-
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Fig. 18.10 Complex spectrum corresponding to Fig. 18.9, equilibrium (A).

tional structure is to be seen in this figure. Going from s = 0.28 (q = 1) to the
right in Fig. 18.9(b), we subsequently encounter the following features.

(a) The degenerate six-mode interaction analyzed in Section 18.3.3 splits apart in the
three-mode interaction A+

1 , S±
0 , which becomes unstable at s = 0.43 and remains

unstable in the rest of the interval, and the three-mode interaction A+
1 , S±

2 , which be-
comes unstable at s = 0.45 and becomes stable again at s = 0.98 (q = 2). Due to this
lifting of the degeneracy, the first triple is more unstable than the second one;

(b) Just to the right of the onset of these instabilities, Re(ω̄) of the slow constituent S+
0

of the first triple coalesces with that of S+
−1 to produce a secondary instability with

Im(ω̄) ∼ 10−3 (small circle starting at s = 0.44). Similarly, a secondary instability is
produced by the S+

2 constituent of the second triple, which gets entangled in a higher
order slow mode interaction with S−

3 (bigger circle starting at s = 0.48);

(c) Moving further to the right, we encounter the two triples of the six modes associated
with the q = 2 rational surface, viz. the triple A+

2 , S±
3 , which becomes unstable at

s = 0.60, has its maximum growth rate Im(ω̄) ≈ 0.018 at s = 0.94, and becomes
stable again just left of s = 0.98 (q = 2), and the triple A+

2 , S±
1 with the smaller

growth rate, which becomes unstable earlier and also becomes stable again to the left
of q = 2;
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(d) Finally, the Re(ω̄)’s of the slow modes S±
4 coalesce at s = 0.85 and the first unstable

triple A+
3 , S±

4 of the q = 3 rational surface is encountered. Even though that rational
surface falls far outside the domain, the effects of the associated six-mode interaction
S±

4 , A±
3 , S±

2 are already clearly noticed.

In Fig. 18.10, the composite continuous spectrum is shown in the complex ω̄-
plane with the radial position s in color coding. The plot clearly exhibits the cause
of the lifting of the degeneracy of the six-mode interaction, viz. asymmetry with
respect to left and right propagation of the continuum modes. Here, left and right
are to be interpreted as follows. For m > 0 and n < 0, lines of constant phase
Φ ≡ mϑ+nϕ−ωt in the ϕ-ϑ plane (representing the magnetic/flow surface) move
to the left when Re(ω̄) < 0 and to the right when Re(ω̄) > 0. Hence, the triples
A+

1 , S±
0 (L) and A−

2 , S±
1 (L) correspond to continuum modes that rotate leftward,

and the triples A+
2 , S±

3 (R) and A−
1 , S±

2 (R) correspond to continuum modes that
rotate rightward.

Whereas the frequencies of the continuous spectrum can be calculated one-by-
one for each magnetic/flow surface separately, without the radial dependencies of
Re(ω̄) and Im(ω̄) shown in the plots, it would have been extremely difficult to
make sense of all these interactions. In the remaining plots, for the equilibrium (C),
we use q(ψ) instead of s as the radial flux parameter. The connection between the
two representations is given by the functions q(s) shown in Fig. 18.5.

18.4.2 Gravity dominated accretion disks�

We have seen in Section 18.3.3 that the structure of the continuous spectra changes
dramatically at Γ = 1. In order to avoid misunderstanding about this transition,
note that (1) the function Γ(ψ) will not be constant in realistic equilibria, so that a
condition Γ = 1 can, in general, be satisfied only at one particular magnetic/flow
surface, leaving the other surfaces unstable to either Γ < 1 or Γ > 1 types of
instabilities; (2) the condition Γ = 1, though associated with Keplerian rotation,
does not represent a privileged equilibrium state in the case of transonic poloidal
flows. It just implies that the poloidal density variation changes from tokamak-like
(with density maxima on the inside of the torus) to gravity-dominated (with density
maxima on the outside), as indicated by Eq. (18.66) and illustrated in Fig. 18.4.
Rather than unduly complicating the discussion by presenting the instabilities of
the continuous spectrum for equilibria having a local Γ = 1 condition, we move
on to gravity-dominated equilibria with Γ > 1 everywhere. We skip presentation
of the spectra of equilibria (B) and (D) that may be found in Ref. [173].

The continuous spectra of the gravity-dominated accretion disk equilibrium (C),
where Γ0 = 2, are shown in Fig. 18.11. Comparison with the solutions of the
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dispersion equation of Section 18.3.3 shows that the spectrum does, in fact, exhibit
the six-mode instability structure characteristic of Γ > 1 equilibria, with much
increased growth rates: Re(ω̄) ∼ Im(ω̄) now. Again, the left–right symmetry of
the rotating modes is broken in the numerical equilibrium, as clearly demonstrated
by the asymmetric [with respect to Re(ω̄) = 0] spectrum of Fig. 18.12. New
for this class of equilibria is that, moving to the rational surface q = 1, the real
part of the frequencies of the leftward and rightward rotating continuum modes
decreases until there is mode locking at q = 1 when ω̄ becomes imaginary: a purely
exponentially growing instability is found with a huge growth rate, in agreement
with the estimate given in Eq. (18.126). At this point, the calculation might be
repeated for n = −2, n = −3, etc., but the analysis of Section 18.3.3 already
indicates that all of these modes will be unstable with approximately the same
growth rate and localized at the respective rational surfaces q = −m/n.

Finally, the continuous spectra of the gravity-dominated accretion disk equilib-
rium (D), with Γ0 = 2 and elliptical cross-section (b/a = 0.5), were also com-
puted (not shown here, see [173]). The mode-locked instabilities found in equilib-
rium (C) are now completely swamped by other instabilities that grow an order of
magnitude faster. The instabilities remain to be analyzed in detail, but it is already
clear that flattening of the disk makes the trans-slow Alfvén continuum modes even
more unstable. From these results it appears likely that the instabilities in flat ac-
cretion disks involve localization at the most curved sections of the magnetic/flow
surfaces, i.e. on the inside and on the outside of the torus. Together with the finding
of Section 18.3.3 that all higher toroidal harmonics n with their associated poloidal
harmonics m are unstable, as expressed by Eqs. (18.125) and (18.126), this shows
that the instabilities of the trans-slow Alfvén continua do not require that the mag-
netic/flow surfaces are closed, but just that they exist. In general accretion flows on
open magnetic/flow surfaces, the same instabilities will operate as the ones found
here for closed surfaces, in particular on the highly curved inside where jet forma-
tion is assumed to take place.

18.4.3 A new class of transonic instabilities

In summary, we have studied “transonic” axi-symmetric MHD equilibria and sta-
bility of toroidal plasmas without (tokamak) and with (accretion disk) the gravita-
tional field of a massive central object (Fig. 18.1). “Transonic” here refers to the
poloidal flow speed, measured by the value M2 of the poloidal Alfvén Mach num-
ber squared defined in Eq. (18.11), when it surpasses the characteristic slow mag-
netosonic values M2

c and M2
s , the Alfvén value 1, or the fast magnetosonic value

M2
f . For the validity of the analysis, the hyperbolic flow regimesM2

c < M2 < M2
s

and M2 > M2
f of Fig. 18.3 should be excluded. This leaves three elliptic flow
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(a)
_

(b)

_

Fig. 18.11 (a) Real and (b) imaginary parts of the frequencies ω̄ of the trans-slow
continuous spectrum as a function of q(ψ) for an accretion disk with circular cross-
section, Γ0 = 2, equilibrium (C); n = −1.

regimes, called slow (0 < M2 < M2
c ), trans-slow (M2

s < M2 < 1), and fast
(1 < M2 < M2

f ). We have studied the trans-slow regime in detail since it is the
first “transonic” one encountered when increasing the poloidal flow speed.
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Fig. 18.12 Complex spectrum corresponding to Fig. 18.11, equilibrium (C).

The equilibria are characterized by five flux functions, where we have eliminated
misunderstanding in the literature about the nature of the poloidal vorticity–current
density stream function K(ψ), defined in Eqs. (18.6) and (18.10), previously as-
sociated with the specific angular momentum. These functions are rescaled in
Eqs. (18.13) and (18.22) to facilitate the analysis of the core equations (18.23)
and (18.24) for ψ and M2 when the centrifugal and gravitational forces approxi-
mately balance. The analysis is done both by means of an extension of the low-β
tokamak ordering, called the trans-slow ordering defined in Eq. (18.63), and by
numerical means, exploiting the FINESSE code [29]. The former yields the second
order ODE (18.57) for the Shafranov shift Δ(r̂) and the first order ODE (18.58)
for the toroidal perturbation μ of M2. The structure of the ODE for Δ (in terms
of M2) turns out to be completely analogous to the structure of the Hain–Lüst
equation [204] (in terms of the eigenfrequency parameter ω2), in agreement with
recent insight on transonic MHD [168]. The trans-slow equilibria computed with
FINESSE (Fig. 18.4) are characterized by the relative strength Γ(ψ) of the gravi-
tational interaction, defined in Eq. (18.67), where Γ � 1 refers to tokamak-like
equilibria and Γ	 1 to accretion disks with a very massive central object.

Next, we derived the equations (18.88)–(18.90) governing the radial asymp-
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totics of the slow and Alfvén continuous spectra associated with perturbations
of a single magnetic/flow surface. They clearly exhibit a major change of the
coupling between Alfvén and slow modes when the critical value M2 = M2

c is
surpassed. Again, the analysis of the continuous spectra is performed both by
means of an expansion in small inverse aspect ratio of the equations (18.88)–
(18.90) for the Lagrangian displacement vector and by means of the full spec-
tral code PHOENIX [173, 52] exploiting the primitive Eulerian variables. This
enabled labeling of all spectral curves obtained (Fig. 18.6) with perfect agreement
between the Lagrangian analysis and the Eulerian numerics for the coupling be-
tween the Alfvén and slow continuum modes, defined in Eqs. (18.97) and (18.98),
whereas the PHOENIX code adds the Eulerian entropy continuum modes, defined
in Eq. (18.99), that do not couple to the other modes.

The small inverse aspect ratio expansion yields the dispersion equation (18.122)
for the coupling of six modes, labeled A±

m, S±
m−1, and S±

m+1, which yield un-
stable Alfvénic continuum modes in the neighborhood of rational surfaces when
M2 > M2

c . This is demonstrated in Figs. 18.7 and 18.8 for different values of
Γ. For accretion disks with a very massive central object (Γ 	 1), the instability
growth rates become huge (larger than the Alfvén frequency) when the toroidal
and poloidal mode number n and m are large. These results are confirmed by the
PHOENIX code where no assumption on the aspect ratio needs to be made. Fig-
ures 18.9–18.12 show the complex frequencies of the trans-slow Alfvén continuum
modes for the equilibria depicted in Fig. 18.4. Increasing the gravitational parame-
ter Γ from 0 (tokamak) to 2 (accretion disk) and changing the cross-sectional shape
from circular to elliptical (b/a = 0.5), the growth rate increases from fractions of
the Alfvén frequency to exceeding it significantly.

In conclusion, one of the important issues in accreting flows about massive cen-
tral objects is to explain how there can be accretion of magnetized plasma, and
even ejection of jets, in the first place. If one takes the achievements of tokamak
research seriously, plasma flow and magnetic field should remain confined near the
toroidal magnetic/flow surfaces. Some violent dissipative mechanism appears to
be needed to break this constraint. Obviously, for tokamaks, such a mechanism
is not desired and, if it were found to operate under fusion conditions, one would
certainly need to find ways to eliminate it. Fortunately, two important features of
stationary flows in toroidal plasmas are absent in tokamaks but dominant in accre-
tion disks, viz. the existence of large, “transonic”, poloidal flows and the presence
of a strong gravitational field. Since the MHD description of plasmas is indepen-
dent of the size of the magnetic configuration, it appeared to be attractive to find
a class of equilibria common to tokamaks and thick accretion disks, but distinctly
different with respect to their stability properties. We have found such a class, as
described in this chapter.
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The instabilities found are due to the continuous spectrum, which is stable for
the sub-slow poloidal flow speeds usually encountered in tokamaks, but which
becomes unstable when the poloidal flow surpasses the critical threshold associ-
ated with the slow magneto-sonic cusp speed. The instability becomes explosive
when the gravitational field is increased to the values encountered in accretion disks
about massive back holes. Thus, these instabilities turn out to have all the requisite
requirements mentioned.

For magnetically dominated thick accretion disks, the trans-slow poloidal flow
ordering turns out to be quite effective to describe the instabilities. It assumes low
β and sub-Alfvénic poloidal flow,

β �M2 ≡ ρv2
p

B2
p

(
∼ ρv2

ϕ

B2
ϕ

∼ ρGM∗
RB2

ϕ

)
� 1 (18.127)

(where the estimates in brackets are for flow parallel to the magnetic field, Ω = 0,
and for Keplerian toroidal rotation, Γ = 1, resp.). Under these conditions, the con-
tinuous spectrum becomes unstable over most of the plasma volume. The instabil-
ity is switched on whenever the poloidal Alfvén Mach number exceeds the critical
value M2

c ≈ 1
2γβ. Hence, it appears to be unavoidable in accretion flows onto a

compact object. At this point, it may be objected that we have not treated an actual
accretion flow, but just a poloidal rotation. However, the discussion of the “disper-
sion equation” in Section 18.3.3 shows that the instabilities operate for all mode
number pairs n, m, including the higher ones. The latter represent localization on
the magnetic/flow surfaces independent on whether or not these surfaces are closed
or open, or whether the flow is directed towards or away from the gravitational
center. Whereas the use of state-of-the-art numerical tools for the computation of
equilibrium and perturbations required us to stay away from the hyperbolic flow
regimes, it appears not too farfetched now to assume that transition of the critical
value M2 = M2

c in accretion flows will turn on the trans-slow Alfvén continuum
instabilities precisely at the location of that transition. That would be the location
where the flow becomes detached from the magnetic field due to a high level of
MHD turbulence. Obviously, this conjecture needs further investigation by means
of nonlinear numerical codes, along the lines of recent efforts by various authors
(see [218, 242, 81] and references quoted there).

We conclude that we have found a very wide class of local instabilities of the
magnetic/flow surfaces of transonic axi-symmetric plasmas. These instabilities
would exclude operation of tokamaks in the trans-slow poloidal flow regimes (re-
call the caveat of Section 18.1 though), except possibly for a thin outer layer in
divertor-operated fusion machines. For magnetically dominated accretion tori,
these instabilities may provide a route to MHD turbulence and associated anoma-
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lous dissipation, breaking the co-moving condition of plasma and magnetic field,
completely independent of the magneto-rotational instability.

18.5 Literature and exercises�

Notes on literature

Equilibrium of rotating axi-symmetric plasmas

– Zehrfeld & Green, ‘Stationary toroidal equilibria at finite beta’ [495].

– Morozov & Soloviev, ‘Steady-state plasma flow in a magnetic field’, in Reviews of
Plasma Physics, Vol. 8 [339].

– Hameiri, ‘The equilibrium and stability of rotating plasmas’ [210].

Transonic MHD equilibria and instabilities

– This chapter is based on the paper ‘Unstable continuous spectra of transonic axi-
symmetric plasmas’ by Goedbloed et al. [173], where more examples and the detailed
numerical data of the equilibria can be found.

Transonic two-fluid equilibria

– A generalization to the equations for transonic two-fluid equilibria was initiated by
McClements & Thyagaraja [328]. The equations were cast into the form of a general
variational principle with a Lagrangian for seven fields (electron and ion densities and
stream functions, magnetic flux, electric potential and gravitational potential) and the
“Bernoulli nightmare” for these equations was pointed out by Goedbloed [169]; see
also the comment [435] and the response [170].

Exercises

[ 18.1 ] Thin plasma slab: equilibrium

In Exercises [16.1] and [17.4] you have exploited the thin plasma slab approximation for
the equilibrium as well as for the perturbations. Here, you will apply this approxima-
tion to the generalized Grad–Shafranov equation (18.15). This equation describes the axi-
symmetric equilibrium of a tokamak plasma or accretion disk.

– Explain why you cannot use the utmost right expressions of Eq. (18.17).

– Show that the generalized Grad–Shafranov equation (18.15) in the thin slab approxi-
mation reduces to

d

dR

(
p+ 1

2B
2
)

= ρ
(v2

ϕ

R
− GM∗

R2

)
.

What does this equation describe?

[ 18.2 ] Thin plasma slab: continuous spectrum

In the previous exercise, you have looked at the equilibrium in the thin plasma slab approx-
imation. Now, you do the same for equations (18.88) describing the continuous spectra for
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axi-symmetric plasmas with both toroidal and poloidal flow. Show that these equations de-
couple in this approximation and that the eigenvalues are the Doppler shifted Alfvén and
slow frequencies.

[ 18.3 ] Connection with a static tokamak plasma: equilibrium

In this exercise, you will show that the generalized Grad–Shafranov equation (18.15) re-
duces to the ordinary Grad–Shafranov equation (16.81) in the limit of no gravity and no
toroidal and poloidal flow. As you will see, these limits have to be taken with special care.

– Show that the limit of no poloidal flow is the same as M2 → 0.
– Show that

lim
M2→0

Π1

M2
= lim
M2→0

Π2

M2γ
.

– Now take a look at the Bernoulli equation (18.16). Show that this equation reduces to
a trivial equation in the no poloidal flow limit.

– Before further reducing the generalized Grad–Shafranov equation (18.15), take a
closer look at Π1 and Π3. Show that Π1 reveals that the temperature becomes a
flux function in the no flow and no gravity limit.

– Again, using the no flow and no gravity limit, show that Π3 can be written as

Π3 = 1
2χ

′2(K/R)2.

– Notice that the limits of no gravity and no toroidol flow can be taken without any
problem. However, the no poloidal flow limit is a very special one. In this limit,
the poloidal Alfvén Mach number also vanishes, which upsets an assumption of the
generalized Grad–Shafranov equation (18.15). Show that

lim
M2→0

1
χ′2

dχ′2

dΨ
= 0.

– Now, show that the generalized Grad–Shafranov equation (18.15) reduces to the or-
dinary Grad–Shafranov equation (16.81). What extra assumption do you have to use?

[ 18.4 ] Connection with a static tokamak plasma: continuous spectrum

In this exercise, you will find the connection between the equation (18.88) for the continua
in rotating plasmas and the corresponding equation (17.55) for the static case. Reduce the
first equation to the latter one by setting the flow to zero. What extra assumption do you
have to use to get this result? (Hint: What are the flux functions for a static axi-symmetric
equilibrium?)

[ 18.5 ] Dispersion equation

Reproduce the plots shown in Figs. 18.7 and 18.8. This can be done using IDL, Matlab or
a similar program. For the computation of the roots, you can use the Cardano expressions
or Laguerre’s method. Make the program such that you can easily use both of them.

– Make a function which computes the coefficients of the dispersion equation (18.123)
for given poloidal mode number m, toroidal mode number n, poloidal Alfvén Mach
number M , gravitational interaction Γ and safety factor q.

– Make a function which computes the roots using the Cardano expressions. The input
of this function should be the coefficients of a third order polynomial.
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– Do the same for Laguerre’s method. If you use IDL or Matlab, this method is part of
their standard library, so you can skip this task.

– Make a function which finds the roots of the dispersion equation (18.123). The input
for this should be the poloidal mode number m, the toroidal mode number n, the
poloidal Alfvén Mach number M , the density ρ, the gravitational interaction Γ, the
minimum and maximum value of the safety factor q and the method to be used. The
function should return the roots found.

– Reproduce the plots shown in Fig. 18.7 and 18.8.
– Explain why, for example, the first plot of Fig. 18.8 does not look the same as the

plots shown in Fig. 18.11.



Part V

Nonlinear dynamics
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Computational nonlinear MHD

In Chapter 15, we introduced basic concepts for solving linear MHD problems
computationally. In principle, the various options discussed there for discretizing
a set of partial differential equations in space and time can all be adopted for sim-
ulating nonlinear MHD phenomena. Many suitable combinations of spatial (finite
difference, finite element, spectral) and temporal (explicit or implicit) discretiza-
tions have successfully been applied in problem-specific contexts. However, the
conservation law nature of the ideal nonlinear MHD equations poses additional
challenges when discontinuous, shock-dominated evolutions are computed. In
this chapter, we pay particular attention to certain variants of “shock-capturing”
schemes, which have proven to be of general use for nonlinear hyperbolic equa-
tions. We explain fundamental strategies and some of the difficulties encountered
upon application of these schemes to the MHD system. This is then again illus-
trated with examples of their use, including simulations determining the nonlinear
evolution of MHD instabilities, as well as advanced computations of astrophysi-
cally relevant MHD processes, up to modern solar system space weather models.
A brief discussion of alternative algorithmic approaches is included as well, com-
plemented with representative applications.

For simulations involving a hierarchy of temporal scales, one must again handle
the time scale problem by some (semi-)implicit time integration method. We limit
their discussion to some exemplary treatments in computational nonlinear MHD,
focused on resistive mode developments and wave dynamics in externally driven
systems. We conclude with an impression of state-of-the-art global simulations of
laboratory tokamak plasmas, where even extended MHD models are beginning to
be applied.

407
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19.1 General considerations for nonlinear conservation laws

As discussed extensively in Volume [1], Chapter 4, the ideal MHD equations rep-
resent a set of nonlinear conservation laws. In the nonlinear dynamics, shocks
can form spontaneously out of continuous initial data by wave steepening, and
contact as well as tangential discontinuities may be encountered. All these discon-
tinuities constitute moving internal interfaces across which the Rankine–Hugoniot
conditions must hold, requiring an appropriate numerical representation. In what
follows, we introduce various general concepts for conservative systems, which
will be useful to design and validate proper numerical treatments.

19.1.1 Conservative versus primitive variable formulations

In general, a system of conservation laws can be expressed in conservation form:

∂U
∂t

+∇ · F(U) = 0 . (19.1)

This form exploits the set of conservative variables U, and specifies that any local
Eulerian change in a conservative variable is due to spatially diverging (or converg-
ing) fluxes F(U). In Section 4.3 [1], we derived the conservation form (4.71)–
(4.74) for the ideal MHD equations, and denoted the conservative variables as
U ≡ (ρ,π,H,B)T. In turn, these conservative variables and their fluxes were
specific functions of the density ρ, velocity v, pressure p and magnetic field B, or
of any other set involving v, B and two thermodynamic quantities (such as the in-
ternal energy e, temperature T , specific entropy s, or the related S ≡ pρ−γ = f(s),
ln(ρ), etc.). Writing the ideal MHD equations in terms of any latter set of so-called
primitive variables is mathematically and physically equivalent, but the equations
then deviate from the conservation form (19.1). It was pointed out in Section 4.5
[1] that only from the conservation form, a simple substitution recipe could be
followed to obtain jump conditions, relating changes in the dynamical variables
across moving interfaces, i.e. across shock fronts and co-moving plasma–plasma
interfaces. When solving the equations numerically, one must obey the conserva-
tion laws also at the discrete level, or at least be consistent with their conservation
properties within discretization errors.

Quasi-linear forms, flux Jacobians and characteristic speeds Simplifying the
discussion to 1D, a set of conservation laws writes as

∂U
∂t

+
∂F(U)
∂x

= 0 , (19.2)

when expressed in terms of the conservative variables U(x, t). Many equivalent
formulations may exist in terms of other, primitive variables V(x, t), which will
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have a quasi-linear form
∂V
∂t

+ W
∂V
∂x

= 0 (19.3)

involving a square matrix W(V). If the number of (conservative or primitive)
variables is indicated by n, W will be an n×nmatrix. The change in variables from
U to V is quantified by a transformation matrix UV found from dU = UVdV.
This is also an n × n square matrix, and we will assume that this transformation
is well-defined and thus invertible, dV = U−1

V dU. The conservation law can
similarly be written in quasi-linear form by exploiting the flux Jacobian matrix
FU, such that

∂U
∂t

+ FU
∂U
∂x

= 0 . (19.4)

For any equivalent set of primitive variables V with their coefficient matrix W(V),
we then necessarily find

FU = UVW(V)U−1
V . (19.5)

This similarity relation between matrices FU and W(V) guarantees that they have
identical eigenvalues. These can thus be computed from either |FU − λpI| =
0 or |W − λpI| = 0. We deduce from dimensional analysis of Eq. (19.4) that
these eigenvalues indicate velocities, which are called the characteristic speeds.
For hyperbolic equations, like the ideal MHD equations, these n eigenvalues λp
for p = 1, . . . , n are real and introduce corresponding sets of right rp as well as
left eigenvectors lp from

FUrp = λprp ,

lpFU = lpλp . (19.6)

As always, eigenvectors are determined up to a multiplicative factor only, so that
we are free to use any appropriate scaling for these eigenvectors. We can write
the set of right eigenvectors rp as columns of a matrix R, and the first set of the
relations (19.6) then writes as

FUR = RΛ , (19.7)

where we introduced the diagonal matrix Λ ≡ diag(λ1, . . . , λn) containing the
eigenvalues. If all these eigenvalues are always distinct, the system of equations
is said to be strictly hyperbolic. We then usually assume the ordering λ1 < λ2 <

. . . < λn. When identical eigenvalues occur, their degeneracy can be accounted
for, e.g. by reducing the matrix rank and regrouping variables with the same char-
acteristic velocities together. For the ideal MHD equations, we will have to face
such additional complications, since the occurring eigenvalues may coincide and



410 Computational nonlinear MHD

the system is not strictly hyperbolic. In the strictly hyperbolic case, we are sure to
have linearly independent right eigenvectors in R. This means that we can compute
the left eigenvectors lp by inverting the matrix R, and identifying the rows of R−1

with the left eigenvectors, since R−1FU = ΛR−1. This makes left and right eigen-
vectors orthonormal, i.e. lq · rp = δqp. With each primitive variable formulation,
different (albeit related) sets of right and left eigenvectors are found. Denoting
R̂ as the matrix with the right eigenvectors r̂p for W(V) in its columns, we find
from (19.5) that R̂ = U−1

V R. Its left eigenvectors form the rows of R̂−1 = R−1UV.
Finally, we may try to find a set of variables R̃ for which the governing equa-

tion (19.2) rewrites to

∂R̃
∂t

+ Λ
∂R̃
∂x

= 0 . (19.8)

Such so-called Riemann invariants would remain constant on curves dx = λpdt

in the (x, t) plane. These curves are the characteristics of the hyperbolic partial
differential equations at hand, in the same sense as discussed for the ideal MHD
case in Section 5.4 [1]. When dealing with a system of n = 2 unknowns, one
can always find both Riemann invariants, one for each characteristic p = 1, 2, and
write them collectively as in Eq. (19.8). They can be used to solve the initial value
problem by drawing the pair of characteristics (with slopes locally determined by
λp) from each point on the x-axis at t = 0 into the (x, t) plane, and use the fact
that they “propagate” a constant value of their respective Riemann invariant. Using
this method of characteristics, the value of U = (U1(x, t), U2(x, t))T at any later
time and location can in principle be determined by back tracing the local values
of the Riemann invariants along their corresponding characteristics to t = 0. This
is schematically illustrated in Fig. 19.1. The pair of Riemann invariants R̃ =
(R̃1(U1, U2), R̃2(U1, U2))T provides a kind of mapping from (U1, U2) space to
the (x, t) plane, in which the characteristic curves are drawn. An extended region
in (x, t) space in which one of the two Riemann invariants remains constant is then
called a simple wave region, and through this mapping we then have U2(U1) in this
region.

When there are n > 2 conserved quantities, one may not always be able to find a
full set of Riemann invariants obeying Eq. (19.8). A full set of Riemann invariants
should obey the proportionalities

∂R̃
∂t
∼ R−1∂U

∂t
= R̂−1∂V

∂t
,

∂R̃
∂x
∼ R−1∂U

∂x
= R̂−1∂V

∂x
. (19.9)

The related variables found by writing R−1U or equivalently R̂−1V are termed
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Fig. 19.1 The method of characteristics, schematically illustrated for the case of
two variables (U1(x, t), U2(x, t)).

characteristic variables. In order to generalize the simple wave concept men-
tioned above for the case of two unknowns to a system of n > 2 variables U =
(U1(x, t), . . . , Un(x, t))T, we can again ask whether an extended region of (x, t)
space can correspond to an essentially one-parameter variation where Ui(U1) for
all i = 1, . . . , n. One can appreciate that there will be n such simple wave construc-
tions possible, one for each eigenvalue λp. In fact, in the (x, t) plane, a pth simple
wave region will have straight lines for the pth characteristic curve dx = λpdt (of
varying slope λp(U1)), along which the solution U is constant (since Ui(U1)). For
the simple wave associated with the pth characteristic field, one arrives at a set of
n− 1 generalized Riemann invariants, defined from

dUi
rpi

=
dUj
rpj

, or equivalently from
dVi
r̂pi

=
dVj
r̂pj

, for i �= j ∈ {1, . . . , n} .
(19.10)

When integrated, these n − 1 relations yield n − 1 functions Jp(U) which obey
∇UJ

p ·rp = 0, or equivalently∇VJ
p · r̂p = 0. Simple wave regions can be proven

to be essential ingredients in nonlinear wave problems. In particular, a region in
(x, t) bordering a constant state U = U0 region will be a simple wave region (or
another constant state, which can be regarded as a trivial simple wave).

In what follows, we will encounter specific examples for the various matrices,
their eigenvalue and eigenvector pairs, and the (generalized) Riemann invariants.
They usually play a prominent role in the design of shock-capturing numerical
algorithms for integrating nonlinear hyperbolic systems. They are also useful for
thoroughly checking numerically obtained solutions.

Iso-thermal MHD in 1.5D and Riemann invariants The simplest MHD prob-
lem where we can directly illustrate the above concepts is posed by the 1.5D iso-
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thermal MHD equations. The assumption of iso-thermal conditions can be justified
in various astrophysical contexts, when dealing with the dynamics of a gas whose
cooling time due to radiative processes is very short with respect to all other dy-
namical time scales. These conditions can be met in dilute environments which
are constantly fed energy from a central source (e.g. irradiation from a star). To
keep the gas at a constant temperature, one must thus relax energy conservation.
Instead of explicitly handling source and sink terms in an equation governing the
energy evolution, the iso-thermal magnetohydro system avoids the solution of this
equation altogether, and assumes that the net effect is to maintain a constant tem-
perature. The ∇ · B = 0 condition in a 1D configuration with quantities varying
along x turns Bx into a constant parameter. Therefore, the first non-trivial MHD
counterpart of a 1D iso-thermal gas problem needs to account for a non-vanishing
component By(x) (and hence also vy) in a translationally invariant y-direction.
This is typically referred to as a 1.5D problem.

The governing equations write in the conservation form (19.2) as⎛⎜⎜⎜⎜⎝
ρ

mx

my

By

⎞⎟⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎜⎝
mx

m2
x/ρ−B2

x + c2i ρ+ 1
2(B2

x +B2
y)

mxmy/ρ−BxBy
Bymx/ρ−Bxmy/ρ

⎞⎟⎟⎟⎟⎠
x

= 0 . (19.11)

This introduces the four conserved variables consisting of density, both momentum
components and the translational magnetic field component. In the x-momentum
equation, the gas pressure is written as p = c2i ρ, with c2i denoting the squared iso-
thermal sound speed, a constant proportional to the fixed temperature. The flux
Jacobian matrix is then found to be

FU =

⎛⎜⎜⎜⎜⎝
0 1 0 0

c2i −m2
x/ρ

2 2mx/ρ 0 By

−mxmy/ρ
2 my/ρ mx/ρ −Bx

(−mxBy +Bxmy)/ρ2 By/ρ −Bx/ρ mx/ρ

⎞⎟⎟⎟⎟⎠ . (19.12)

A primitive variable formulation (19.3) for the same system exploits the velocity
components and is⎛⎜⎜⎜⎜⎝

ρ

vx

vy

By

⎞⎟⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎜⎝
vx ρ 0 0

c2i /ρ vx 0 By/ρ

0 0 vx −Bx/ρ
0 By −Bx vx

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρ

vx

vy

By

⎞⎟⎟⎟⎟⎠
x

= 0 . (19.13)

The eigenvalues from both the flux Jacobian FU and the matrix W(V) in this
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equation are found to be

λ1 = vx − cf , λ2 = vx − cs , λ3 = vx + cs , λ4 = vx + cf , (19.14)

where the familiar slow and fast magneto-acoustic speeds are computed from

c2f,s = 1
2

[
c2i + (B2

x +B2
y)/ρ
]
± 1

2

√[
c2i + (B2

x +B2
y)/ρ
]2 − 4c2iB2

x/ρ . (19.15)

As already mentioned, some of the four eigenvalues coincide in certain limits, such
that the MHD system is not strictly hyperbolic.

� Eigenvectors The right eigenvectors for the Jacobian matrix are the columns of

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

vx − cf vx − cs vx + cs vx + cf

vy +
cfBxBy
ρc2f −B2

x

vy +
csBxBy
ρc2s −B2

x

vy − csBxBy
ρc2s −B2

x

vy − cfBxBy
ρc2f −B2

x
c2fBy

ρc2f −B2
x

c2sBy
ρc2s −B2

x

c2sBy
ρc2s −B2

x

c2fBy
ρc2f −B2

x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(19.16)
Note that we are free to adopt another scaling for these eigenvectors. This will be needed
for proper handling of the indeterminacies where ρc2s,f = B2

x. The left eigenvectors of FU

can be found in the rows of R−1. This matrix is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−vycf
2c2i

By
Bx

c2s
c2f − c2s

+
vxcf + c2i

2c2i
α2

f −α2
f

cf
2c2i

By
Bx

2c2s cf
(c2f − c2s )c2i

By
2(c2f − c2s )

vycs
2c2i

By
Bx

c2f
c2f − c2s

+
vxcs + c2i

2c2i
α2

s −α2
s

cs
2c2i

−By
Bx

2c2f cs
(c2f − c2s )c2i

−By
2(c2f − c2s )

−vycs
2c2i

By
Bx

c2f
c2f − c2s

− vxcs − c2i
2c2i

α2
s α2

s

cs
2c2i

By
Bx

2c2f cs
(c2f − c2s )c2i

−By
2(c2f − c2s )

vycf
2c2i

By
Bx

c2s
c2f − c2s

− vxcf − c2i
2c2i

α2
f α2

f

cf
2c2i

−By
Bx

2c2s cf
(c2f − c2s )c2i

By
2(c2f − c2s )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19.17)
In these expressions, we introduced the positive parameters

α2
f =

c2i − c2s
c2f − c2s

, α2
s =

c2f − c2i
c2f − c2s

. (19.18)

For the primitive variable formulation, the right eigenvectors are found to be

R̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

−cf/ρ −cs/ρ cs/ρ cf/ρ

cf
ρ

BxBy
ρc2f −B2

x

cs
ρ

BxBy
ρc2s −B2

x

−cs
ρ

BxBy
ρc2s −B2

x

−cf
ρ

BxBy
ρc2f −B2

x

c2fBy
ρc2f −B2

x

c2sBy
ρc2s −B2

x

c2sBy
ρc2s −B2

x

c2fBy
ρc2f −B2

x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19.19)
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Finally, the left eigenvectors for W(V) are the rows of

R̂−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2α

2
f − 1

2α
2
f
ρcf
c2i

1
2

BxBy
cf(c2f − c2s )

By
2(c2f − c2s )

1
2α

2
s −1

2α
2
s

ρcs
c2i

− 1
2

BxBy
cs(c2f − c2s )

−By
2(c2f − c2s )

1
2α

2
s

1
2α

2
s

ρcs
c2i

1
2

BxBy
cs(c2f − c2s )

−By
2(c2f − c2s )

1
2α

2
f

1
2α

2
f

ρcf
c2i

−1
2

BxBy
cf(c2f − c2s )

By
2(c2f − c2s )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19.20)

Using the columns in R̂ of Eq. (19.19), we can derive generalized Riemann invariants. �

Following the definition from Eq. (19.10), we get for the first wave family asso-
ciated with λ1 = vx − cf the system

cf dρ+ ρ dvx = 0 ,

Bx(c2f − c2i ) dvx +Byc
2
f dvy = 0 ,

ρcf dvy −Bx dBy = 0 . (19.21)

Changing to dimensionless variables r = ρc2i /B
2
x and q = c2f /c

2
i , we find

dvx = − ci
√
q

r
dr ,

dvy = ci

√
(q − 1)(qr − 1)
r(qr − 1)

sgn(BxBy) dr ,

dq =
q2(q − 1)
q2r − 1

dr . (19.22)

The function J = r/(q − 1) +
∫
dqq−2(q − 1)−2 can then be verified to obey

dJ = ∂J/∂r dr + ∂J/∂q dq = 0. This essentially integrates the third equation
in the set (19.22). Since this generalized Riemann invariant does not depend on
the velocity components, it will be referred to as the magneto-acoustic Riemann
invariant. The two other generalized Riemann invariants for simple waves associ-
ated with λ1 are found from integrating the first two equations in (19.22). Note the
requirement q > 1 and qr > 1, restricting (r, q) state space, so that better param-
eterizations may exist [345, 346]. Similar expressions can be found for the three
generalized Riemann invariants associated with each simple wave family for λ2,3,4.
For the iso-thermal system considered, we can explicitly evaluate the integral ap-
pearing in the fast and slow magneto-acoustic (generalized) Riemann invariants, to
get the analytic forms

Js,f =
−c2s,f + ρc4i /B

2
x

c2s,f − c2i
+
c2s,f − c2i
c2s,f

− 2 ln
∣∣∣∣c2s,f − c2ic2s,f

∣∣∣∣ . (19.23)
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These can be used to verify numerical solutions to Riemann problems, as will be
explained and demonstrated further on.

Linear hyperbolic PDE system It is instructive to briefly reconsider the linear sys-
tem case, where the flux is given by F = AU and the Jacobian is a constant n× n
matrix A = FU. Again assuming strict hyperbolicity, such that A has real and
distinct eigenvalues, we then find immediately from Eq. (19.9) that Riemann in-
variants and characteristic variables coincide, R̃ = R−1U, since matrix R−1 is
then also constant. In terms of these characteristic variables, the system of equa-
tions becomes a set of n decoupled advection equations

∂R̃p
∂t

+ λp
∂R̃p
∂x

= 0, p = 1, . . . , n . (19.24)

Each of these equations has a trivial, exact solution in terms of its initial condition,

R̃p(x, t) = R̃p(x− λpt, 0) . (19.25)

The exact solution to the linear hyperbolic PDE system in terms of the conservative
variables is then found from U = RR̃, or

U(x, t) =
n∑
p=1

R̃p(x− λpt, 0)rp . (19.26)

For every point x, the solution at any time t thus depends only on the value of the
initial data at n discrete points. In particular, these points are at the intersection of
the t = 0 axis with all the p-characteristics through (x, t). The p-characteristics are
in this linear case all straight lines x = x0 +λpt. Since we know the exact solution
when the initial condition is translated to the characteristic variables, the linear
hyperbolic system can be used to validate numerical approaches for handling, in
particular, discontinuous data.

19.1.2 Scalar conservation law and the Riemann problem

The consequences of nonlinearity in a system of conservation laws can already
be illustrated in the case of a single scalar conservation law. A general nonlinear
scalar conservation law for the quantity u(x, t) is written as

ut + (f(u))x = 0 , (19.27)

where the flux function f(u) depends nonlinearly on u. The inviscid Burgers equa-
tion is obtained for f(u) = u2/2. Assuming differentiability, Burgers’ equation
can be written as

ut + uux = 0 , (19.28)
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so that we can speak of a local “advection” speed u, which is also the characteristic
speed quantified by the Jacobian, i.e. derivative, fu = u ≡ f ′(u). Identifying u
as a density, the local density determines the local advection speed, with denser
regions traveling faster than more rarified ones. Note further that the spatial integral∫ x2
x1
u dx determining the total “mass” over the interval [x1, x2] will be the same

for all times if the fluxes f(u) at the edges x1 and x2 vanish at all times. This
is the conservation property of Eq. (19.27). From these considerations, it is now
easily understood how wave steepening and shock formation can occur. Envision
a triangular pulse as initial data, given by

u(x, 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u0 (x ≤ −x0 ) ,

u0 + h0(x0 + x)/x0 (−x0 < x ≤ 0 ) ,

u0 + h0(x0 − x)/x0 ( 0 < x ≤ x0 ) ,

u0 (x > x0 ) .

(19.29)

Since the characteristic speed is given by the local value of u, the tip of the triangle
experiences the fastest rightward advection (we assume u0 > 0 and h0 > 0). In
conserving the total area underneath the triangle, the front edge steepens. At the
space-time point when the tip of the triangle has caught up with the rightmost point
of the front edge, a discontinuity appears in the solution. This happens at the time
when their characteristics meet, namely at time ts = x0/h0. From this time of
shock formation onwards, conservation now demands the discrete equivalent of
the conservation law to hold across the discontinuity, this means in terms of the
adjacent left u	 and right ur values that

f(u	)− f(ur) = s (u	 − ur) . (19.30)

Here, the discontinuity is assumed to travel with shock speed s, and for the inviscid
Burgers case, we find that s = (u	 + ur)/2. Precisely at time ts, we then have
s(ts) = u0 + h0/2. From this time on, the base of the triangle will widen due to
the speed difference between the left edge traveling with u0 and the shocked right
edge traveling at speed s(t). In accord with conservation, the height of the triangle
must therefore decrease in time. The full solution for times t > ts = x0/h0 thus
works out to be

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u0 (x ≤ −x0 + u0t),

u0 + 2h0
x+ x0 − u0t(√
h0t+

√
x0
)2 ( − x0 + u0t < x ≤ u0t+

√
x0h0t),

u0 (x > u0t+
√
x0h0t).

(19.31)
The shock speed for the right edge is then s(t) = u0 + h0

√
x0/
(√
x0 +

√
h0t
)
.

The evolution is schematically indicated in Fig. 19.2.
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t=0 pulse shock forms triangle widens, area conserving

Fig. 19.2 Evolution of an initially triangular pulse in the inviscid Burgers equation.

The relation (19.30) is the jump condition or Rankine–Hugoniot relation for the
simple scalar conservation law. Note that it is symmetric in its two arguments rep-
resenting a left and right state u	, ur. Obviously, though, for Burgers’ equation we
appreciate immediately that a different solution must emerge when we interchange
the two states in the particular discontinuous initial condition where

u = u	 for x ≤ 0 ,

u = ur for x > 0 . (19.32)

This represents the Riemann problem where two constant states in contact are left
to evolve. When u	 > ur, we can expect a pure shock solution, with shock speed
found from (19.30). Conversely, when u	 < ur, we expect the right state to “run
away” from the left one, turning the initial discontinuity into a continuously in-
creasing profile. Therefore, the jump relation (19.30) is not sufficient to discrim-
inate between allowed (weak) discontinuous solutions. A physically admissible
shock must obey another relation as well, known as the Lax entropy condition.
This Lax entropy condition states that a shock with speed s satisfying the Rankine–
Hugoniot relations must additionally obey

f ′(u	) > s > f ′(ur) . (19.33)

We identified f ′(u) from the scalar conservation law as the characteristic speed, so
this expresses that the shock speed must lie in between the characteristic speeds of
the two adjacent states. This condition is asymmetric in left versus right state. For
Burgers’ equation, we find u	 > 1

2(u	 + ur) > ur, as expected. The space-time
characteristics for Burgers’ equation on either side of this admissible shock have
constant slopes u	 > ur, so that the characteristics “go into the shock” [302].

� Generalization to nonlinear systems We can readily generalize the Rankine–Hugoniot
relations for shocks to nonlinear systems. From the conservation form (19.2), we obtain
the equivalent of Eq. (19.30), expressing conservation across a moving discontinuity,

F(U)− F(U∗) = s(U−U∗) . (19.34)

For a fixed state U∗, relation (19.34) defines its Hugoniot locus, consisting of all states U
which can be connected to U∗ via a discontinuous shock moving at (scalar) speed s. For a
system of n equations, we will then find n one-parameter families. When writing U(ζ,U∗)
and s(ζ,U∗), where ζ is chosen such that U(0,U∗) = U∗, we can look in particular at
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weak shocks. Then F(U(ζ,U∗)) ≈ F(U(0,U∗)) + FU(U(0,U∗))(U(ζ,U∗) − U∗).
We then differentiate relation (19.34) to ζ, writing dU/dζ = U′, and evaluate it in ζ = 0:

FU(U(0,U∗))U′(0,U∗) = s(0,U∗)U′(0,U∗) . (19.35)

Since this expresses that U′(0,U∗) must be an eigenvector of the flux Jacobian evaluated in
U∗, with eigenvalue s(0,U∗), the n parameter families for shocks can be associated with
the n eigenvalues of FU. For weak shocks, we find sp = λp(U∗) so that shock speeds are
given by the characteristic speeds. However, this correspondence for weak shocks does not
hold for strong shocks, where the nonlinear character of Eq. (19.34) can cause significant
deviations. Furthermore, we again will need selection criteria to distinguish which part
of the Hugoniot locus represents physically admissible shocks. One such criterion is the
generalization of the Lax entropy condition. This states that a jump in the pth wave family
obeying Rankine–Hugoniot which travels with speed s is allowed when

λp(U�) > s > λp(Ur) . (19.36)

The p-characteristics then enter the p-shock from both sides. From every point on the
shock, one can then travel along characteristics backward in time. This indicates how
information reaches the shock from the past, not from the future, as required by “causal-
ity”. This time-irreversibility argument leads to the nomenclature of “entropy” condition
for (19.36). However, additional arguments may be needed to select physically admissible
shocks, since for a system of n nonlinear equations, a discontinuity traveling at speed s can
have more than one of the n characteristic families on each side converge into the shock.
This situation represents so-called overcompressive shocks. �

Rarefaction waves Returning to Burgers’ equation, we can also analyze the case
where u	 < ur, and a continuously increasing profile is expected. In fact, there are
infinitely many weak solutions in this case, including a pure shock one with shock
speed s = (u	 + ur)/2. But now the characteristics go out of the shock, which
makes this solution unstable to perturbations. A small change in initial data can
yield a completely different solution in this “entropy-violating” shock [302]. The
physically correct continuous solution to the Riemann problem will obey an x/t
self-similarity in the (x, t) plane. Writing u(x, t) = u(x/t) ≡ u(ξ), we find that
the conservation law (19.27) translates into

f ′(u)
du

dξ
= ξ

du

dξ
, (19.37)

or we must have ξ = f ′(u). For Burgers’ equation, this means that the solution to
the Riemann problem, for which u	 < ur with the discontinuity initially at x = 0,
is given by

u(x, t) = u(x/t) =

⎧⎪⎨⎪⎩
u	 (x < u	t )
x/t (u	t < x < urt )
ur (x > urt )

. (19.38)

This is a so-called rarefaction wave, as u decreases (in terms of a density: the
medium gets rarefied) when the signal passes. Hence, the solution to the Riemann
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problem for the inviscid Burgers’ equation is either a shock wave (case u	 > ur),
or a rarefaction wave (case u	 < ur).

� Generalization to nonlinear systems The self-similar rarefaction wave solution for
the nonlinear system starts with the quasi-linear form (19.4), as it analyzes the possibility
for continuously varying solutions where U(x, t) = U(x/t) ≡ U(ξ). Note that this is
the simple wave construction mentioned earlier, with the dependence on x/t sometimes
referred to as a centered simple wave. We deduce that, for such self-similar solutions,
∂U/∂t = −xU′/t2 and ∂U/∂x = U′/t, leading to

FUU′ = ξU′ . (19.39)

This expression means that ξ must be an eigenvalue λp of the flux Jacobian FU, and that
U′ (with the prime indicating the derivative with respect to ξ) must be proportional to
the corresponding right eigenvector rp. Note that we already found this relation for the
local Hugoniot locus (weak shock case), but here it is true along the entire parameterized
ξ = x/t range. Curves in state space U along which the tangent always coincides with an
eigenvector are termed integral curves. Hence, from Eq. (19.39), we can write

ξ = λp(U(ξ)) and U′ = α(ξ)rp(U(ξ)) . (19.40)

Differentiating the first expression with respect to ξ we find

1 = (∇Uλp) ·U′ . (19.41)

Using the correspondence between U′ and rp, the proportionality constant is found from

α(ξ) =
1

(∇Uλp) · rp . (19.42)

Obviously, the construction fails for wave families where the denominator in Eq. (19.42),
the so-called structure coefficient sp = (∇Uλp) · rp, vanishes identically. In such a case,
the pth wave field is termed linearly degenerate. When it is always strictly positive (or
strictly negative), the field is genuinely nonlinear. In MHD, we will see that slow and fast
magneto-sonic wave families are neither linearly degenerate nor genuinely nonlinear. This
is in contrast with the Euler system for gas dynamics, where all fields are either linearly
degenerate or genuinely nonlinear, which is the characterizing property of a convex system
of conservation laws. Note that we can also compute the structure coefficients from the
primitive eigenvectors through sp = (∇Vλp) · r̂p. These coefficients relate to the tendency
of a wave family to steepen or spread, and when sp = 0 identically, the pth wave mode
propagates by means of finite discontinuities. Finally, when a rarefaction wave solution
connects a left constant state U� with a right constant state Ur, we need ξ = λp to increase
monotonically from its value ξ� = λp(U�) < ξ = x/t < ξr = λp(Ur), which also acts
as a selection criterion for admissible rarefaction waves. Note the reversal in the order
as compared to the Lax entropy condition (19.36). Through a p-rarefaction, all n − 1
generalized Riemann invariants for the pth wave family remain constant. �

Compound waves: a scalar example The flux f(u) appearing in the nonlinear
conservation law (19.27) is said to be convex when the second derivative f ′′(u) has
the same sign everywhere, expressing that the first derivative f ′(u) varies mono-
tonically. Burgers’ equation with flux function f(u) = u2/2 has this property, and
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the Riemann problem gave rise to either a rarefaction solution or a shock. When we
take as nonlinear flux function f(u) ≡ u3, the flux is non-convex, as f ′′(u) = 6u
changes sign at u = 0. The characteristic speed is now locally 3u2. In the solution
of the Riemann problem for a scalar equation with a non-convex flux function, a
new possible outcome arises. The familiar cases return as long as we stay on the
monotonic side by e.g. restricting u > 0. Then, we conclude by analogy with Burg-
ers’ equation that for f(u) ≡ u3 the rarefaction wave will occur when 0 < u	 < ur
with solution

u(x, t) = u(x/t) =

⎧⎪⎪⎨⎪⎪⎩
u	 (x < 3u2

	 t )√
x/(3t) ( 3u2

	 t < x < 3u2
rt )

ur (x > 3u2
rt )

. (19.43)

In contrast, when 0 < ur < u	, the discontinuity is maintained and travels at the
shock speed s = u2

	 + u	 ur + u2
r .

When we allow for negative states u, we can find a “compound” solution as
follows. Taking u	 > 0 > ur, we can seek an intermediate state um < 0 which
connects to u	 discontinuously, hence at shock speed s = u2

	 + u	 um + u2
m, while

at the same time um is connecting to the right state ur by a rarefaction solution.
This compound solution then has

u(x, t) = u(x/t) =

⎧⎪⎪⎨⎪⎪⎩
u	 (x < s t = 3u2

mt )

−√x/(3t) ( 3u2
mt < x < 3u2

rt )

ur (x > 3u2
rt )

. (19.44)

For the case considered here, um = −u	/2, and thus this compound solution will
only emerge when u	 > 0 > −u	/2 > ur. We will see that the MHD system
allows for such compound solutions in both fast and slow wave families.

19.1.3 Numerical discretizations for a scalar conservation law

Turning to numerical treatments for conservation laws, we would like the employed
discretization to allow for a proper treatment of discontinuous solutions as well,
and only give rise to physically admissible shocks. To stress the importance of
using a discretization which is able to handle discontinuities properly, suppose we
were to apply the following first order scheme to the inviscid Burgers equation,
directly discretizing its quasi-linear form (19.28) as

un+1
i − uni +

Δt
Δx

uni
(
uni − uni−1

)
= 0, (19.45)

where we assumed u ≥ 0. The particular initial data [1, 1, 1, 0, 0, 0] is seen [302]
to remain a discrete solution that does not change from time tn to tn+1 = tn + Δt.
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However, we know from the discussion above that the correct solution should have
the discontinuous jump traveling rightward, at the shock speed s = 0.5. The reason
why this discretization fails for discontinuous solutions is that it cannot be written
in a conservative form. A conservative scheme for a set of conservation laws with
conserved variables U is of the form

Un+1
i = Un

i −
Δt
Δx

[
Fi+1/2 − Fi−1/2

]
, (19.46)

where the numerical fluxes Fi+1/2 are interpreted as time-average fluxes over
cell edges xi + Δx/2 ≡ xi+ 1

2
. Note that the non-conservative scheme (19.45)

would do fine for smooth solutions to the inviscid Burgers equation, but because
it is not in conservation form, the discrete equivalent of the Rankine–Hugoniot
relation (19.30) is not guaranteed. In fact, a rigorous mathematical analysis by
Hou and Le Floch [232] demonstrates that using any finite difference scheme in
non-conservative form to numerically solve a scalar conservation law will lead
to significant errors which grow in time. A demonstration on how bad a non-
conservative MHD code may perform on discontinuity dominated test problems
can be found in [131]. The Lax–Wendroff theorem ensures that a convergent con-
servative scheme does converge to a weak solution of the conservation law (see,
e.g. [302] and references therein).

Lax–Friedrichs, Lax–Wendroff and MacCormack schemes In the case of a sin-
gle, scalar conservation law as expressed by (19.27), we now revisit and read-
ily generalize to the nonlinear case some of the conditionally stable explicit dis-
cretizations encountered in Chapter 15, which are conservative. The first order
Lax–Friedrichs scheme (15.110) is written as

un+1
i = 1

2(uni+1 + uni−1)− 1
2

Δt
Δx
(
fni+1 − fni−1

)
. (19.47)

This scheme is stable when the CFL condition∣∣∣∣ΔtΔx
f ′(ui)

∣∣∣∣ ≤ 1 , (19.48)

is satisfied at all grid points. This Lax–Friedrichs scheme is conservative, since we
can write it in the generic form (19.46) when we identify the numerical flux as

FLF
i+1/2 = 1

2

[
fi+1 + fi − Δx

Δt
(ui+1 − ui)

]
. (19.49)

To generalize the second order Lax–Wendroff scheme (15.117) to a nonlin-
ear equation solver, the most popular formulation is in the form of a predictor–
corrector type method as proposed by Richtmyer. The Richtmyer two–step version
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Fig. 19.3 Stencils of the predictor (left) and corrector (right) steps in the two-step
Lax–Wendroff method.

of the Lax–Wendroff method reads:

“predictor”: u
n+ 1

2

i+ 1
2

= 1
2(uni+1 + uni )− 1

2

Δt
Δx

(fni+1 − fni ) ,

“corrector”: un+1
i = uni −

Δt
Δx

(
f
n+ 1

2

i+ 1
2

− fn+ 1
2

i− 1
2

)
. (19.50)

Hence, in the predictor step the intermediate values at half time step and at half
mesh points, un+1/2

i+1/2 , are calculated by the Lax–Friedrichs scheme and these inter-
mediate values are used in the corrector step. Clearly, the scheme is conservative

as it uses the fluxes f
n+ 1

2

i± 1
2

and determines the values un+1
i in the next time step with

the leapfrog scheme (15.115). The stencils of the two steps are given in Fig. 19.3.
It is this two-step version of the Lax–Wendroff scheme that has been used exten-

sively in MHD simulations. As a concrete example, Ofman and Davila [355] used
it to address the nonlinear evolution of both standing and traveling Alfvén waves in
3D slab models of driven coronal “loops”. The loop equilibria were approximated
as channels with a density depletion in uniformly magnetized zero-β slabs. Their
nonlinear resistive MHD simulations demonstrated that nonlinear effects play a
crucial role in the resonant absorption of the wave energy (discussed in Chapter 11
[1] for the linear regime). In the vicinity of the resonant dissipation layers, highly
sheared flows were formed, and Kelvin–Helmholtz instabilities developed. We will
present a closely related 3D nonlinear study for cylindrical loop models further on
in this chapter, in Section 19.4.2 (see Fig. 19.30).

Another multi-level method is the two-step MacCormack method:

“predictor”: u∗i = uni −
Δt
Δx

(fni+1 − fni ) ,

“corrector”: un+1
i = 1

2(uni + u∗i )− 1
2

Δt
Δx
(
f∗i − f∗i−1

)
. (19.51)

Note that the step size in the predictor step is now Δt and that the spatial derivative
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Fig. 19.4 Initial triangular pulse (left) and shocked numerical solution of Burgers’
equation as obtained with the second order MacCormack method.

switches from left- to right-sided in the partial steps. One typically would permute
this order from one full time step to the next, to better maintain the symmetry. The
intermediate value u∗ is used to determine the fluxes f∗i and f∗i−1, which “correct”
it and replace it by the final value un+1

i . The MacCormack method is equivalent
to the two-step Lax–Wendroff scheme for linear problems but somewhat better
for nonlinear problems. This scheme is also second order accurate. An example
numerical solution by the MacCormack method for solving Burgers’ equation is
shown in Fig. 19.4, where the initial condition is the triangular pulse discussed
earlier. For the particular pulse chosen, shock formation started at ts = 0.277778.
At the time t = 0.5 shown, the numerical solution has propagated in full agreement
with the analytic outcome. Note that a small oscillatory tail exists at the trailing
edge of the pulse, as well as immediately behind the shock transition.

� Exercise Show that for a linear advection equation with f(u) = vu, the substitution of
the first step in the second step of the two-step Lax–Wendroff scheme yields the original
Lax–Wendroff scheme (15.117). (Be careful about the step sizes!) For the general nonlin-
ear scalar conservation law, verify that the MacCormack method is conservative and give
the expression for its numerical flux Fi+ 1

2
. �

Both the Lax–Wendroff (19.50) and MacCormack (19.51) schemes are better
approximations to the PDE (19.27) than the Lax–Friedrichs scheme (19.47), since
the former two schemes are second order accurate. Second order accuracy in both
space and time translates in local truncation errors given by O(C3) or O(Cδ2)
in the dimensionless parameters δ = |(Δx/u) ∂u/∂x| and the Courant number
C = f ′(u) Δt/Δx. These schemes yield satisfactory results as long as the so-
lution u(x) and the coefficient function f ′(u(x)) are smooth. However, in the
neighborhood of shocks and steep gradients δ ∼ O(1) and in regions where the
characteristic speed f ′(u) is large, we can have C ∼ O(1). As a result, in such re-
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Fig. 19.5 Gibbs phenomenon, as illustrated for the linear advection of a single dis-
continuity, as obtained with the MacCormack method for different resolutions. The
initial discontinuity was at x = 0.5, and the solution corresponds to time t = 0.4.
The exact solution should jump at x = 0.9.

gions the truncation errors can become as large as the solution itself, yielding “nu-
merical pollution” in the form of short-wavelength oscillations. These can already
be demonstrated for a linear advection problem where f(u) = vu with constant v,
where Lax–Wendroff and MacCormack schemes coincide, by numerically solving
its Riemann problem (19.32). This is illustrated in Fig. 19.5, where we show the
effect in combination with increasing the number of grid points. The result of solv-
ing a Riemann problem with u	 = 1 and ur = 0.1, initially at x = 0.5 with v = 1,
is shown at time t = 0.4. The initial discontinuity is captured numerically by a
steep negative gradient region, immediately trailed by an oscillatory part. This os-
cillation does not disappear when more grid points are used, but covers roughly the
same number of grid points throughout. This so-called Gibbs phenomenon is an in-
dication of the dispersive properties of this scheme, where numerical wave signals
of different wavelengths travel at different speeds. Note that the Riemann problem
has an initially monotone (although discontinuous) variation with x, i.e. there is no
internal extremum of u(x, t = 0). The Lax–Wendroff and MacCormack methods
can introduce internal extrema (as those seen in Fig. 19.4) from initially monotone
data, and are therefore “non-monotonicity preserving”. In fact, for a scalar nonlin-
ear conservation law, the exact solution should maintain monotonicity if the initial
data is monotone (even including discontinuities), so it would be nice to guarantee
“monotonicity preserving” schemes. We return to this issue when discussing total
variation diminishing schemes, but first explain how it is done in a flux corrected
transport approach.
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Flux corrected transport The flux corrected transport or FCT method was one of
the first high-resolution methods [62]. Flux corrected transport rather refers to a
“technique” which is applicable to different numerical schemes. When applied to
the finite difference schemes discussed in Chapter 15, the schemes are modified to
predictor/corrector-type. In the “predictor” step an artificial damping or diffusion
term is added so that the computed solution ensures both conservation and positiv-
ity (an initial positive density profile remains positive under pure advection). In the
“corrector” step a certain amount of damping that may have been “excessive” is re-
moved again in an anti-diffusion stage. This anti-diffusion is necessarily nonlinear,
and designed to preserve monotone profiles: no new local extrema in the solution
are created, and existing extrema do not get accentuated. The overall method is
stable under the usual CFL-type condition.

As a concrete example, an FCT variant of the Lax–Wendroff scheme (15.117)
for the linear advection equation (15.101), ut = −v ux with constant v, gives

u∗i = uni −
Δt

2 Δx
v (uni+1−uni−1)+

[
1
2

(Δt)2

(Δx)2
v2 +ε1

]
(uni+1−2uni +uni−1) (19.52)

for the predictor step. Notice the additional second order damping term with coef-
ficient ε1 in this step. To undo this added diffusion, one would like to subtract the
diffusion in a corrector step of the form

un+1
i = u∗i − ε2 (u∗i+1 − 2u∗i + u∗i−1) . (19.53)

To be consistent with the time-invariant solution when v = 0, one must have
ε1(v = 0) = ε2(v = 0). The total artificial diffusion added to the scheme, i.e.
after both the diffusion and the anti-diffusion steps, equals ε1 − ε2 and thus, in
general, does not vanish. Boris and Book [62, 63] analyzed amplitude and phase
errors for different choices of these coefficients for the linear advection equation
extensively. While originally taking ε1 = ε2 = 1/8, an improved choice with
ε1 = ε2 = (1 − C2)/6 where C = vΔt/Δx reduces phase errors to fourth order
accuracy. The key observation of the FCT method is that in practice a nonlinear
effectively variable numerical diffusion ε2 is required in Eq. (19.53) in order not to
introduce new extrema in the anti-diffusion stage. The artificial diffusion term is
then written in the form ε2(u∗; i+ 1/2)(u∗i+1 − u∗i )− ε2(u∗; i− 1/2)(u∗i − u∗i−1),
where the notation indicates that ε2 depends on some finite number of values of u∗.
Writing Δu∗i+1/2 = u∗i+1 − u∗i , the FCT corrector step (19.53) gets modified to

un+1
i = u∗i − FAi+1/2 + FAi−1/2 ,

FAi+1/2 = sgnΔu∗i+1/2 max
{
0,min

(
Δu∗i−1/2 sgnΔu∗i+1/2,

|ε2 Δu∗i+1/2|,Δu∗i+3/2 sgnΔu∗i+1/2

)}
. (19.54)
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The locally effective anti-diffusion coefficient is then determined by means of a
nonlinear “flux limiter” or filter and, hence, the FCT method is a special case of
the so-called “flux-limiter methods”. Note that the stencil of the method widens as
a result.

� Exercise Rewrite the first, predictor, stage of the FCT method given by Eq. (19.52) as a
conservative update of the solution involving a transport and diffusion stage expressed as

u∗i = uni − FT
i+1/2 + FT

i−1/2 + FD
i+1/2 − FD

i−1/2 . (19.55)

The transport flux will be FT
i+1/2 = vuni+1/2Δt/Δx with uni+1/2 = 1

2 (uni +uni+1), and the

diffusion flux reads FD
i+1/2 = (ε1 +C2/2)Δuni+1/2. Implement and test this FCT scheme,

as well as the standard Lax–Wendroff method for numerically solving the linear advection
equation. Consider both smooth and discontinuous initial profiles. �

The FCT method is readily generalized from the linear case discussed above to
the case of a system of nonlinear conservation laws as given by Eq. (19.2) for the
1D case. The flux F(U) for each conserved quantity is then split into a transport
Uv part and a “source term” contribution, where the transport velocity v(U) is the
fluid velocity for Euler and MHD equations. One combines a predictor–corrector
approach for reaching second order temporal accuracy with the transport, diffusion
and anti-diffusion stages in each partial step as

UT
i = Un

i −
Δtp,c

Δx

(
Un
i+1/2v

p,c
i+1/2 −Un

i−1/2v
p,c
i−1/2

)
+ Δtp,cSp,c

i ,

UD
i = UT

i + νp,c
i+1/2ΔUn

i+1/2 − νp,c
i−1/2ΔUn

i−1/2 ,

UA
i = UD

i − FA;p,c
i+1/2 + FA;p,c

i−1/2 . (19.56)

The diffusion coefficient is taken in analogy with the above best choice for ε1 as

νp,c
i+1/2 = 1

6 + 1
3

(Δtp,c
Δx

vp,c
i+1/2

)2
. (19.57)

The anti-diffusion involves the nonlinear filter operation of Eq. (19.54), where it
uses the diffused solution differences ΔUD from that partial step, except in the
term with ε2 where it uses the transported values ε2ΔUT. The coefficient ε2 gets
replaced by the anti-diffusion coefficient

νp,c
i+1/2 = 1

6 − 1
6

(Δtp,c
Δx

vp,c
i+1/2

)2
. (19.58)

In the predictor step Δtp = Δt/2 is used, while the corrector uses the full time
step Δtc = Δt. It should be noted that various variants of the FCT method can be
conceived, and the more advanced make use of a multi-dimensional variant of the
nonlinear limiter employed in the anti-diffusion stage.

Examples of the use of the FCT method in an MHD context are ample in the
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literature. Noteworthy early examples are: astrophysical jet simulations by Kössl,
Müller and Hillebrandt [286], assuming axial symmetry, but allowing for helical
equipartition magnetic fields, and a paper by DeVore [115] discussing FCT tech-
niques for compressible MHD. In the solar physics context, we mention applica-
tions to magneto-convection and magnetic flux tubes by Steiner et al. [420, 419]
(discussed and illustrated further on in this chapter, see Figure 19.23), and Alfvén
wave heating of coronal loops by Poedts and Boynton [374]. The method is still in
use for MHD simulations to date, although it is a somewhat outdated scheme.

Total variation diminishing schemes Another way to ensure a monotonicity pre-
serving scheme for a scalar nonlinear conservation law, is to require a more strin-
gent property, namely that the scheme is total variation diminishing, or TVD. The
total variation of a function u(x) on its domain, e.g. [0, 1], is defined as

TV (u) ≡
∫ 1

0

∣∣∣du
dx

∣∣∣ dx . (19.59)

In case of discontinuous profiles u(x), the derivative is to be interpreted in the
sense of distribution functions. In analogy with this definition, the total variation
of the numerical approximation of u is then

TV (un) =
N−1∑
i=0

∣∣uni+1 − uni
∣∣ . (19.60)

A scheme is said to be “total variation diminishing” (TVD), or actually has a non-
increasing total variation in time, if and only if for every discrete time level n

TV (un+1) ≤ TV (un) . (19.61)

Again, it can be shown that the true solution of a scalar conservation law has this
TVD property, i.e. TV (u(x, t2)) ≤ TV (u(x, t1)), for all t2 > t1. When a scheme
is TVD as defined by (19.61), it is rather obvious that it will also be monotonicity
preserving: if a local extremum in the discrete solution appeared from an initially
monotone sequence ui with i = 0, . . . N , it would naturally raise the total variation
too. Hence, we may build in the TVD property (19.61) into the scheme, and we are
then sure that no spurious oscillations will be introduced when numerically solving
the Riemann problem. A result due to Harten [216] is thereby very useful. It states
that any scheme which can be written in the general form

un+1
i = uni +Ai+1/2

(
uni+1 − uni

)︸ ︷︷ ︸
Δun

i+1/2

−Bi−1/2

(
uni − uni−1

)︸ ︷︷ ︸
Δun

i−1/2

(19.62)
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is TVD when the scheme dependent coefficientsAi+1/2 andBi−1/2 obey at all grid
indices i

Ai+1/2 ≥ 0 ,

Bi−1/2 ≥ 0 ,

0 ≤ Ai+1/2 +Bi+1/2 ≤ 1 .

(19.63)

As a particular example, the first order Lax–Friedrichs scheme (19.47) has this
property, as we may formally manipulate the discrete formula to

un+1
i = uni + 1

2

(
1− Δt

Δx
fni+1 − fni
Δui+ 1

2

)
Δui+ 1

2
− 1

2

(
1 +

Δt
Δx

fni − fni−1

Δui− 1
2

)
Δui− 1

2
.

(19.64)
The requirements (19.63) translate into the CFL condition∣∣∣∣∣ΔtΔx

fni+1 − fni
uni+1 − uni

∣∣∣∣∣ ≤ 1 , (19.65)

as stated in (19.48).
We can improve the rather diffusive nature of the first order Lax–Friedrichs

scheme by changing the numerical flux (19.49) to the following:

FLLF
i+1/2 = 1

2

{
fi+1 + fi − |αi+ 1

2
| [ui+1 − ui]

}
, (19.66)

in which the coefficient αi+ 1
2

is found from

αi+1/2 ≡
{ Δx/Δt if uni+1 − uni = 0 ,

fni+1 − fni
uni+1 − uni

if uni+1 − uni �= 0 .
(19.67)

This definition ensures that the derivatives are taken in the “upwind” direction,
meaning that we effectively switch between one-sided left or right derivative eval-
uation depending on the sign of αi+ 1

2
. Indeed, we get

un+1
i = uni −

Δt
Δx

{ (fni+1 − fni ) for αi+1/2, αi−1/2 < 0 ,

(fni − fni−1) for αi+1/2, αi−1/2 > 0 .
(19.68)

In the linear advection problem, the sign of the constant advection speed v de-
termines which of these discretizations represents the upwind scheme. The full
scheme with numerical flux (19.66) can be rewritten in different forms, e.g.

un+1
i = uni − 1

2

Δt
Δx

[
αi+1/2Δu

n
i+1/2 − |αi+1/2|Δuni+1/2

+ αi−1/2Δu
n
i−1/2 + |αi−1/2|Δuni−1/2

]
. (19.69)
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This is of the general form (19.62) with⎧⎪⎪⎨⎪⎪⎩
Ai+1/2 = 1

2
Δt
Δx (|αi+1/2| − αi+1/2) ≥ 0 ,

Bi−1/2 = 1
2

Δt
Δx (|αi−1/2|+ αi−1/2) ≥ 0 .

(19.70)

Hence, two of the three sufficient conditions (19.63) for the scheme to have the
TVD property are satisfied. The third condition reads

0 ≤ |αi+1/2|
Δt
Δx
≤ 1 , (19.71)

which is a CFL-type condition on the time step for a given spatial resolution. When
it is satisfied, the upwind scheme has the TVD property.

So far, we only gave examples of first order accurate TVD schemes, which lead
to oscillation-free solutions. In what follows, we will present second order TVD
schemes. However, the scheme then needs a truly nonlinear dependence on the
discrete data, even for the case of a linear advection equation. This is a direct
consequence of the Godunov theorem, which states that a linear monotonicity pre-
serving scheme is at most first order accurate. Second order TVD schemes can be
developed by introducing nonlinear flux limiters, which we already encountered
for the flux corrected transport method. Such schemes are second order only in
“smooth” regions and first order at extrema and shocks. Still, in comparison with
fully first order schemes, the shock smearing will be reduced. An example second
order TVD type solution for the same Burgers problem shown in Fig. 19.4 is illus-
trated in Fig. 19.6. Clearly, erroneous oscillations are now totally absent, making
the solution visually superior. The same second order TVDLF method (discussed
fully below) is used in Fig. 19.7, where we demonstrate the three possible outcomes
of the Riemann problem for the non-convex equation ut+(u3)x = 0 discussed ear-
lier. The numerical solutions agree in all cases with the known analytic solutions.

Higher order TVD schemes are thus a type of “hybrid” scheme, combining a
higher order scheme in smooth regions with a first order scheme in regions where
high gradients occur. In what follows, we will discuss such hybrid schemes, also
called “high-resolution methods”, that circumvent the Godunov theorem. TVD
methods, as well as the flux corrected transport method, are widely used in MHD
computations. Other modern schemes somewhat relax the requirement of mono-
tone schemes, and achieve higher than first order at extrema. Popular categories
are known as (weighted) essentially non-oscillatory, or (W)ENO, schemes and dis-
continuous Galerkin methods. All these schemes are frequently exploited in com-
bination with so-called finite volume treatments, the ideas of which are briefly
discussed next.
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Fig. 19.6 Initial triangular pulse (left) and shocked numerical solution of Burgers’
equation as obtained with the second order TVDLF method.

Fig. 19.7 Riemann problems as solved with the TVDLF scheme for a non-convex
scalar equation. The discontinuity was placed at x = 0.1 at t = 0, and the frames
shown are at time t = 0.27. The vertical dotted lines in all frames correspond to the
analytic locations of shocks or rarefaction edges. In the left panel, the dashed line
indicates the exact solution for the compound wave structure.

19.1.4 Finite volume treatments

In many “high resolution shock capturing” schemes, finite volume methods are
used for the spatial discretization. This discretization technique refers directly to
the integral form of the conservation laws. For a single scalar conservation law as
given by Eq. (19.27), the frequently used differential form actually follows from the
integral form only when the solution is smooth or regular enough (as it must e.g.
be continuously differentiable). This integral form states that a conserved scalar
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quantity u(x, t) changes in the space-time volume [x1, x2]× [t1, t2] in accord with∫ x2

x1

u(x, t2) dx =
∫ x2

x1

u(x, t1) dx+
∫ t2

t1
f(x1, t) dt−

∫ t2

t1
f(x2, t) dt. (19.72)

The instantaneous volume average changes only through the temporally varying
fluxes across the domain boundaries. This is also true in general, when we deal
with a multi-dimensional set of conservation laws as in Eq. (19.1),

∂U
∂t

+∇ · F = 0 , (19.73)

where U is the state vector of n conserved variables and F is the flux. For the
MHD system, where n = 8, recall from the analysis of Section 4.3.2 [1] the explicit
expressions for U = (ρ,π,H,B)T and F = (π,T, Ũ,Y)T, where

π ≡ ρv (momentum density) , (19.74)

T ≡ ρvv + (p+ 1
2B

2) I−BB (stress tensor) , (19.75)

H ≡ 1
2ρv

2 +
p

γ − 1
+ 1

2B
2 (total energy density) , (19.76)

Ũ ≡
(

1
2ρv

2 +
γ

γ − 1
p
)
v +B2v − v ·BB (energy flow) , (19.77)

Y ≡ vB−Bv (no name) . (19.78)

Note that in 3D, the term ∇ · F in Eq. (19.73) can be expressed in terms of fluxes
along three Cartesian coordinate axes, by writing

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

. (19.79)

When we discretize space in control volumes Vi with bounding surfaces ∂Vi, with
outward unit normal n = (nx, ny, nz), we find from Gauss’ theorem that

d

dt

∫
Vi

U(x, t) dx = −
∫
∂Vi

F · n dS = −
∫
∂Vi

(Fxnx + Fyny + Fznz) dS .

(19.80)
This formula can easily be generalized to account for source and sink terms as
well, if they exist for certain components of U. We now introduce the matrix
T(n) which rotates all occurring vector quantities to a local orthogonal coordinate
system formed by n, t, s (≡ n × t), where the latter are tangential unit vectors
within the bounding surface ∂Vi. For the MHD system as above, we will have T
given by
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 sin θ cosφ sin θ sinφ cos θ 0 0 0 0

0 cos θ cosφ cos θ sinφ − sin θ 0 0 0 0

0 − sinφ cosφ 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 sin θ cosφ sin θ sinφ cos θ

0 0 0 0 0 cos θ cosφ cos θ sinφ − sin θ

0 0 0 0 0 − sinφ cosφ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19.81)
In the latter expression, we introduced the spherical coordinate angles (θ, φ) fully
determining the direction of the normal n and the tangent vectors. One can then
verify, or understand from the fact that the MHD equations must be unchanged
under rotation, that

Fxnx + Fyny + Fznz = T−1(n)Fx (T(n)U) . (19.82)

Ultimately, this means that we obtain an essentially 1D problem in the direction
normal to the control volume boundary, since Eq. (19.80) now becomes

d
∫
Vi

U(x, t) dx
dt

= −
∫
∂Vi

T−1(n)Fx (T(n)U) dS . (19.83)

We then usually employ control volumes with multiple flat surface segments, turn-
ing the integral over the boundary into a discrete sum over its sides. This means
that, in practice, the only information of the grid needed in the process consists of
the volumes Vi of the grid cells and the geometry of the cells such as the number
of bounding surface segments, their surface area and their normal directions.

As a simple example, consider a 2D problem for scalar quantity u with a two-
dimensional flux vector F(u), discretized on a triangular mesh as in Fig. 19.8.
Clearly, in the two-dimensional case the “volumes” become surfaces Si. If we write
un+1
i for the volume average value S−1

i

∫
Si
u dx of u over cell i at time (n+ 1)Δt,

we get using a forward Euler temporal discretization

un+1
i = uni −

Δt
Si

3∑
m=1

F(unm) · lm . (19.84)

The sum in the right hand side is now an approximation of the flux, using values at
time level nΔt only, while lm denotes a vector that is normal to the cell edge with
length equal to the length of the cell edge. Writing F(unm) involves evaluating
the flux using values for u on the cell edge. From Fig 19.8, an accurate choice
for this average would be 1

2(uni + uni+1). However, this choice leads to numerical
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Fig. 19.8 Fraction of a triangular mesh. Si denotes the surface of the ith cell and
um the average or mean value of u on the interface between two cells.

instabilities for the very same reason as the choice of the centered space derivative
combined with a forward time discretization did in the forward in time centered in
space scheme discussed in Chapter 15: it does not take into account from where
the physical information comes. In other words, this “natural” choice gives the
same “weight” to the information coming from the “left” and the “right”. We
will therefore need to generalize the idea of upwinding to systems of nonlinear
equations. Generally speaking, though, in finite volume methods, the temporal
evolution of the dependent variables in some discrete points (called “nodes”) of
the control volumes or grid cells is determined by applying the conservation laws
on each cell, since the dependent variables are the conserved quantities themselves.
The nodes can be at the cell centers but could also lie on the cell interfaces or on cell
corners or vertices. In fact, there are many possibilities and the decoupling of the
cells and the nodes allows more freedom in an FVM than typically encountered in
an FDM or even an FEM. One may say that, by the decoupling of cells and nodes,
the FVM combines an advantage of the FEM, viz. geometric flexibility, with an
advantage of the FDM, viz. the flexibility in the definition of discrete values of the
dependent variables (i.e. the free choice of the nodes). At the same time, the FVM
does not as easily generalize to higher order than FDM or FEM.

19.2 Upwind-like finite volume treatments for 1D MHD

The FVM turned the solution of the conservation laws into, in essence, 1D flux
updates across the segmented boundaries of control volumes. We will therefore
now pay further attention to the 1D case in particular. Recapitulating, in a 1D
configuration, a shock capturing finite volume scheme thus interprets Ui as the
average value of the solution U(x, t) in the interval [xi−1/2, xi+1/2]:

Ui(t) ≡ 1
Δxi

∫ xi+1/2

xi−1/2

U(x, t) dx , (19.85)

where the domain is now subdivided in a set of equal-sized “cells” covering the
whole domain, as shown in Fig. 19.9. The update of these volume averages be-
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xix

’cell interfaces’

i-1 xi+1x xi+1/2i-1/2xi-3/2 xi+3/2

u(x)

ui
ui-1

i+1u

cell

Fig. 19.9 Schematic representation of the finite volume method in 1D.

comes simply
dUi

dt
+

1
Δxi

(
Fi+1/2 − Fi−1/2

)
= 0 . (19.86)

The advantage of the volume average interpretation is that the discretized equation
itself can be seen as an integral law, rather than a differential law, and that its
weak solutions will obey conservation by construction. In 1D MHD where we can
allow for translational invariance in ignorable y and z directions, the normal Bx
component remains constant, so that we have at most seven components for U.

19.2.1 The Godunov method

A method originally proposed by Godunov was to consider the cell averaged values
Un
i for time t = tn as piecewise constant data throughout the cells, and concentrate

on the discontinuous Riemann problems that then arise at the cell interfaces. The
solution of each local Riemann problem is in essence self-similar in x/t, so one can
properly restrict the time step such that no wave interaction occurs in one cell of
size Δx within Δtn+1. This is achieved by imposing Δtn+1 < Δx/(2 max |λnp |)
on the discrete (but variable) time step, with the maximum taken over all eigenval-
ues of the flux Jacobian FU. For 1D MHD, this is set by the fast eigenvalues and is
|vx|±cf . The Godunov method consists of using the exact nonlinear solution of the
Riemann problems at the cell interfaces in the numerical flux. Denoting the exact
Riemann problem solution for state Un

i and Un
i+1 as Û((x−xi+1/2)/t,Un

i ,U
n
i+1),

the Godunov scheme then uses as numerical flux

Fi+1/2 (Ui,Ui+1) = F(Û
(
0,Un

i ,U
n
i+1

)
) . (19.87)

Due to its piecewise constant representation of cell values, this original Godunov
scheme is at best first order accurate. In any case, it requires an exact solution
to the nonlinear Riemann problem. For 1D MHD, where seven wave families are
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involved, this is a far from trivial exercise involving adequate procedures to handle
the nonlinearities, whereby one must face existence and uniqueness issues as well.
We take in what follows a more pragmatic approach, discussing various upwind-
like methods which avoid the full solution of the nonlinear Riemann problem.

The linearized MHD system and the Riemann problem A full solution to the
Riemann problem can directly be given for any linear hyperbolic system, as was
explained before. Specifying how this works for 1D MHD, we can, e.g., look at
the primitive variable formulation Vt + WVx = 0, where⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

vx

vy

vz

p

By

Bz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx ρ 0 0 0 0 0

0 vx 0 0 1/ρ By/ρ Bz/ρ

0 0 vx 0 0 −Bx/ρ 0

0 0 0 vx 0 0 −Bx/ρ
0 ρc2 0 0 vx 0 0

0 By −Bx 0 0 vx 0

0 Bz 0 −Bx 0 0 vx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

vx

vy

vz

p

By

Bz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

= 0 .

(19.88)

To turn this into a linear hyperbolic PDE, we will evaluate W in a fixed state V∗,
and assume that the eigenvalues for the matrix W(V∗) are distinct. They are the
familiar ordered set

v∗x − c∗f , v∗x − b∗x, v∗x − c∗s , v∗x, v
∗
x + c∗s , v∗x + b∗x, v

∗
x + c∗f , (19.89)

where the Alfvén speed b∗x = |B∗
x|/
√
ρ∗, and the slow and fast magneto-acoustic

speeds are as in Eq. (19.15), with the iso-thermal sound speed squared c2i replaced
by the sound speed squared c∗2. We wish to solve the Riemann problem for this
linear system exactly, with given initial constant left and right states V	 and Vr.
We will need the left l̂p and right r̂p eigenvectors of matrix W in the process, and
as explained before, these are collected in the matrices R̂−1 and R̂, respectively.
The latter R̂, with columns r̂p, is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αfρ 0 αsρ 1 αsρ 0 αfρ

−αfcf 0 −αscs 0 αscs 0 αfcf

αscsβyβx −βz −αfcfβyβx 0 αfcfβyβx βz −αscsβyβx

αscsβzβx βy −αfcfβzβx 0 αfcfβzβx −βy −αscsβzβx

αfρc
2 0 αsρc

2 0 αsρc
2 0 αfρc

2

αscβy
√
ρ −βz√ρβx −αfcβy

√
ρ 0 −αfcβy

√
ρ −βz√ρβx αscβy

√
ρ

αscβz
√
ρ βy

√
ρβx −αfcβz

√
ρ 0 −αfcβz

√
ρ βy

√
ρβx αscβz

√
ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(19.90)
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while its inverse R̂−1, with l̂p in the rows, is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −cfαf

2c2
αscs
2c2

βyβx
αscs
2c2

βzβx
αf

2c2ρ
αs

2c
√
ρ
βy

αs

2c
√
ρ
βz

0 0 − 1
2βz

1
2
βy 0 −βz βx

2
√
ρ

βy
βx

2
√
ρ

0 −csαs

2c2
−αfcf

2c2
βyβx −αfcf

2c2
βzβx

αs

2c2ρ
− αf

2c
√
ρ
βy − αf

2c
√
ρ
βz

1 0 0 0 − 1
c2

0 0

0
csαs

2c2
αfcf
2c2

βyβx
αfcf
2c2

βzβx
αs

2c2ρ
− αf

2c
√
ρ
βy − αf

2c
√
ρ
βz

0 0 1
2βz − 1

2βy 0 −βz βx
2
√
ρ

βy
βx

2
√
ρ

0
cfαf

2c2
−αscs

2c2
βyβx −αscs

2c2
βzβx

αf

2c2ρ
αs

2c
√
ρ
βy

αs

2c
√
ρ
βz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19.91)

In these expressions, we introduced dimensionless parameters

α2
s =

c2f − c2
c2f − c2s

, α2
f =

c2 − c2s
c2f − c2s

, βx =
Bx
|Bx| , βy =

By
B⊥

, βz =
Bz
B⊥

,

(19.92)
where B⊥ =

√
B2
y +B2

z . In the form given in (19.90), the right eigenvectors have
the same dimension as the primitive variables V. Also, the fast eigenvectors can
be artificially decomposed in an acoustic (∼ αf ) and a magnetic (∼ αs) contribu-
tion, and a similar argument is true for the slow eigenvectors. To solve the linear
Riemann problem posed above, we write the constant left and right states Vl,r as
linear combinations of the right eigenvectors of W(V∗). The orthonormal set r̂∗p

and l̂∗p allows us to write

V	 =
7∑
p=1

(̂l∗p ·V	)r̂∗p =
7∑
p=1

βpr̂∗p , Vr =
7∑
p=1

(̂l∗p ·Vr)r̂∗p =
7∑
p=1

γpr̂∗p .

(19.93)
The solution of the Riemann problem can then use the general expression given in
Eq. (19.26), which due to our initial data becomes

V(x, t) =
∑

x/t<λ∗p

(̂l∗p ·V	)r̂∗p +
∑

x/t>λ∗p

(̂l∗p ·Vr)r̂∗p . (19.94)

In the (x, t) plane, we can graphically illustrate this solution as shown in Fig. 19.10.
At t = 0, the two constant states V	 and Vr are denoted by their seven coeffi-
cients from the expansion (19.93), (β1, β2, . . . , β7) and (γ1, γ2, . . . , γ7), respec-
tively. Assuming distinct and ordered eigenvalues λ∗1 < λ∗2 < · · · < λ∗7, the seven
characteristic curves x = λp(V∗)t through the origin (the position x = 0 of the
discontinuity at t = 0) divide the half plane t > 0 in eight regions. In each of those,
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Fig. 19.10 Schematic (x, t) diagram of the solution of the linear MHD Riemann
problem in 1D: backward and forward traveling fast, Alfvén and slow discontinu-
ities are separated by a contact discontinuity traveling at speed v. Out of a single
discontinuity separating two constant states, six new constant states may emerge.

the solution of the linear Riemann problem is a constant state. Indeed, according
to the formula (19.94), the coefficients used in writing V(x, t) as a linear combi-
nation of the (constant) right eigenvectors r̂p can be found by drawing the seven
p-characteristics backwards in time from the point (x, t). Their intersection with
the initial data determines which of the two coefficients βp or γp prevails. Hence,
out of one discontinuity separating two constant MHD states for a system of seven
linear equations, up to a maximum of eight constant states (six on top of the given
left and right state) separated by seven discontinuities emerge. The discontinuities
travel at the characteristic speeds given by the eigenvalues of the coefficient ma-
trix, while the jumps across the seven discontinuities are proportional to the right
eigenvectors of the matrix. This yields the generic structure shown in Fig. 19.10.

� Exercise Note that the scaling of the eigenvectors given here for the full MHD equations
is different from the one used in the expressions (19.19)–(19.20) for the 1.5D iso-thermal
MHD system. It is a matter of algebra to show how a similarly scaled system can be used
there, and this is left as an exercise. This rescaling will be needed for a convenient numer-
ical handling of the degeneracies in the eigenvalue expressions. Historically, eigenvector
expressions scaled as in Eq. (19.19) were given in [250], but in this form the expressions
contain indefinite limits when strict hyperbolicity is lost. Better behaved scaled versions
were introduced by [70], and the slightly different scaling used here follows [393]. �

Degeneracies of the MHD characteristic speeds The seven wave speeds (19.89)
(dropping the ∗-superscript) are degenerate if one of the following situations arises.

• When both tangential field components vanish, i.e. By = 0 = Bz , and b2x �= c2, either



438 Computational nonlinear MHD

of both fast (bx > c) or both slow (bx < c) characteristic speeds coincide with the
Alfvén signals at vx ± bx. This is termed a double umbilic point.

• When tangential field components vanish as well as b2x = c2, the slow, Alfvén and fast
wave speeds coincide, making vx ± bx triple umbilic points.

• When Bx = 0, Alfvén and slow pairs collapse to a quintuple umbilic point vx.

Therefore, the MHD equations are not strictly hyperbolic and this complicates the
strategy to design a true nonlinear MHD Riemann solver. Similar degeneracies
are already present in the 1.5D iso-thermal MHD system discussed earlier, where
only four wave speeds are at play. For this simplified system, the outcome of the
true nonlinear Riemann problem can be analyzed to potentially lead to 289 distinct
(mathematically allowed) outcomes, in which the trivial case of equal left and right
states is included too [345, 346]. In fact, both fast and slow wave families can arise
as shocks, rarefaction waves or compound waves. Therefore, 256 = 44 cases allow
four “waves” with each wave either absent or present in one of its three manifes-
tations. The other 33 possibilities account for overcompressive shock situations,
with (1) both left-going waves merged and 16 possibilities arising out of the two
right-going waves, (2) both right-going waves merged, yielding 16 possibilities for
the left pair of waves, and (3) both left and right going wave pairs merged into over-
compressive shocks. Since the full MHD system additionally includes the entropy
and Alfvén wave families, allowing for contact and rotational discontinuities, it is
practically impossible to appropriately handle that many distinct possibilities. As a
result, the nonlinear Riemann solvers available in the literature necessarily handle
the MHD Riemann problem in a more tractable simplified manner. One way to do
so is to allow only discontinuous shock transitions in all wave families. This was
done by Dai and Woodward [103] who, in an all-shock nonlinear Riemann solver,
exploited the nonlinear Rankine–Hugoniot relations at the up to seven transitions,
conveniently written in a Lagrangian mass coordinate. A more elaborate nonlinear
1D MHD Riemann solver was presented in [399], where, in addition to shocks,
the solver allowed for either slow or fast rarefaction waves. To do so, the differ-
ential equations governing the various Riemann invariants were used through the
rarefactions. Still, these nonlinear Riemann solvers which only use regular (shock
or rarefaction) waves are fairly computationally involved, and a tendency emerged
to avoid using them as the basic building block for a shock-capturing method. In-
stead, approximate Riemann solvers gained in popularity. These will be discussed
later on.

� Eigenvectors of the flux Jacobian Further on in the discussion, we will also need the
eigenvectors of the flux Jacobian. The right eigenvectors can be found directly from the
relation R = UVR̂, giving column vectors rp. The gives the following expressions for
the fast eigenvectors r 1,7

f , the slow eigenvectors r 3,5
s , the Alfvén eigenvectors r 2,6

a and the
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entropy eigenvectors r 4
e , respectively:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αfρ

αfρ(vx ∓ cf)
αfρvy ± αsρcsβyβx
αfρvz ± αsρcsβzβx

g∓f
αscβy

√
ρ

αscβz
√
ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αsρ

αsρ(vx ∓ cs)
αsρvy ∓ αfρcfβyβx
αsρvz ∓ αfρcfβzβx

g∓s
−αfcβy

√
ρ

−αfcβz
√
ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
∓ρβz
±ρβy
g∓a

−βz√ρβx
βy
√
ρβx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
vx
vy
vz
1
2v

2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(19.95)
where we introduced the symbols

g∓f = αfρ
(

1
2v

2 + 1
γ−1c

2 ∓ cfvx
)
± αsρcsβx (vyβy + vzβz) + αsc

√
ρB⊥ ,

g∓a = ∓ ρ(vyβz − vzβy) ,
g∓s = αsρ

(
1
2v

2 + 1
γ−1c

2 ∓ csvx
)
∓ αfρcfβx (vyβy + vzβz)− αfc

√
ρB⊥ .

(19.96)

One can then verify that the structure coefficients(
∂λp
∂ρ

,
∂λp
∂mx

,
∂λp
∂my

,
∂λp
∂mz

,
∂λp
∂H ,

∂λp
∂By

,
∂λp
∂Bz

)
· rp = 0 , (19.97)

for the entropy p = 4 and the Alfvén wave p = 2, 6 families. They are thus linearly
degenerate and do not allow for rarefaction wave constructions using Eq. (19.42). They do
allow for discontinuous shock-type solutions, and the generalized Riemann invariants for
these characteristic fields then directly demonstrate

entropy: λ4 =
mx

ρ
, dvx = dvy = dvz = dp = dBy = dBz = 0 ,

Alfvén: λ2,6 =
mx

ρ
∓ βxBx√

ρ
, dρ = dvx = dp = dB⊥ = 0 , dvy,z = ± βx√

ρ
dBy,z .

(19.98)

The entropy family thus leads to contact discontinuities, where only a jump in density (or
entropy, temperature or total energyH) occurs. For all wave families other than the entropy
one, one true Riemann invariant can directly be identified with the entropy S = pρ−γ , since
we know that in ideal MHD this variable obeys

∂S

∂t
+ v · ∇S = 0 . (19.99)

From Eq. (19.98), we recognize that the Alfvén families yield rotational discontinuities,
where the total field magnitude is conserved and the tangential field B⊥ gets rotated. For
the fast and slow wave families, it is easier to compute the structure coefficient from the
equivalent (∇Vλp) · r̂p from the primitive right eigenvector set. To compute partial deriva-
tives with respect to density ρ, pressure p and both tangential magnetic field components,
one can use the identity

c4s,f − (c2 + b2x + b2⊥)c2s,f + c2b2x = 0 , (19.100)
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which one differentiates to obtain expressions for e.g. ∂cs,f/∂ρ. This expression uses b⊥ =
B⊥/
√
ρ. The end result for the structure coefficients yields

s1 = − αfcf( 1
2γα

2
f + α2

s + 1
2 ) , s3 = −αscs( 1

2γα
2
s + α2

f + 1
2 ) ,

s5 = αscs( 1
2γα

2
s + α2

f + 1
2 ) , s7 = αfcf

(
1
2γα

2
f + α2

s + 1
2

)
. (19.101)

These were also presented in [393], and they reduce to the gas dynamic expression when
either a fast or a slow wave becomes a purely acoustic wave (e.g. when αf = 1, cf = c and
αs = 0). The non-convex nature of these waves is now hidden in the parameters α2

f and
α2

s , which always obey α2
f + α2

s = 1. With these expressions, we can write out the slow
and fast rarefaction wave (centered simple wave) integral curves, as given by Eq. (19.40).
There, the integral curves are formulated as curves in state space U everywhere tangent to
the eigenvectors rp. Similarly, we can use the primitive state space V and write integral
curves from r̂p. Using a dimensionless parameter θ along the integral curve instead of the
dimensional ξ = x/t, we find for the fast integral curve for the left going wave (p = 1) the
governing differential equations

ρ′ = − ρ , p′ = −γp , v′x = cf ,

v′
t =

cf
1− c2f /b2x

Bt

Bx
, B′

t =
c2f /b

2
x

1− c2f /b2x
Bt . (19.102)

The ′ stands for derivation with respect to θ, and we denote the transverse vector compo-
nents with subscript t. Expressions for all six generalized Riemann invariants associated
with either fast and slow wave families can be obtained in a way similar to the one outlined
for the 1.5D iso-thermal MHD system [250]. Apart from the entropy, not many can be
given in easily verified closed form (not involving integral factor) expressions, with the
exception of fast and slow magneto-acoustic Riemann invariants for an ideal gas with the
fixed value of γ = 5/3 (monatomic gas). Since

dvy
dvz

=
dBy
dBz

=
By
Bz

, (19.103)

the generalized Riemann invariants show that, through fast or slow simple waves, the trans-
verse field and flow vary in magnitude but do not rotate, as opposed to Alfvén waves. �

19.2.2 A robust shock-capturing method: TVDLF

Before presenting numerical schemes which, to varying degree, exploit the detailed
knowledge of the characteristic fields in sets of conservation laws, we can easily
generalize the TVD upwind method presented in Eq. (19.66) from a scalar conser-
vation law to any system of conservation laws. We know that we need to impose a
conservative scheme, of the form given in Eq. (19.46). We recognize that the co-
efficient α1+ 1

2
in the numerical flux function given by Eq. (19.66) is a (numerical)

proxy for the characteristic speed f ′(u). A straightforward generalization to the
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case of a nonlinear system then adopts the numerical flux

Fi+ 1
2

= 1
2

[
F(UL

i+ 1
2
) + F(UR

i+ 1
2
)− |cmax

i+1/2|
(
UR
i+ 1

2
−UL

i+ 1
2

)]
. (19.104)

In this expression, UL and UR denote the state on the cell interface i + 1
2
, to the

left or right, respectively. The scalar coefficient cmax then denotes the maximal
physical propagation speed for the system under consideration. Obviously, for 1D
MHD we get cmax = |vx| + cf , the maximal speed set for fast magneto-acoustic
disturbances. This scheme has the advantage that we may even exploit it for a
zero-beta plasma.

Minor variations of formula (19.104) can be found easily, and depend on how
one computes cmax at the cell interface. One can use the maximal physical prop-
agation speed of the arithmetic average (UL + UR)/2 (which could also average
the primitive variables), or the maximum of each state separately, i.e.

max
(
|cmax(UL)|, |cmax(UR)|

)
. (19.105)

The TVDLF method is then also referred to as local Lax–Friedrichs method, since
it uses a local value for the maximal propagation speed. In fact, a first order variant
was exploited as early as in 1961 by Rusanov [398], to numerically solve several
shock-dominated 2D gas dynamic problems. A first order scheme indeed results
when we take the states UL = Ui and UR = Ui+1, combined with the single
step temporal advance written in Eq. (19.46). A temporally second order variant is
easily obtained by using a two-step predictor–corrector approach, and use specif-
ically the time-centered (i.e. at n + 1

2
) fluxes (19.104) in the corrector step. For

full second order accuracy, one also needs to raise the spatial order. To that effect,
a linear reconstruction from cell-center to cell edge quantities UL,R needs to be
performed as well, which ideally remains in agreement with the TVD concept. For
MHD, this method was introduced and compared in [444] on a variety of hydro-
and magnetohydrodynamic problems with other approaches, such as FCT and var-
ious characteristic based schemes.

Linear reconstruction and slope limiters In the finite volume discretization, the
evaluation of fluxes at the cell edges implies that some extrapolation within the
cell i is needed from the volume averaged value Ui. Simply using a constant
extrapolation where U(x ∈ [xi−1/2, xi+1/2]) = Ui is of course consistent with
Ui as the cell average, but leads to first order accuracy where averaged edge fluxes
Fi+1/2 = (F(Ui)+F(Ui+1))/2 are used. Better, and still consistent with Ui as a
volume average, is to use a linear extrapolation within the cell with slope σi, hence

U(x ∈ [xi−1/2, xi+1/2]) = Ui + σi(x− xi)/Δxi . (19.106)
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Fig. 19.11 Slope limited linear reconstruction process.

The slope is then the difference

σi = Ui+1/2 −Ui−1/2 ≡ ΔUi . (19.107)

This linear reconstruction is exploited to get a left and right edge centered state,

UL
i+1/2 = Ui + ΔUi/2 and UR

i+1/2 = Ui+1 − 1
2ΔUi+1 . (19.108)

The flux at the cell edge then takes the average from Fi+1/2 = (F(UL
i+1/2) +

F(UR
i+1/2))/2. This process of linear reconstruction raises the spatial order of

accuracy to second order. In practice, one must limit the slopes used in the lin-
ear reconstruction in order to avoid the introduction of spurious oscillations. This
means that we rather write, denoting this slope limiting process by an overbar:

UL
i+ 1

2
= Un+1/2

i + 1
2ΔŪn+1/2

i ,

UR
i+ 1

2
= Un+1/2

i+1 − 1
2ΔŪn+1/2

i+1 . (19.109)

On comparing the slopes as obtained from using neighboring left or right cell val-
ues, one typically needs to take the least steep slope of the two, and to fall back on
constant extrapolation within a cell when these slopes conflict in sign. Schemati-
cally, this is shown in Fig. 19.11. Different slope limiters exist which ensure the
total variation diminishing (TVD) concept, thereby avoiding the creation of spuri-
ous oscillations in the numerical solution to the Riemann problem. However, these
statements are strictly speaking only true for a single scalar nonlinear equation. A
particularly robust (albeit diffusive) slope limiter is the “minmod” limiter, where

ΔŪi = sgn(Ui −Ui−1) max [0,

min {|Ui −Ui−1|, (Ui+1 −Ui) sgn(Ui −Ui−1)}] . (19.110)

By suitably generalizing the minmod idea where left and right-sided slopes are
compared, the monotonized central-difference (MC) limiter compares three slopes,
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and is in practice a better choice. These and various other slope limiter flavors can
be found in [303]. The stencil of the resulting second order TVDLF scheme is five
cells wide, through the slope limited linear reconstruction.1 In the second order
variant, slight improvements (in terms of robustness) may occur when performing
the linear reconstruction on the primitive variables V instead of the conservative
variables U.

Example Riemann problems for 1.5D iso-thermal MHD Using the second order
TVDLF method, we can now generate numerical solutions for 1D MHD problems.
In particular, we solve the 1.5D iso-thermal MHD equations, and generate numeri-
cally the solution for the following initial conditions. In the examples, we actually
use an excessive amount of grid points (order 1000 to 50000), with an emphasis on
the fully converged end state.

Fig. 19.12 An Alfvén pulse simulated in 1.5D zero-beta MHD.

A first test considers linear shear Alfvén waves, and takes Bx = 1, in a zero-
beta plasma, i.e. p = 0. This zero-beta limit will pose difficulties for characteristic
based schemes, since the slow magneto-sonic speed vanishes and the matrices col-
lecting the eigenvectors become singular. The density ρ = 1, and we set up a
pulse in transverse velocity vy = 0.001 at x ∈ [1, 2], on a total domain extending
from x ∈ [0, 3]. The pulse will split into two equal sized Alfvén signals, shown at
t = 0.8 in Fig. 19.12. The figure shows both the initial (dotted) and final numeri-
cal solution, for the transverse velocity and magnetic field. The propagation speed

1 Note that this wider stencil becomes a severe complication when computing on multi-dimensional unstructured
grids. There, the use of compact schemes employing only nearest neighbor information while retaining higher
order have led to the residual distribution schemes, also successfully adopted to MHD.
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Fig. 19.13 A Riemann problem in 1.5D iso-thermal MHD, giving rise to a solution
containing a left going fast rarefaction, a slow compound wave, a slow shock and a
right going fast rarefaction.

Fig. 19.14 The fast and slow magneto-acoustic Riemann invariants as computed
from the numerical solutions.

and polarization are in exact accord with the expected outcome, where both pulses
travel at the Alfvén speed along the x-directed field. Note that we actually set up a
double Riemann problem.

The next two tests consider Riemann problems, chosen to demonstrate all fla-
vors of the nonlinear wave patterns one may encounter for this system. On a unit
domain, a discontinuity is placed at x = 0.4 separating V	 = (1, 0, 0, 1) from
Vr = (0.125, 0, 0,−1). The constant parameters are set to Bx = 0.75 and c2i = 1.
This test is analogous to that introduced by Brio and Wu [70] for the 1.5D MHD
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Fig. 19.15 A Riemann problem in 1.5D iso-thermal MHD, giving rise to a solution
containing a left going fast compound wave, two slow rarefactions, and a right
going fast compound wave.

Fig. 19.16 The fast and slow magneto-acoustic Riemann invariants as computed
from the numerical solutions.

system. It leads to a left going fast rarefaction, a slow compound wave (shock
with rarefaction wave attached to it), a right going slow shock and fast rarefaction.
These can be seen in Fig. 19.13 at t = 0.15, again showing the transverse vector
components. Fig. 19.14 plots the fast and slow magneto-acoustic Riemann invari-
ants from Eq. (19.23). Through the rarefactions, we indeed find constant values as
evaluated from the numerical solutions. They change discontinuously at shocks,
while the fast invariant stays constant through fast rarefactions, and the slow in-
variant is constant through the rarefaction part of the slow compound wave.
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A final Riemann problem, analogous to a test described in [345, 346], leads to
fast compound waves. The discontinuity, initially at x = 0.3, brings the states
V	 = (1, 0, 0,−1) and Vr = (1, 2.5, 2.5,−1) into contact. The parameters fix
Bx = 1 and c2i = 1, and we generate a solution up to t = 0.15. We find a fast com-
pound wave, with a rarefaction part running ahead of the fast shock attached to it,
two slow rarefaction waves, and a similar fast compound wave at right. Fig. 19.15
plots the solutions obtained together with initial conditions, while the evaluation
of the magneto-acoustic Riemann invariants is shown in Fig. 19.16. One may note
slight overshoots in the solutions, despite the excessive resolution used. How-
ever, the main point demonstrated here is the feasibility of using a simple TVDLF
scheme for generating numerical solutions in excellent agreement with theory.

19.2.3 Approximate Riemann solver type schemes

When discussing the Godunov method, we noted that the basic ingredient is the
(exact) solution of the nonlinear Riemann problem encountered at cell edges. It
was soon realized that one might just as well solve these local Riemann problems
in an approximate fashion. Approximate Riemann solver based schemes use a lin-
earization of the nonlinear problem, and capitalize on the fact that the exact analytic
solution for a linear hyperbolic system is known. In hydrodynamics, a method ini-
tiated by Roe has proven to be very powerful, and a useful review on characteristic
based schemes for the Euler equations is given in [392]. We present its extension
to MHD, which has been initiated by the seminal work of Brio and Wu [70].

Roe-type approximate Riemann solver As a general procedure to numerically
solve the system Ut + (F(U))x = 0, one considers again the local Riemann prob-
lem obtained from a left and right cell interface value U	 and Ur. Instead of using
the exact nonlinear solution, Roe suggested solving a linear Riemann problem in-
stead, namely

Ut + (G(U))x = 0 , (19.111)

where G(U) = F(Ur)+A(U−Ur) includes a constant matrix A = A (U	,Ur).
This matrix must satisfy the conditions

• F(U�)− F(Ur) = A(U�,Ur) (U� −Ur),
• A(U�,Ur)→ FU(Ur) as U� → Ur,

• A(U�,Ur) has only real eigenvalues,

• A(U�,Ur) has a complete system of eigenvectors.

These conditions ensure that the exact Riemann problem solution is obtained when
the initial states obey the Rankine–Hugoniot relations, i.e. are separated by a single
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shock transition or contact discontinuity. Indeed, when (U	,Ur) are such that
F(U	) − F(Ur) = s (U	 −Ur), the first condition ensures that U	 − Ur is an
eigenvector of A with eigenvalue equal to the shock speed s. The solution of
the linear Riemann problem merely maintains this jump at the physically correct
shock speed. The second condition ensures consistency with the original nonlinear
equations. The last two conditions guarantee solvability of the linear Riemann
problem.

Provided such a Roe matrix A can be found, the Roe scheme uses the numerical
Roe flux expression at the interface between cells i, i+ 1 given by

Fi+1/2 (Ui,Ui+1) = F(Ui) + Ai+1/2

(
Û−Ui

)
. (19.112)

In the above expression (19.112), Û = Û(0,Ui,Ui+1) indicates the exact solu-
tion of the linear Riemann problem and the matrix depends on Ai+1/2(Ui,Ui+1).
Let us write the eigenvalues λp and right eigenvectors rp of the local Roe matrix
Ai+1/2(Ui,Ui+1), hence Ai+1/2rp = λprp. More explicit expressions for the
Roe flux can then be obtained as follows. As encountered in the discussion of the
linear hyperbolic system, one decomposes both states in terms of the eigenvectors
rp, writing Ui =

∑
βprp and Ui+1 =

∑
γprp. The same decomposition of the

difference Ui+1 −Ui then introduces coefficients αp from

Ui+1 −Ui =
∑

(γp − βp) rp ≡
∑

αprp . (19.113)

As found from the analytic solution for the Riemann problem for the linear hyper-
bolic system, the solution along the (x, t) ray (x− xi+ 1

2
)/t = 0 is thus

Û =
∑

0<λp

βprp +
∑

0>λp

γprp . (19.114)

This can be written as

Û = 1
2(Ui + Ui+1) + 1

2

[ ∑
λp<0

−
∑
λp>0

]
αprp . (19.115)

The Roe flux (19.112) then becomes, as a result of the first Roe condition imposed
on the matrix A,

Fi+1/2 = 1
2 (F(Ui) + F(Ui+1))− 1

2

∑
| λp | αprp . (19.116)

The solver is then completely determined once the matrix Ai+1/2 that satisfies the
Roe conditions is constructed. For the Euler system of compressible gas dynam-
ics, the matrix satisfying all conditions is the flux Jacobian of the system FU(Ū),
evaluated in a special, so-called Roe-average, state computed from the edge values
Ū(U	,Ur). When generalized to the MHD system, Brio and Wu [70] identified a
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similar Roe-average for the special case of γ = 2 only. A general procedure to con-
struct Roe matrices for systems of conservation laws, including the gas dynamic
and ideal MHD systems, was presented in [76]. There, an MHD Roe solver without
hypothesis on the value of γ is presented. For the MHD case, Brio and Wu already
noted that one may use the flux Jacobian, merely evaluated in a state obtained from
a simple averaging (e.g. the arithmetic average of both edge states). This then no
longer captures stationary discontinuities as exact steady numerical solutions, but
instead resolves these jumps with few grid points. In practice, one thus uses expres-
sion (19.116) for computing the flux, which evaluates the right eigenvectors of the
flux Jacobian in the chosen average state rp(Ū), evaluates the eigenvalues for this
state λp(Ū), and computes the wave strength coefficients αp = lp · (Ui+1 −Ui),
using the left eigenvectors of the Jacobian lp(Ū). The latter can also be computed
from the jumps in (any choice of) the associated primitive variables V, where we
write αp = l̂p · (Vi+1 −Vi). Earlier, we gave the needed expressions for the right
eigenvectors rp in Eq. (19.95)–(19.96), for the eigenvalues in Eq. (19.89), and for
the left eigenvectors (of the primitive formulation) in Eq. (19.91), so that all ingre-
dients to the above flux formula (19.116) are known. This Roe-type approximate
Riemann solver is similarly extended to second order by using a limited linear re-
construction from cell center to cell edge values, and replacing Ui+1 with UR

i+1/2

and Ui with UL
i+1/2. The limiting can actually be done on the characteristic wave

contributions separately, too, and again exists in many flavors.

� Roe average, entropy fixes and further details The Roe average state, as presented
for γ = 2 by Brio and Wu [70], has been used for the general case as well, and reduces to
the gas dynamical Roe average for vanishing magnetic field. For left and right states UL

and UR, all average variables are computed from

ρ̄ =
√
ρLρR , v̄ =

√
ρLvL +

√
ρRvR√

ρL +
√
ρR

,

B̄ =

√
ρRBL +

√
ρLBR√

ρL +
√
ρR

, h̄ =

√
ρLhL +

√
ρRhR√

ρL +
√
ρR

. (19.117)

The latter quantity is the specific enthalpy h = (H+ p+B2)/ρ, and can be used to obtain
the average squared sound speed c̄2 = (γ − 1)(h̄− v̄2/2− B̄2/ρ̄). Roe and Balsara [393]
analyzed the sensitivity of the approximate Riemann solver to the precise choice of av-
eraging near the triple umbilic point, and concluded that any reasonable averaging would
perform well. Therefore, less computationally elaborate (e.g. arithmetic) averagings have
found widespread use. As was quickly noted upon application of the Roe solver to the
Euler gas dynamic system, the solver may fail in cases where a transonic rarefaction is
part of the solution, in a sense that it would rather detect an entropy violating weak shock
solution. For this purpose, entropy fixes are used, which merely replace the near vanishing
eigenvalue by some small value. For the wave speeds appearing in (19.116) for the MHD
system, in particular for the fast and slow families p = 1, 3, 5, 7, we thus write

λp → 1
2

(
λ2
p/εe + εe

)
, (19.118)
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if |λp| < εe. This is thus only effective when transonic solutions |vx| ≈ cs,f occur, and
introduces a small parameter εe. In the numerical evaluation of the various terms in the
eigenvector expressions, we still encounter difficulties in certain degenerate cases. In par-
ticular, the eigenvectors contain the ratios βy = By/B⊥ and βz , which become ill-defined
when the transverse field vanishes completely. This is remedied by replacing these factors
with

βy =
By + ε√

B2
y +B2

z + 2ε2
, βz =

Bz + ε√
B2
y +B2

z + 2ε2
. (19.119)

With ε a very small number above machine precision, we then in effect replace the indeter-
minacies by 1/

√
2 constants. Similarly, when c2s = c2f , one uses αf = αs = 1/

√
2 which

still leaves α2
f + α2

s = 1. �

HLL and HLLC discretizations The approximate Riemann solver just discussed
uses a linearization of the Riemann problem encountered at cell interfaces, which is
at the heart of all Godunov-type schemes. The Roe-type solver clearly incorporates
much knowledge of the underlying physical problem, and in effect uses the proper
characteristic decomposition to “weight” the information propagating in different
directions. It approximates the time-averaged flux appropriate for that state of
the Riemann fan sketched schematically in Fig. 19.10 which is found along the
vertical t-axis. This “upwind” concept is a key issue for generating numerically
stable conservative schemes. Characteristic based schemes are by far the most
accurate numerical methods for handling discontinuity dominated problems, and
various variants have successfully improved on the work initiated in MHD by Brio
and Wu [70]. Zachary and Collela [493] constructed an MHD Godunov method in
which the approximation to the upwind flux was build up in the primitive variable
space, organizing the states in the Riemann fan about some mean entropy wave
speed. A TVD Roe-type upwind scheme was presented by Ryu and Jones [399],
where its results were benchmarked against the predictions of a nonlinear Riemann
solver. A large amount of 1D MHD Riemann problem tests are documented there.

The methods just mentioned all incorporate the full 7-wave structure which is
a natural outcome of the MHD Riemann problem. Contrasting the flux expres-
sion (19.116) to the TVDLF method with flux given by (19.104), we may re-
interpret the latter as one where the 7-wave structure is essentially replaced by
an approximation where only the maximal (in absolute value) wave speed enters,
replacing all |λp| by |cmax|. This effectively retains a crude form of upwinding, but
introduces more numerical diffusion. The latter can in fact be advantageous to deal
with some of the robustness issues that plague the approximate Riemann solvers
in particular. For the Euler system, a catalog of failings on shock-dominated prob-
lems has been presented by Quirk [389]. Some of these flaws can be cured by
appropriate fixes, but a fairly common strategy is to add numerical dissipation
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Fig. 19.17 The approximate representation of the Riemann fan employed in the
HLL (left) and HLLC (right) methodology.

in some form or other. A trend away from using the full 7-wave structure to-
wards the other extreme of using only the fastest wave (TVDLF) is noticeable in
the extensive literature on the subject. Versions of solvers originated in gas dy-
namics have been adapted to MHD, which in effect replace the Riemann fan by
a 2-wave or 3-wave structure. Appropriate recipes for computing meaningful in-
termediate states then ensure desirable properties like positivity (ensuring always
positive pressures and densities), the ability to capture isolated discontinuities, etc.
A 2-wave approximation is used in the HLL solver (originally due to Harten, Lax
and van Leer [217]), and this involves an intermediate state U∗ which generalizes
the Rankine–Hugoniot relation (19.34) to ensure

F(U	)− F(Ur) = λ−(U	 −U∗) + λ+(U∗ −Ur) , (19.120)

where λ− and λ+ are both fastest wave speeds still retained in the Riemann fan
approximation. This method then switches the flux evaluation between F(U	)
when λ− ≥ 0, F(Ur) when λ+ ≤ 0, or a weighted flux expression

F∗ =
λ+F(U	)− λ−F(Ur) + λ−λ+(Ur −U	)

λ+ − λ− (19.121)

for the case where the intermediate state should apply. Note that F∗ �= F(U∗).
In practical application, this HLL method has proven to work very similarly to the
TVDLF method, demonstrating minor improvements over the latter. For contact
discontinuities, both methods introduce fairly large diffusion, but at the same time
the schemes are very robust and computationally simple.

In an attempt to remedy the smearing of contact discontinuities, the HLLC ap-
proach “restores the contact surface in the HLL-solver” [436], hence the added
C for “contact”. Its adaptation to MHD has been undertaken by various authors,
e.g. by [311] and [305]. One can readily generalize the relation (19.120) to intro-
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duce a third central wave λ0 separating a left U∗
	 and right U∗

r middle state, and
choose a well-motivated construction to uniquely compute these two additional
states. Four corresponding flux expressions are in use, depending on the orienta-
tion of the three waves in the Riemann fan with respect to the time axis in the (x, t)
plane. Schematically then, the Riemann fan for HLL and HLLC type methods is
shown in Fig. 19.17.

Other variants of the HLL family of solvers exist, and they all share a relative
straightforward application to any system of conservation laws (with more than
two unknowns) without requiring full decompositions in the many (n > 2) wave
families. In particular, HLL(C) has been adapted to relativistic MHD computations
as well, a subject which will return in Chapter 21. A final noteworthy solver for
ideal MHD is the HLLD (where the D stands for discontinuity) variant by Miyoshi
and Kusano [336]. Depending on whether Bx vanishes or not, HLLD switches
between the use of two intermediate states (like HLLC, to which it reduces for
vanishing magnetic field) versus four intermediate states. This solver then exactly
resolves isolated discontinuities and shocks, and tests demonstrate that it is more
robust than using a full approximate Riemann solver.

19.2.4 Simulating 1D MHD Riemann problems

A vast number of 1D MHD Riemann problem tests can be found throughout the
literature, with the paper by Ryu and Jones [399] collecting a good number of
distinct possibilities. One distinguishes the discontinuous transitions according to
their type, as will be discussed in Chapter 20. We can have the already mentioned
contact and rotational discontinuities, but also tangential discontinuities as Bx
tends to zero, which can be regarded as degeneracies where a contact, two slow,
and two rotational discontinuities coincide. Fast and slow shocks, as well as rar-
efaction waves, can be of special type, called switch-off (or switch-on) when they
reduce (increase) the tangential magnetic field to (from) zero, and a fast shock is
of pure magneto-sonic kind when Bx vanishes. Slow and fast signals can become
of compound nature, where they become of “intermediate” type, i.e. cross the unit
Alfvén Mach number and include a 180◦ degree rotation of the transverse field.
Whether the latter are physically realizable transitions has received a lot of atten-
tion since they were first discovered by the Brio and Wu numerical solutions. In the
coplanar 1.5D MHD case considered there, one can hardly avoid them in numerical
solutions, such as those generated for the iso-thermal case above. In principle, they
may then be replaced by a π-rotational wave, combined with a slow or fast shock,
so that they represent cases where the Riemann problem has a non-unique solution.
A clear discussion of the subject is found in Torrilhon [437], where it was shown
that any non-planar Riemann problem will have a unique solution containing only
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regular waves if the initial jump in transverse velocity vanishes. Conversely, there
exist also non-planar Riemann problems, which can have both a regular and a non-
regular solution, similar to some coplanar problems. A thorough discussion, where
on the basis of evolutionary arguments (i.e. structural stability against small per-
turbations) the admissibility of intermediate shocks is disputed, is found in [132].

Fig. 19.18 A Riemann problem in 1D MHD, numerically solved with a TVD
scheme using a Roe-type approximate Riemann solver. We encounter from left
to right: a fast rarefaction, a rotational discontinuity, a slow rarefaction, a contact
discontinuity, a slow shock, a rotational discontinuity and a fast shock.

We give now two examples of Riemann problems, using an approximate Rie-
mann solver based scheme to generate the solution. The first shown in Fig. 19.18
takes initial conditions also presented in Torrilhon [437], namely a left state V	 =
(3, 0, 0, 0, 3, 1, 0) adjacent to a right state Vr = (1, 0, 0, 0, 1, cos(1.5), sin(1.5))
where γ = 5/3 and Bx = 3/2. Our numerical solution is shown in the same for-
mat as Fig. 2 from [437], except for the bottom left panel where we show entropy
S = pρ−γ instead of pressure. This latter shows its invariance through fast and
slow rarefactions, and Alfvén discontinuities. Further, we plotted the solution in
the state space spanned by the transverse magnetic field components. The latter can
be compared with Fig. 3 in [437]. One can detect from left to right in Fig. 19.18: a
fast rarefaction, a rotational discontinuity, a slow rarefaction, a contact discontinu-
ity, a slow shock, a rotational discontinuity and a fast shock. The representation of
the numerical solution in the state space (Fig. 19.19) shows the expected outcome:
only Alfvén signals rotate the transverse field, while fast and slow shocks and rar-
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efactions alter the magnitude of the transverse field. Obviously, the solution is not
perfect, in the sense that several grid points are needed to represent the discontinu-
ities, and one may detect overshoots in density and a diffused contact discontinuity.
Nevertheless, a very satisfactory agreement with the exact solution is obtained, and
this is generally true for all modern upwind-type algorithms.

Fig. 19.19 The same numerical solution from Fig. 19.18, plotted in the (By, Bz)
state plane. Fast and slow signals change the magnitude of the transverse field,
while Alfvén signals rotate the field. In reality, the parts corresponding to shocks
and rotational discontinuities should contain no points, the arcs and line segments
seen relate to the numerical representation.

A second and final Riemann problem shown is taken from Torrilhon [438],
where a non-coplanar Riemann problem which has a unique, regular, solution was
solved numerically using a variety of modern upwind algorithms. The initial con-
ditions take V	 = (1, 0, 0, 0, 1, 1, 0) and Vr = (0.2, 0, 0, 0, 0.2, cos(3), sin(3))
with Bx = 1 and γ = 5/3. This is an almost coplanar configuration (exact copla-
nar when 3 is replaced by π) without jump in transverse velocity, where the unique
exact solution has a fast rarefaction, a rotational discontinuity, a slow shock, a con-
tact discontinuity, a slow shock, a rotational discontinuity and a fast rarefaction.
It was demonstrated convincingly how all modern methods pseudo-converge to a
solution containing a compound wave structure for up to several 1000 grid points.
Fig. 19.20 shows how the numerical solution significantly errs at x ≈ −0.25. Only
after heavy refinement, the pseudo-convergence changes to true convergence to
the exact regular solution of the Riemann problem. This is a serious shortcoming
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Fig. 19.20 A Riemann problem in 1D MHD, with a unique regular solution (solid
line), and a typical “high” resolution numerical result already exploiting 800 grid
points: a wrong compound structure plagues the scheme to pseudo-converge. (From
Torrilhon [438].)

of all modern shock-capturing schemes, which can only be remedied thus far by
combining these methods with some form of grid-adaptivity.

19.3 Multi-dimensional MHD computations

The description of numerical methods has thus far concentrated on 1D problems.
Conceptually, multi-D simulations can be reduced to a succession of 1D problems
in the various coordinate directions. As already explained earlier, even finite vol-
ume methods on general (unstructured) grids can also be reduced to successive 1D
problems only, in directions normal to the grid cell faces. A common strategy is to
use a Strang type dimensional splitting, which for a 2D case in a Cartesian (x, y)
setting writes as

Un+1 = LxΔt/2L
y
ΔtL

x
Δt/2U

n , (19.122)

where the operator LxΔt/2 indicates an update with a half time step Δt/2 taking
account of only the fluxes in the x-direction. Alternatively, we can alternate coor-
dinate directions using the so-called Godunov splitting

Un+2 = LxΔtL
y
ΔtL

y
ΔtL

x
ΔtU

n . (19.123)

These dimensional splitting strategies retain the second order accuracy of the indi-
vidual dimensional sweeps.

The relative ease with which multi-dimensional codes are developed from 1D
solvers has led to a rapid surge in multi-dimensional MHD modeling, once shock-
capturing algorithms for the MHD system emerged in earnest. Dai and Wood-
ward [104] used their own approximate, nonlinear all-shock Riemann solver, de-
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scribed in [103], as a basic ingredient in a multi-dimensional ideal MHD solver.
They used Strang splitting and exploited an essentially third order scheme, us-
ing parabolic instead of linear reconstructions (the piecewise parabolic method,
or PPM). In a variety of shock-dominated 2D tests, they demonstrated robustness
of their scheme, despite the fact that no additional measures for controlling nu-
merical monopole errors were employed. A multi-dimensional TVD scheme, also
using dimensional splitting, was described in Ryu et al. [400]. A serious compari-
son between different shock-capturing schemes (FCT, TVD, TVDLF) for 1D and
2D hydro- and MHD problems can be found in [444]. Both these latter works in
essence use second order accurate, shock-capturing schemes.

It should be emphasized that the assumption of directional splitting strategies
may not always be justified: characteristic based schemes then implicitly assume
that waves travel orthogonal to grid cell interfaces, which is typically not the case.
Multi-dimensional upwind strategies may need to be incorporated. Other modern
efforts, such as [315], introduce higher order interpolations with a fully consistent
strategy for Maxwell’s law ∇ ·B = 0 incorporated in the scheme.

19.3.1 ∇ ·B = 0 condition for shock-capturing schemes

For multi-D MHD, one also needs to handle the non-trivial ∇ ·B = 0 constraint.
Even if satisfied exactly at t = 0, one can still numerically generate ∇ · B �= 0
due to the nonlinearities of the various shock-capturing methods. Besides the fact
that this is clearly undesirable physically, it became clear that when no corrective
action is taken at all, the accumulated errors may cause fatal numerical instabilities.
However, exact solenoidal fields may not be needed in numerical simulations, as
one always faces discretization and machine precision errors.

In practice, it turns out to be very difficult, although possible [441], to insist on
(1) a conservative form which is needed for correctly handling shocks, (2) ensuring
solenoidal B in some discrete sense, and (3) having the discretized Lorentz force
orthogonal to the magnetic field in the cell centers. The conservative form of the
MHD equations uses the divergence of the Maxwell stress tensor, which is equal
to the Lorentz force provided ∇ ·B = 0 since

∇ ·
(

1
2B

2I−BB
)

= −(∇×B)×B−B (∇ ·B) . (19.124)

In the context of shock-capturing schemes discussed thus far, many strategies to
cope with the solenoidal constraint have been developed. A thorough compari-
son of seven different strategies on a series of nine 2D MHD tests can be found
in [440], where the same high resolution base scheme (a TVD method) was used
in combination with varying strategies for numerical monopoles. In what follows,



456 Computational nonlinear MHD

we briefly discuss some of the most frequently used methods to handle the ∇ · B
problem in state-of-the-art MHD codes.

Vector potential One way of handling ∇ · B is by replacing the magnetic field
variable by a corresponding vector potential defined from

B = ∇×A . (19.125)

Analytically, this guarantees a solenoidal magnetic field, but when evaluating B
in some discrete manner from A, the operators should still be chosen to satisfy
∇ · (∇×) = 0. Using A unavoidably increases the order of the occurring spatial
derivatives to evaluate the Lorentz force. The need to express boundary conditions
on A instead of B when using a ghost cell prescription for boundaries is also a
non-trivial complication. This can be avoided by directly prescribing fluxes at the
boundary instead. From the discussion of the characteristic based solvers, it is
clear that they “conflict” with using the vector potential as a basic variable. In
many solvers, though, the vector potential can successfully be exploited.

Projection method for∇·B Originally mentioned by Brackbill and Barnes [68],2

one can combine any multi-dimensional method with a projection scheme strategy,
which controls the numerical value of∇·B in a particular discretization to a given
accuracy. The basic idea [68] is to correct the B∗ computed by a scheme with
∇ ·B∗ �= 0, by projecting it on the sub-space of zero divergence solutions. Hence,
we modify B∗ by subtracting the gradient of a scalar field φ, to be computed from
the Poisson equation

∇2φ = ∇ ·B∗ . (19.126)

By construction, this yields a solenoidal B = B∗ − ∇φ which is then used in
the next time step. This process can be repeated after each or only after a certain
number of time steps. It is important to note that the accuracy up to which the
Poisson problem (19.126) is solved need not be machine precision (one can use it-
erative methods as those discussed in Chapter 15), and that this approach keeps the
order of accuracy of the base scheme, while not violating its conservation proper-
ties [440]. Note that the projection does not change the current density j = ∇×B.
This “elliptic divergence cleaning” indirectly affects the local balance of thermal to
kinetic contributions to the total energy. It is possible to rather keep thermal energy
unmodified, at the cost of given up exact conservation of total energy.

The projection scheme in essence uses numerical concepts from incompressible
fluid flow (where ∇ · v = 0), and on uniform Cartesian grids was shown [440] to

2 In [68], this option of using a projection scheme is only mentioned, while the authors then go on to advocate
the use of a non-conservative formulation of the momentum equation.
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make the smallest possible correction to remove the divergence created by the base
scheme: it corresponds to minimizing |B − B∗| under the solenoidal constraint.
For cases where the initial field is not known analytically, it may even be useful to
eliminate finite numerical divergence errors of the discrete initial B.

Powell’s source terms and divergence wave Another popular means of handling
monopole errors was introduced by Powell [383]. In essence, the method uses
additional source terms proportionate to ∼ ∇ ·B in the original set of ideal MHD
equations in conservation form (19.73). These terms are

−∇ ·B

⎛⎜⎜⎜⎝
0
B

v ·B
v

⎞⎟⎟⎟⎠ . (19.127)

The source term for the momentum equation, −∇ · BB, directly follows from
the relation (19.124). One of the reasons to add these terms is that the resulting
modified set of PDEs restores Galilean invariance, as originally already noted by
Godunov [159]. In Section 5.2 [1], we also noted that the unmodified system has
eight eigenvalues, one of which is zero while all others lie symmetrically about
the fluid velocity v. It is the spurious zero eigenvalue which conflicts with the
∇ · B = 0 constraint, as it carries a jump in the normal component of the field.
When adding the source terms (19.127), the zero eigenvalue gets replaced by an
additional v. In a characteristic based scheme, it involves an additional “eight
wave” contribution. The effect of this operation can be clearly illustrated on the
(ideal) induction equation. The original form of this equation can be written as

∂B
∂t

= ∇× (v ×B) , so that
∂∇ ·B
∂t

= 0 (19.128)

and∇·B errors remain undamped in time. With the source term included, however,
we have

∂B
∂t
−∇× (v ×B) + (∇ ·B)v = 0 , (19.129)

so that numerical errors in ∇ ·B become compensated, when we note the equiva-
lence of ∇× (v ×B) = B · ∇v + v∇ ·B − v · ∇B −B∇ · v. We can further
deduce from the divergence of (19.129) and mass conservation that

∂

∂t

(∇ ·B
ρ

)
+ v · ∇

(∇ ·B
ρ

)
= 0 . (19.130)

The latter equation is an advection equation for ∇ ·B/ρ and it ensures that ∇ ·B
errors are advected away with the flow (however, it fails to do anything in stag-
nation points). The use of these source terms was exploited in combination with
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different base schemes (FCT, TVD, TVDLF) in [444], with a clearly stabilizing
influence overall.

However, just like any method which does not obey the strict conservation form
of the equations, it can potentially introduce incorrect jumps across discontinuities,
and an example was given in [440]. One can, of course, easily restore conservation
of energy and momentum, by taking only the source term for the induction equation
along, and additional arguments for doing so were given by [248] and [109]. Any
of these source term strategies carry over easily to grid-adaptive computations,
such as demonstrated in Powell et al. [384].

Constrained transport Another commonly used strategy is to insist on machine
precision accuracy in maintaining ∇ · B in one particular discretization. The
original concept for this so-called constrained transport is due to Evans and Haw-
ley [130], and has since been used in many MHD codes. One needs to ensure
an initial magnetic field representation that fully complies with zero divergence
in the chosen discretization, and make sure that boundary conditions remain com-
patible with this constraint. Originally, typical constrained transport approaches
used a staggering with thermodynamic quantities at cell center, magnetic fields at
cell face centers (at the middle of the edges in 2D), and electric field vectors (i.e.
E = −v ×B) at cell vertices (corners in 2D). By updating the magnetic field us-
ing a discrete evaluation of Stokes’ law, the initial divergence of the magnetic field
is maintained. In Fig. 19.21(a), this staggering is shown for a 2D Cartesian grid,
where Ω = Ez . The update for B = (Bx, By) from the induction equation writes
as
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One can verify that, with this update, the particular discretized divergence found
from

(∇ ·B)j,k =
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is maintained at its original value, i.e. ∇ · Bn+1 = ∇ · Bn. Note that truncation
errors still persist in any other discretization (certainly at shock locations or at other
discontinuities). Tóth [440] realized that this constrained transport concept can be
recast fully in a finite volume sense, i.e. in terms of (average) fluxes across grid cell
edges for cell-centered magnetic field evaluations involving spatio-temporal aver-
aging of the original staggered variables. This could be reversed, so that one no
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Fig. 19.21 (a) The staggering typically employed in constrained transport codes. (b) An
alternative, fully cell-centered oriented scheme was introduced by Tóth: the field interpo-
lated central difference scheme. (From Tóth [440].)

longer needs to stagger the variables in actual implementations. Once this realiza-
tion was made, a fair variety of variants on the CT idea could be introduced. One
of these in essence “zooms out”, to employ the cell-centered variables at neigh-
boring grid points, as shown in Fig. 19.21(b). This eliminates the need for spatial
interpolations needed in CT schemes (as magnetic fields and velocities need to
be evaluated at corners and cell centers), and the corresponding field interpolated
central difference scheme [440] only uses temporal interpolations.

Parabolic and hyperbolic cleaning A last strategy mentioned here is a parabolic
and hyperbolic variant of the initial elliptic strategy to use the numerical truncation
errors in∇·B as source terms. One can add diffusion type source terms to both the
energy equation and the induction equations, or to the induction equation alone,
which diffuse ∇ · B at a maximal rate. This maximal rate is one that does not
further constrain the discrete time step beyond the usual CFL condition. For a
purely parabolic equation with a diffusion coefficient ηD as in

∂B
∂t

= ηD∇2B , (19.133)

one gets an additional constraint for Δt < Δx2/ηD. Taking ηD ∼ Δx2 then
suggests the use of parabolic source terms for (19.73) given by⎛⎜⎜⎜⎜⎝

0

0

B · ∇CdΔx2 (∇ ·B)

∇CdΔx2 (∇ ·B)

⎞⎟⎟⎟⎟⎠ . (19.134)
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The coefficient Cd is a numerical factor of order unity (depending on the scheme
to treat source additions and to evaluate the gradients). This strategy can be easily
adapted to curvilinear hierarchically nested grids, as shown in [456]. Obviously,
like any source term strategy, it can potentially cause violations of the discrete
Rankine–Hugoniot relations across shock fronts, so one best uses only the term
for the induction equation. In grid-adaptive computations, this strategy compared
favorably with all other source term approaches on a variety of shock dominated
MHD problems [261].

While this parabolic treatment tries to diffuse numerical monopole errors, and
the elliptic approach with Powell’s source terms passively advects ∇ ·B/ρ, a new
hyperbolic cleaning variant was proposed by Dedner et al. [107]. The idea is to
combine the two ideas, namely to transport ∇ · B at a maximal admissible speed
and damp the error simultaneously. This comes at the price of one additional scalar
quantity, whose spatio-temporal evolution is coupled with ∇ ·B. Various variants
can be found in [107].

� Splitting strategy for strong potential background fields In a seminal paper by
Tanaka [431], one of the first finite volume TVD schemes for 3D MHD simulations was
presented and applied to model the Earth’s magnetosphere in the supersonic solar wind.
Figure 19.22 shows a 3D impression of the field lines obtained in the steady state solu-
tion, with the sunward direction at right. A key feature of the method was to account

Fig. 19.22 A 3D model of the earth’s magnetosphere embedded in supersonic solar
wind flow. The Sun direction is towards the right. (From Tanaka [431].)

for the fact that the strong dipole field of the Earth will cause serious difficulties when the
total magnetic field is taken as dependent variable, as both high- and low-β regions need
to be computed accurately in the shock-dominated interaction. An elegant solution to this
problem is to split the magnetic field into a static potential background field (e.g. only the
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dipole) and solve for the deviation from this field. Hence, we write

B = B0 + B1 , where
∂B0

∂t
= 0, ∇ ·B0 = 0, ∇×B0 = 0 , (19.135)

and take B1 as dependent variable. Also, the equation for total energy conservation needs
replacing by an equation governing the partial energy,

H1 = 1
2ρv

2 +
p

γ − 1
+ 1

2B
2
1 . (19.136)

In combination with Powell’s strategy for handling monopole errors, the method replaces
the basic conservation law (19.73), now written for U = (ρ, ρv,H1,B1)T, with

∂U
∂t

+∇ · F +∇ · G = S , (19.137)

where the fluxes F have exactly the same form as for the full system under replacing
H ↔ H1 and B↔ B1, but with additional fluxes and source terms given by

G =
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−v ·B1∇ ·B1

−v∇ ·B1
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Note that the method involves just a few extra flux and source terms to be implemented.
With e.g. a basic TVDLF solver, this is easily incorporated. The CFL limit still needs to
account for the full magnetic field influence. In the original paper, the magnetic monopole
treatment was actually done by a projection scheme, and the solver was a full characteris-
tic based scheme. The linearized Riemann solver was suitably modified for the changed
choice of variables, and it was implemented for unstructured grids. The corresponding set
of left and right eigenvectors for the modified system is given in Powell et al. [384]. �

19.3.2 Example nonlinear MHD scenarios

The aforementioned shock-capturing algorithms for nonlinear MHD have been
successfully applied in many studies of magnetized plasmas. In this section, we
briefly discuss three exemplary applications. Nowadays, many mostly freely dis-
tributed codes exist, with more advanced ones offering a fair variety of choice to
the user with respect to the employed spatial and/or temporal discretizations, as
well as the option to select additional physics modules that go beyond ideal MHD.
With an early example set by the Versatile Advection Code (VAC) [439, 444, 440,
441, 443, 257, 264, 261], the incomplete and continuously growing code list in-
cludes FCTMHD3D [116], BATS-R-US [186, 384], PLUTO [333], ATHENA [154],
FLASH [73], CO5BOLD [476], NIRVANA [497], Clawpack [303], RAMSES [148],
ASTRO-BEAR [100], Racoon [125], etc. Many of these codes even allow for au-
tomated grid adaptivity, where finer grids are created and eliminated dynamically
during the computation, in direct correspondence with the evolving flow features.
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Fig. 19.23 Snapshots of a translation symmetric magnetic flux sheet in a simulation
of solar magneto-convection: magnetic field lines with velocity arrows (top), with
temperature contours (middle), and simulated radiation intensity (bottom). (From
Steiner et al. [420].)

This adaptive mesh refinement (AMR) approach [34] provides an efficient means
to perform very high-resolution simulations at affordable computational cost.

Solar magneto-convection and flux sheet dynamics As an example where the
FCT method was applied in MHD context, Figure 19.23 shows snapshots of an
early simulation [420] of solar magneto-convection interacting with a “magnetic
element”, i.e. a thin flux sheet of a few hundred kilometers extent at optical depth
unity. FCT was used in a formulation exploiting density, momentum and entropy
density ρS as conserved variables. The induction equation used a constrained
transport type approach (with staggering of the variables) to ensure divergence
free magnetic fields at machine precision. This planar simulation already incorpo-
rated the effects of radiative energy transfer (in a grey approximation), as well as
conductive, viscous and resistive effects. Since the resolution (of order 240× 120)
was recognized to be too coarse to treat the latter effects properly, a sub-grid-scale
prescription related viscous effects with the mesh width, and visco-resistive effects
were inactivated altogether in regions with field strengths exceeding 50 G. These
and similar simulations underlined the need for higher resolution observations (spa-
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Fig. 19.24 Evolution of the density for a narrow supersonic jet of plasma beta
β = 6.54. After few sound crossing times of the jet with radius Rj = 0.125, a
sudden sinuous deformation occurs, with shock fronts extending far away from the
jet boundary. (From Baty and Keppens [27].)

tially and temporally) than those available at the time, since they predicted the ex-
citation of upward traveling shock waves both within and exterior to the magnetic
element, which contribute to the heating of chromospheric and coronal layers.

Magnetized, supersonic jet evolutions A second example, taken from Baty and
Keppens [27], considers the nonlinear evolution of a magnetized, supersonic, pla-
nar jet in a pure ideal MHD approximation. The jet configuration is idealized by a
“radially” varying velocity

v(y) = 1
2V

[
1− tanh

( |y|
ε
− R2

j

ε|y|
)]

ex . (19.139)

This planar sheared flow profile is embedded in a uniform plasma, with the mag-
netic field B = B0ex aligned with the flow direction. This highly simplified model
of a magnetized jet is fully specified by three dimensionless parameters, namely
(1) the ratio F = Rj/ε which quantifies the jet radius as compared to the thickness
of the shear flow layer bounding the jet, (2) the sonic Mach number M = V/cs
where cs denotes the (constant) initial sound speed, and (3) the initial Alfvén Mach
number MA = V/vA. In [27], a parametric study of this jet model was presented,
where first the linear instabilities were quantified in terms of their linear growth
rate and eigenfunction characteristics, augmented with nonlinear simulations of
extended jet segments. Using a linear MHD code of the type discussed in Chap-
ter 15, a narrow supersonic and super-Alfvénic jet with F = 1.25, Ms = 3 and
MA = 7 was found unstable to a dominant kink (sinuous) deformation over a wide
range of horizontal wavelengths. The eigenfunction of this sinuous instability has
an asymmetric density perturbation ρ1(y) = −ρ1(−y), and is characterized by sig-
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nificant density variation extending far beyond the jet radius. Figure 19.24 shows
two consecutive snapshots of the corresponding nonlinear simulation, taken after
several sound crossing times of the narrow jet diameter 2Rj = 0.35. The density
grey scale clearly shows the strong sudden sinuous deformation of the jet segment,
whose horizontal extent is taken to span several wavelengths of the most unstable
linear mode. The “wings” of the density perturbations extending into the jet sur-
roundings are seen to steepen into shocks, which are of fast magneto-sonic type.
The jet evolution shows a shock-dominated disruption of the original jet, where jet
kinetic energy gets converted to thermal energy. This nonlinear simulation used
a Roe-type approximate Riemann solver in a second order accurate TVD scheme
with a 1600 × 1600 resolution. In their parametric survey of such planar jet con-
figurations, the authors used both fixed high-resolution grids and AMR strategies.
In the latter, parabolic cleaning for the magnetic monopoles was enforced. More-
over, the AMR grid hierarchy used different shock-capturing discretizations per
grid level: TVDLF on lower levels was combined with a TVD scheme using an
approximate Riemann solver on the highest grid levels.

Space weather applications A final example represents a modern space weather
application, where 3D MHD simulations of coronal mass ejections (CMEs) play
an essential role. Space weather is concerned with the effects of such CMEs on
the Earth’s magnetosphere: besides giving rise to the beauty of the northern lights,
CME-driven perturbations and the currents they induce can be quite devastating
to electrical power plants, communication satellites, modern navigation systems,
pipelines, etc. Continuous monitoring of the solar corona using space and ground
based solar telescopes has dramatically increased our awareness and understanding
of these events. To a fair degree of accuracy, instantaneous solar coronal data
gives us telltale signatures for pre-eruptive events. Ultimately, one may envision a
space weather forecasting scenario where both past and instantaneous pre-eruption
conditions from observations are used to initialize a 3D computational model of the
solar corona and the inner heliosphere. In order to have relevance for forecasting,
the simulation must yield a prediction of the eventual local heliospheric conditions
at Earth orbit, prior to the actual arrival of the CME itself. The latter translates to
being able to compute 3D MHD dynamics on an enormous range of length scales
(resolving the coronal field structure in the corona, covering a distance of 1 AU,
and having sufficiently detailed resolution near the Earth’s orbit. This is currently
heavily pursued using massively parallel, grid-adaptive MHD codes.

A pioneering example is shown in Fig. 19.25, obtained from Manchester et
al. [324]. The authors used the BATS-R-US code, acronym for block adaptive
tree solar wind Roe upwind scheme, which features an octree block based AMR
method in a parallel (MPI-based) implementation. The code solves the ideal MHD
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Fig. 19.25 Top: close-up view of an initial coronal magnetic field configuration.
Orange and yellow lines correspond to the steady-state equatorial streamer belt.
The inserted flux rope is shown with red and light blue field lines. Bottom: global
view of the simulation when the CME arrives at Earth (little blue dot at right).
Shown are the velocity magnitude, field lines and the grid in a planar cross-section.
(From Manchester et al. [324].)

equations, augmented with the inclusion of the solar graviofofoftational field and
a parameterized volumetric heating term in the energy equation. The latter is de-
signed to give a good agreement with the latitudinal variation of the solar wind
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measured by the Ulysses spacecraft, for representative solar minimum conditions.
The code uses the Powell source term strategies for handling magnetic monopole
errors and employs an approximate Riemann solver of Roe-type. The local t = 0
field configuration is shown in the top panel of Fig. 19.25: the simulation starts by
inserting an analytic model for a helically magnetized flux rope (red field lines) into
steady-state solar wind conditions. The background wind is for a predominantly
dipolar solar magnetic field, and this yields an equatorial streamer belt character-
ized by a helmet streamer configuration (shown in the yellow field lines), together
with open field lines starting from both polar regions. The fast wind then originates
from these coronal holes. This initial configuration is not in force balance and the
flux rope expands and gives rise to a CME with initial speeds exceeding 1000 km/s.
Figure 19.25 shows the global view of the end result, at the time when the CME
arrives at Earth’s orbit. It also shows the grid in a cross-section through the 3D
domain, highlighting the need for grid refinement when these simulations are used
to obtain conditions at or even within the Earth’s magnetosphere.

Naturally, the model can still be improved with more realistic initial conditions,
and should be interfaced with codes that better represent the Earth’s magneto-
sphere, all the way down to ionospheric layers. This kind of activity is nowadays
pursued in very sophisticated frameworks such as the Space Weather Modeling
Framework [445], where different codes are run concurrently to model the dynam-
ics from Sun to Earth. At the core of several framework components, one finds
MHD solvers employing shock-capturing algorithms.

19.3.3 Alternative numerical methods

We emphasized in our discussion the use of conservative shock-capturing schemes
and finite volume treatments for nonlinear MHD scenarios, but it must be clear that
virtually all other (combinations of) discretizations mentioned in Chapter 15 have
found widespread use in the astrophysical and plasma physical literature. In the
following, we point out various alternative approaches, along with brief summaries
of typical example applications.

MHD solvers using primitive variable formulations While we stressed the need
for conservative formulations, there are many instances where primitive variable
formulations are adequate. In particular, one of the earliest codes designed to
tackle nonlinear MHD problems, the ZEUS code [423], is directly solving the MHD
equations in a primitive variable formulation. In essence, ZEUS solves the gas dy-
namic part of the MHD equations using upwinding for the advection terms only
(the terms of the form ∇ · ρv), and then augments this with finite difference treat-
ments to add Lorentz force and gas pressure “source” contributions. To handle
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Fig. 19.26 3D rendering of the turbulent local dynamics in a magneto-rotationally
unstable gravitationally stratified and magnetized accretion disk. After about 20
full orbital revolution periods, the left panel shows the density structure, while the
right iso-surfaces characterize the magnetic pressure. (From Stone et al. [422].)

shocks, artificial viscosity terms are then needed which automatically take effect
in compression zones only, both for stability and for physical reasons (restoring
the correct shock propagation speeds since the conservative form is not obeyed
discretely). These involve usually problem-tailored parameter settings, and it was
demonstrated in [131] that erroneous shocks can be easily produced, a statement
which holds generally for all non-conservative treatments. In ZEUS, the induction
equation is treated separately, in its Stokes’ type form, using a constrained transport
approach. The precise form of the latter approach pioneered in ZEUS is referred to
as MOC-CT (method of characteristics–constrained transport) [423], which specif-
ically takes the Alfvén wave space-time characteristics into account to evaluate the
electromotive force (i.e. the cell edge located electric field −v×B). This allowed
for many nonlinear MHD computations, and one of the first test suites, still used
for numerical MHD simulations, was presented in [421].

An early, impressive application of the MOC-CT scheme concentrated on the
nonlinear evolution of the magneto-rotational instability (MRI) encountered in
Section 13.4. In the radially sheared near Keplerian flows in accretion disks, the
MRI provides a linear MHD route to instability, which requires the presence of
a small seed magnetic field. Only by numerical simulations could one assess the
nonlinear evolution of the MRI, and demonstrate that it would lead to sustained
MHD turbulence, accompanied by enhanced outward angular momentum trans-
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port. The latter could explain the observationally inferred high accretion rates,
which translate into “anomalously high” effective viscosities needed in simplified
Navier–Stokes accretion disk models (the so-called α-disk prescriptions). Realiz-
ing that it is practically impossible to perform global simulations while assessing
turbulent dynamics, Hawley et al. [219] introduced the local “shearing box” model
in which the 3D dynamics is simulated in a patch located at a global disk radius
R0, and the equation of motion is then formulated in a co-rotating frame where
Coriolis, centrifugal and gravitational forces are accounted for. The local nature
justifies an expansion of the effective potential due to centrifugal and gravitational
effects, and the radial velocity shear becomes a linear profile. The “shearing box”
is thought to be surrounded by similar local slabs which, due to the velocity pro-
file, slide past each other in the “toroidal” direction in direct relation to the linear
velocity variation. This means that a kind of shifted periodic boundary condition
can be adopted in the radial direction (artificially connecting front and back planes
of the shearing box), while other boundaries can be taken as standard periodic
pairs. In [219], the vertical component of gravity was neglected, and it was found
that a saturated, turbulent state indeed forms, with increased outward angular mo-
mentum. The angular momentum flux in the saturated state was dominated by
magnetic stresses. The code used an MOC-CT scheme, and was rather similar to
the ZEUS implementation. A follow-up study with ZEUS [422] extended this work
to include vertical gravitational stratification. Figure 19.26 shows a snapshot of the
nonlinear end state from that study, as seen in density (left) and magnetic pressure
iso-surfaces (right). Anisotropic MHD turbulence has developed, as a result of the
MRI. The simulation shown in Fig. 19.26 started with a weak vertical magnetic
seed field, and shows the local shearing box dynamics after about twenty orbital
revolution times.

Spectral and pseudo-spectral MHD simulations Spectral methods are extensively
used in MHD turbulence studies, specifically for 3D incompressible simulations.
An example of a compressible MHD code based on Fourier collocation methods
is the CRUNCH3D code, which addressed MHD turbulence and magnetic recon-
nection in Cartesian triple periodic domains (demonstrating the distinct possibility
for magnetic flux tube tunneling, see [101]). In cylindrical flux-tube like configu-
rations, Fourier representations along and about the loop can be used in conjunc-
tion with finite differences for the radial direction. This mixed discretization was
employed in a parallel pseudo-spectral code, which was used in [265] to study
Kelvin–Helmholtz instabilities in 3D magnetized jet flows. Figure 19.27 shows a
visualization of the disruption of such jets, for different initial perturbations select-
ing linearly unstable modes of prescribed axial kz and poloidal m mode numbers.
The linear growth rates were found to be in exact correspondence with linear anal-
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Fig. 19.27 As studied in [265], 3D jets deform and disrupt due to Kelvin–
Helmholtz instabilities originating at the jet surface. Top: the jet iso-surface is
colored by thermal pressure, at consecutive times during the evolution under a given
initial m = ±1 perturbation. Bottom: the same for an m = ±2 initial perturbation.

ysis, while the knowledge on the evolution of all individual Fourier mode pairs
(kz,m) provided by the pseudo-spectral code allowed us to identify and distin-
guish the most dominant nonlinear interactions.

� Pseudo-spectral method For numerically solving nonlinear PDEs, the spectral method
employing Fourier representations becomes very expensive in terms of CPU time. This is
a consequence of the convolutions required to evaluate the nonlinear terms. Suppose, e.g.,
that two functions f(x) and g(x) are both approximated by means of Fourier harmonics.
Their product f(x)g(x) then requires the convolution of the two Fourier sums,

p(x) ≡ f(x)g(x) ≈ f̂(x)ĝ(x)

=
N∑

k=−N
fkeikx×

N∑
k′=−N

gk′eik′x =
N∑

k=−N

N∑
k′=−N+k

fk′gk−k′eikx , (19.140)

which involves ∼ N2 calculations. Higher order terms become even more CPU time con-
suming, so that the spectral method is often no longer practical in nonlinear problems.

For nonlinear problems, the pseudo-spectral method often provides an attractive com-
bination of accuracy and computational speed. This method makes handy use of the fact
that the Fourier transform of a convolution product is equal to

√
2π times the product

of the Fourier transforms. In the pseudo-spectral method, the terms in the equations are
computed in real space but the unknowns are updated in Fourier space (Fig. 19.28). This
involves FFTs from Fourier space to real space, and back, which is much faster for the
determination of the nonlinear terms. For example, for quadratic terms, the CPU time for
convolution of the two truncated Fourier series is proportional toN2 in the spectral method
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Fig. 19.28 Schematic representation of the determination of a quadratic term in
the pseudo-spectral method. All quantities are updated in Fourier space but the
products are calculated in real space.

and to N logN for the pseudo-spectral method. Hence, for large N , the pseudo-spectral
method is much more efficient than the spectral method. �

Lagrangian versus Eulerian approaches In essentially all methods mentioned
thus far, we implicitly assumed a static grid on which we wish to follow the tem-
poral variations of the basic MHD variables. Hence, a Eulerian viewpoint was
adopted all along. In Volume [1], Chapter 4, both Eulerian and Lagrangian for-
malisms were discussed, and it is also possible to directly solve the Lagrangian
equations and thus obtain the evolving MHD dynamics in the co-moving frame. In
practice, an initial grid on which one expresses the initial conditions then moves
and deforms, and volume changes directly yield density changes from mass con-
servation. However, numerical errors may then eventually lead to grid entangling
in more than 1D. An effective way to avoid this problem, known as arbitrary
Lagrangian–Eulerian, or ALE, is to use a hybrid approach where one or more La-
grangian steps are taken, consecutively remapped to a less deformed grid, and then
the next cycle of Lagrangian updates is started. An early, related approach by
Brackbill [67] used particle-in-cell type methods for MHD simulations. A modern
example of a 3D Lagrangian-Eulerian remap code, Lare3D [12], applies this to
nonlinear shock-dominated MHD. In Lare3D, a single Lagrangian step is followed
by a remap to a fixed Eulerian grid, and the latter remapping is fully conservative.
The Lagrangian update is done at second order accuracy and the use of artificial
viscosity (and resistivity) to cope with shocks. Lare3D employs a staggered pre-
scription with magnetic field components on cell faces, scalars in cell volumes,
and velocities at cell vertices. The ∇ · B = 0 constraint is then maintained using
constrained transport, applied to the advection, as well as to the remap stage. Al-
though the implementation does not guarantee perfect conservation of total energy,
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it was shown by Arber et al. [12] that it can give results as accurate as approximate
Riemann solver based methods for a suite of shock dominated problems. Another
advantage is that it maintains pressure positivity, so that one can handle very low
values of beta.

Solar physics applications with higher order centered differences As a final ex-
ample of an alternative to the Riemann-solver-type shock-capturing schemes dis-
cussed in this chapter, we now turn to a modern MHD computation of solar pho-
tospheric magneto-convection taken from Vögler et al. [469]. The employed code
MURaM (acronym for Max-Planck-Institute for Aeronomy/University of Chicago
Radiation Magnetohydrodynamics) is tailored to solve the non-ideal 3D MHD
equations in a Cartesian box, and in essence employs straightforward fourth order
centered difference formulas, in combination with an explicit fourth order Runge–
Kutta time stepping. These, and similar higher than second order CD approaches,
have found widespread use in many solar and astrophysics applications. This is
presumably because the current emphasis is more on coping with more realistic
(i.e. beyond ideal MHD) physics than on handling very strong shocks accurately.
MURaM includes detailed non-local radiative transfer effects, and even accounts
fully for partial ionization effects. The latter introduces the need for interpola-
tions through pre-computed tabulated equations of state, to determine pressure and
temperature from density and internal energy values, and in MURaM this allows
for the eleven most abundant elements in the solar photosphere. This is in sharp
contrast to the simple ideal equation of state assumed in most of this and the pre-
ceding volume, and would clearly complicate the use of approximate Riemann
solvers. The central fourth order differencing in MURaM operates on the usual set
of conservative variables, and is in fact equivalent to a conservative finite volume
scheme. However, the price to pay for the CD approach is the need to incorporate
artificial diffusion terms, even for the mass conservation equation. These terms
are not totally undesirable, since one needs them to dissipate energy at the unre-
solved sub-grid scales anyway. These artificial diffusion coefficients then have a
shock-resolving contribution that is effective in converging flow regions alone, and
a contribution for so-called “hyper-diffusion”, which merely serves to detect and
dissipate small-scale fluctuations (in essence depending on numerical approxima-
tions of third to first order derivative ratios). For modest Mach number flows, such
as typical in the solar photosphere regions, this approach has proven its worth many
times.

With the aim of studying the upper solar convection zone as well as the directly
observable photospheric dynamics, present state-of-the-art simulations spend most
computational effort on handling the radiative transfer as accurately as possible.
As an example simulation result from [469], which in many ways generalizes the
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Fig. 19.29 3D view of the magnetic field in a kG magnetic sheet, in a radiative
MHD simulation spanning a vertical scale of 800 km down into optical depth unity
(grey iso-surface) up to 600 km above the solar photosphere. The view angle is
along the arrow as indicated in the photospheric field intensity plot at right. (From
Vögler et al. [469].)

2D results shown in Figure 19.23 from Steiner et al. [420] discussed earlier, Fig-
ure 19.29 shows a 3D view of a spontaneously formed thin magnetic sheet of kilo
Gauss field strength. This represents a face-on view (in the direction as indicated on
the right panel of field intensity at the indicated photospheric “plane”) of the sub- to
upper photospheric field configuration. As a general tendency, magnetic field gets
expelled from up-welling adiabatically expanding convection flows and concen-
trates along the narrow downdraft lanes bordering the cellular convection patterns.
These high resolution radiative MHD simulations (employing 100×288×288 res-
olution) extend from 800 km down into optical depth unity (i.e. the photosphere) to
600 km above, and cover an area of 60002 km. The simulations actually followed
an initially uniform 200 Gauss magnetic field, and gave unprecedented insights
into evolving solar plage dynamics over many hours. The snapshot shown in Fig-
ure 19.29 is representative for the quasi-two-dimensional flux sheets occasionally
found in the simulated time interval, and shows that they are in fact rather shallow
phenomena, as the magnetic configuration is clearly disrupted in the deeper con-
vective layers. This is fully consistent with the vertical variation of the plasma beta
parameter in the strong field regions, found to vary from values above 100 at the
bottom, to about 0.1 near the top boundary. Besides the sheet-like structures accu-
mulating at the convection cell edges, the simulations also witnessed the formation
of a more coherent “micropore” of kilo Gauss field strength at the vertices where
several down flow lanes merge. This micropore appeared dark in intensity since
temporarily the convective transport got almost completely suppressed. This struc-
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ture only survived for about two convective turnover times, and showed remarkable
internal structure on shorter time scales. This represents a current frontier of MHD
modeling in which predictions for future generation solar telescopes can be made,
as it gives insights into details below current spatial and temporal resolution limits.

19.4 Implicit approaches for extended MHD simulations

All examples and methods discussed thus far in this chapter use explicit time
integration strategies, generalizing the basic explicit schemes mentioned in Sec-
tion 15.4.1. In Section 15.4.2, we pointed out that explicit schemes may face in-
surmountable difficulties, due to the disparate time scales inherent in the MHD
wave dynamics, and especially when it is necessary to study resistive phenom-
ena occurring on the longest diffusion time scale. To this end, the use of implicit
time integration methods was discussed briefly in Section 15.4.3, and linear MHD
computations employing implicit time integration strategies were covered in Sec-
tion 15.4.4. Also, for the full nonlinear MHD system, the use of implicit (or semi-
implicit) time integration methods is needed to alleviate the stringent CFL limit on
the time step. Examples of the typical use of implicit methods in MHD context
for both steady and unsteady problems can be found in [443], and an extended de-
scription of the numerical algorithms is given in [266]. A key observation in the
use of fully implicit schemes, such as those discussed in Section 15.4.4 to nonlin-
ear MHD problems, is that (1) the nonlinearity of the system will call for some
suitable (Newton) iteration strategy translating the problem into repeated solves of
linear systems which involve the flux Jacobian; and (2) the solution of such huge
algebraic linear systems. In 1D problems, the latter is feasible with the use of
direct methods (of the type presented in Section 15.3.1) since we then deal with
typically block-tridiagonal systems. However, in multi-dimensional problems, we
face the need to solve many block penta-diagonal (in 2D) or block hepta-diagonal
(3D) systems, which necessitate the use of iterative linear solvers and adequate pre-
conditioners to accelerate their convergence. The computation of the flux Jacobian
can be avoided altogether in an approach where the Newton iteration is performed
in combination with iterative Krylov sub-space methods using a matrix-free ap-
proach (in the iterative scheme, only matrix–vector products are required). This is
an area of active research, with a modern example found in Tóth et al. [442]. In
what follows, we will restrict ourselves to pointing out the basic idea of alternating
direction implicit strategies, reducing the problem to consecutive solves of “1D”
problems. Furthermore, we review in more detail the widely used semi-implicit
methods, as employed in state-of-the-art simulations of laboratory tokamak plas-
mas.
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19.4.1 Alternating direction implicit strategies

Consider the extension of the hyperbolic model problem (15.101) to two spatial
dimensions:

∂u

∂t
= −v

(
∂u

∂x
+
∂u

∂y

)
. (19.141)

Application of the implicit “BTCS Euler scheme” (backward in time, centered in
space, see Eq. (15.125)) yields

un+1
i,j − uni,j

Δt
= −1

2v

(
un+1
i+1,j − un+1

i−1,j

Δx
+
un+1
i,j+1 − un+1

i,j−1

Δy

)
, (19.142)

from which it follows that

vΔyΔt un+1
i+1,j − vΔyΔt un+1

i−1,j + 2ΔxΔy un+1
i,j

+ vΔxΔt un+1
i,j+1 − vΔxΔt un+1

i,j−1 = 2ΔxΔy uni,j . (19.143)

Since the indices i and j run over all grid points, one obtains an algebraic system
with a penta-diagonal coefficient matrix. The solution procedure for such penta-
diagonal systems of equations is CPU time consuming. This problem can be over-
come by using a “splitting method”, e.g. the alternating direction implicit (ADI)
method. This method is of orderO((Δt)2, (Δx)2, (Δy)2) and unconditionally sta-
ble. The ADI algorithm produces two sets of tridiagonal systems, and subsequent
solution of both is much faster than solution of the above penta-diagonal system.
In the ADI formulation the above finite difference equations become:

u
n+ 1

2
i,j − uni,j

Δt/2
= − 1

2v

(
u
n+ 1

2
i+1,j − u

n+ 1
2

i−1,j

Δx
+
uni,j+1 − uni,j−1

Δy

)
, (19.144)

un+1
i,j − un+1/2

i,j

Δt/2
= − 1

2v

(
u
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2
i+1,j − u

n+ 1
2

i−1,j

Δx
+
un+1
i,j+1 − un+1

i,j−1

Δy

)
. (19.145)

These yield tridiagonal systems for u
n+ 1

2
i+1,j , u

n+ 1
2

i,j , u
n+ 1

2
i−1,j and un+1

i,j+1, un+1
i,j , un+1

i,j−1,
respectively. The formulation of Eq. (19.144), referred to as the “x-sweep”, is
implicit in the x-direction and explicit in the y-direction and provides the necessary
data to solve the tridiagonal system (19.145). The latter system is implicit in the
y-direction and explicit in the x-direction and is called the “y-sweep”.

The ADI method has been applied successfully to compute nonlinear ideal and
resistive internal kink instabilities in 2D (Schnack and Killeen [404]), and even 3D
(Finan and Killeen [135]) laboratory plasmas. However, since in MHD one has
to deal with eight equations simultaneously, the ADI method still involves large
block tridiagonal matrices. For wave driven problems, in which the time step is
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limited by the wave period, the gain in the size of the time step (due to the implicit
scheme) is too small to make up for the huge amount of additional work. As a
result, the ADI method is not often used then, and for such problems, the semi-
implicit scheme yields a valuable alternative. This scheme was introduced in MHD
by Harned and Kerner [214] and is discussed in the next subsection.

19.4.2 Semi-implicit methods

As already mentioned in Section 15.4.3, the term “semi-implicit” is used for several
alternative schemes which are neither explicit nor fully implicit. Different options
can be, e.g., to treat some dependent variables explicitly and other ones implicitly,
or to update only specific terms in the equations implicitly. In the following dis-
cussion, semi-implicit refers to a means to relax the CFL condition somewhat by
treating only the fastest sub-spectrum of waves implicitly. This has been applied in
nonlinear MHD with a lot of success. In hot elongated plasmas, the fast magneto-
sonic waves have extremely short time scales and, hence, cause a severe limit on
the time step for explicit schemes due to the CFL condition for numerical stability.
When these fast magneto-sonic waves are handled in an implicit way, the time step
is limited by the CFL condition on the Alfvén waves, which is much less restrictive
because of the time scale discrepancy between fast and Alfvén waves.

The implicit treatment of only the sub-spectrum of fast magneto-sonic waves
can be achieved in a simple and elegant way. The procedure involves three steps:
(1) identification of the mode that produces numerical instability when the time
step is raised; (2) subtraction of a simple approximation of the term producing
this mode from both sides of the equation; (3) evaluation of the new approximate
term on the RHS explicitly and on the LHS implicitly. Below we will demonstrate
this procedure on the simple linear advection model problem already considered in
Chapter 15 and then apply it to MHD.

Demonstration of the procedure and physical interpretation Consider again the
model problem equation

∂u

∂t
= −v ∂u

∂x
. (19.146)

This simple linear equation describes only one type of mode, but nevertheless we
can demonstrate the idea of the semi-implicit method on it. The von Neuman
stability analysis of the explicit Lax–Friedrichs scheme from Eq. (15.110), namely

un+1
i = 1

2(uni+1 + uni−1)− 1
2v

Δt
Δx

(uni+1 − uni−1) , (19.147)
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yielded the CFL stability condition. This gave a restriction of the time step for a
given spatial discretization, viz. |vΔt/Δx| ≤ 1. In an implicit scheme, the spatial
derivative is evaluated at the next time level:

un+1
i = uni − vΔt

∂u

∂x

n+1

i
, (19.148)

which yields an unconditionally stable numerical scheme. For this simple model
problem (which easily generalizes to nonlinear cases, with v a function of u or
of (x, y, z), or both), the three steps of the semi-implicit procedure become very
simple. The first step can be skipped since there is only one wave mode. The
term that generates this mode is also obvious, since there is only one RHS term in
Eq. (19.146). A semi-implicit method for this model problem is

un+1
i + 1

2v0
Δt
Δx

(un+1
i+1 − un+1

i−1 )

= 1
2(uni+1 + uni−1)− 1

2v
Δt
Δx

(uni+1 − uni−1) + 1
2v0

Δt
Δx

(uni+1 − uni−1) ,

(19.149)

where the last term on the LHS and on the RHS is additional to the original Lax–
Friedrichs scheme (19.147). The coefficient v0 is a constant which is to be chosen
from numerical stability considerations. By consequence, the LHS operator to be
inverted is linear and the obtained tridiagonal system is easy to solve.

� Exercise Show that the semi-implicit scheme (19.149) is unconditionally stable for v0 =
1
2v when v is constant. Apply the von Neumann stability analysis of Chapter 15. �

Notice that the terms added to the LHS and to the RHS in Eq. (19.149) are
identical, except for the fact that the LHS term is evaluated at time level n + 1
while the RHS term is evaluated at time level n. This comes down to adding some
numerical dissipation which slows down the high-k (short wavelength) modes. As
a matter of fact, the dispersion relation of the original model equation is ω/k = v,
so that there is no dispersion for a constant v. The semi-implicit equation (19.149),
however, is a discretization of

∂u

∂t
= −v ∂u

∂x
− v0Δt ∂

∂x

∂u

∂t
, (19.150)

with the dispersion relation ω = kv− iv0ωkΔt, or ω/k = v/(1+iv0kΔt). Hence,∣∣∣ω
k

∣∣∣ = v√
1 + (kv0Δt)2

, (19.151)

so that the high-k modes are indeed slowed down. In the MHD application dis-
cussed below, the semi-implicit term is chosen such that compressible modes prop-
agating perpendicular to the magnetic field are slowed down in a similar way.
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Application to nonlinear MHD The semi-implicit method is most powerful when
used in conjunction with a spectral discretization, although it can also be used in
finite difference schemes. In MHD applications for tokamak and solar coronal
loop simulations, it has been successfully used in 3D, often applying a finite dif-
ference method in the direction normal to the initial magnetic flux surfaces and a
(pseudo-)spectral method in the two spatial directions spanning these surfaces. Be-
low, we describe the three-step procedure mentioned, in the way it was originally
introduced to MHD by Harned and Kerner [214].

The first step, identification of the trouble mode, is obvious: the fast magneto-
sonic mode is the one that causes the severe time step limitation in explicit schemes.
This wave mode propagates in the direction normal to the flux surfaces and this
is precisely the direction in which the mesh size has to be very small in order
to resolve the singular layers that develop in e.g. kink instabilities or resonantly
excited continuum modes. The simple approximation of the term that generates
these modes follows from Eq. (5.51) of Section 5.2.3, where we do not assume
normal modes, i.e. the linearized ideal MHD equations in terms of the amplitude v̂
for plane waves:([

− ∂2

∂t2
− (k · b)2

]
I− (b2 + c2)kk + k · b(kb + bk)

)
· v̂ = 0 . (19.152)

Retaining only the “fast compressional modes” (k ⊥ b), one obtains a representa-
tive equation for the fast evolution:

∂2v̂
∂t2

= −(b2 + c2)kk · v̂ . (19.153)

For a general (inhomogeneous) equilibrium, remembering that the∇ operator was
replaced by ik, this equation becomes

∂2v̂
∂t2

=
(γp0 +B2

0

ρ0

)
∇∇ · v̂ . (19.154)

The semi-implicit method then approximates this simply by replacing the coeffi-
cient by a constant A2

0, introducing the linear operator

S(v̂⊥) ≡ A2
0∇∇ · v̂⊥ , (19.155)

where only the perpendicular component of v is included since the severest time
step limitations occur when k‖ � k⊥. In that case, the parallel component of the
fast magneto-sonic wave is negligible. The constant A2

0 is to be determined from
stability considerations.

� Semi-implicit predictor–corrector scheme for MHD Harned and Kerner [214] used a
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predictor–corrector scheme to evolve the MHD equations. They applied the semi-implicit
term in the corrector step only, which leads to the following scheme:

– predictor step:

v∗ = vn + (αΔt/ρn)F(vn,Bn, pn) ,

B∗ = Bn + αΔt∇× (vn ×Bn) ,

ρ∗ = ρn − αΔt∇ · (ρnvn) ,
p∗ = pn − αΔt (vn · ∇pn + γpn∇ · vn) ;

– corrector step:

vn+1
z = vnz + (Δt/ρ∗)Fz(v∗,B∗, p∗) ,

(1− S)vn+1
⊥ = vn⊥ + (Δt/ρ∗)F⊥(v∗,B∗, p∗)− S(vn⊥) ,

B∗∗ = Bn + 1
2Δt∇× [(vn+1 + vn)×B∗] ,

ρn+1 = ρn − 1
2Δt∇ · [ρ∗(vn+1 + vn)

]
,

pn+1 = pn − 1
2Δt
[(

vn+1 + vn
) · ∇p∗ + γp∗∇ · (vn+1 + vn

)]
;

– diffusion step:

(1− η0Δt∇2)Bn+1 = B∗∗ + Δt∇× (η∇×B∗∗)− η0Δt∇2B∗∗ .

In the above scheme, F denotes the force operator in the momentum equation. Notice that
the semi-implicit term has been added to the corrector step in the momentum equation, im-
plicitly in the LHS and explicitly in the RHS. The z-component of the momentum equation
is treated separately because the semi-implicit term only involves the r- and θ-component
of the velocity. The magnetic field is always advanced after the velocity field and requires
no special treatment. The parameter α determines the time step size. For α = 0.5 the ideal
MHD part of the scheme (apart from the fast magneto-sonic waves) is second order accu-
rate in time. In practice, one chooses α equal to 0.51 or 0.52 in order to add a small amount
of numerical damping to make the scheme more stable. Also notice the Crank–Nicolson
type treatment (see Section 15.4.3) of the velocity in the corrector step: all information on
v is used as soon as it becomes available. �

The stability of the semi-implicit algorithm was analyzed in [214], where it was
found that the following constraints must be satisfied throughout the plasma for
linear stability:

A2
0 >

1
16ρ

(B2
z +B2

θ + γp)(1 + 2α)2 , (19.156)

1
ρ

(
m

r
Bθ +

2πn
L

Bz

)2

(Δt)2 <
16

(1 + 2α)2
. (19.157)

The constraint (19.156) determines the constant A0 and follows from the require-
ment of unconditional stability with respect to the fast magneto-sonic modes. The
second constraint is a CFL-like condition on the time step following from the ex-
plicit treatment of the shear Alfvén term ω2

A = (k · vA)2 on the LHS.
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The semi-implicit scheme was applied [214] in combination with a finite differ-
ence discretization for the direction normal to the flux surfaces and a spectral dis-
cretization in the other two spatial directions. The constant A0 in the semi-implicit
term then avoids the CPU time consuming convolutions that would complicate a
fully implicit time advance. In fact, the only “overhead” the semi-implicit scheme
produces involves the solution of NF tri-diagonal systems in every time step, with
NF the number of Fourier modes. However, there are very efficient solvers for
such simple systems. Kerner [269] derived the following expression for the max-
imal time step of the semi-implicit scheme, ΔtSI, compared to the CFL limited
time step of an explicit scheme, ΔtCFL. From numerical simulations in a cylindri-
cal plasma of finite length 2πR0 and radius a (i.e. a “straight tokamak”),

ΔtSI

ΔtCFL
= 15

R0

a

N

100
. (19.158)

This means that the ratio is proportional to the aspect ratio of the cylinder and to
the number of radial grid points used in the discretization. Indeed, the explicit time
step size depends on this number because the fast magneto-sonic wave propagates
in the radial direction, but the semi-implicit scheme treats these waves implicitly
so that the gain is larger for higher radial resolutions. A high resolution run with
N = 1000 yields a 1500 times larger time step for the semi-implicit scheme for an
aspect ratio of 10.

The semi-implicit method is widely used in MHD and below we briefly discuss
some successful MHD applications. Harned and Schnack [215] adjusted the semi-
implicit term in order to treat both the fast magneto-sonic waves and the Alfvén
waves implicitly. Their scheme is more complicated but allows even larger time
steps as the shear Alfvén time step constraint is eliminated as well. Lerbinger and
Luciani [301] went even further and used the full linearized MHD force operator
in the semi-implicit term. As a result, the time step in their scheme is limited
only by nonlinear physical phenomena and they show results on nonlinear tearing
modes obtained with time steps as large as 10 Alfvén crossing times in the linear
phase and 2 Alfvén transit times in the nonlinear saturated phase. Keppens et
al. [262, 263] applied the semi-implicit term in both the predictor and corrector
steps of the scheme and combined it with a pseudo-spectral discretization in a
data-parallel implementation running on different platforms.

Example application: resonant Alfvén wave heating In Chapter 11 [1], we dis-
cussed the phenomenon of resonant absorption in the context of linear MHD. We
remarked that the assumption of small amplitude perturbations may not be valid
in the resonance layer itself when the model is applied to some very hot plasmas
of interest, e.g. in the solar corona and in tokamaks. The high temperatures in
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Fig. 19.30 Contour plots of snapshots of the current density for a nonlinear contin-
uation of the linear steady state of a “straight line-tied coronal loop”; times given in
units of the period Pd of the driving frequency. (From Poedts et al. [380].)

these plasmas in combination with relatively long length scales give rise to ex-
tremely high magnetic Reynolds numbers. As a result, the plasma response to
the external periodic driver is close to the ideal plasma behavior, which is singu-
lar. In other words, the large amplitudes in the resonant layer(s) probably induce
nonlinear effects. Poedts and Goedbloed [375] showed that the dynamics in the
resonant layer is very nonlinear indeed. The semi-implicit nonlinear continuation
of a linear stationary state shown in Fig. 19.30 gives a substantially different be-
havior from the linear MHD picture. The periodic shear flow in the dissipative
layer turned out to be Kelvin–Helmholtz unstable, as predicted by Heyvaerts and
Priest [225], and found previously in more simplified slab loop simulations in Of-
man and Davila [355]. This instability deforms the resonant layers, but for the
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parameter domain studied, the instability is not violent enough to destroy these
layers in half a driving period (the stationary flow is periodic). Therefore, the heat-
ing mechanism seems to survive in the nonlinear picture although the efficiency,
time scales and heat deposition profiles are very different from the linear MHD
results. This is because the background magnetic field and plasma density change
in response to the heat deposition so that the resonance positions vary in time in the
nonlinear picture. Clearly, the driven system does not evolve to a stationary state
in nonlinear MHD.

19.4.3 Simulating ideal and resistive instability developments

The semi-implicit method is often used in MHD to determine the linear and non-
linear growth rates and to study the nonlinear behavior and saturation of ideal and
resistive instabilities. The method has been applied to the study of so-called “re-
laxation” instabilities, which occur periodically and each time transfer energy and
plasma particles from one part of the plasma to another or even out of the plasma.
There are two known relaxation instabilities: “sawtooth” instabilities, which affect
only the plasma center and “edge localized modes” (ELMs) which only occur at
the plasma surface. The latter have been discussed in Chapter 17 in the context
of linear MHD. Sawtooth instabilities have been simulated [48, 71] using a semi-
implicit scheme very similar to the original one of Harned and Kerner [214].

An exemplary challenging calculation involves the nonlinear saturation of the
ideal internal kink mode, predicted analytically by Rosenbluth et al. [396]. The
m = 1 internal kink mode develops nonlinearly into a helical equilibrium state
with a singular current sheet on the q = 1 surface. This saturated nonlinear ideal
equilibrium state turns out to be unstable when finite resistivity is taken into ac-
count. The singular current sheet, in which the magnetic field changes sign, is
unstable in a resistive plasma and the magnetic field lines reconnect in this layer.
Kadomtsev derived the time scale for this reconnection process and showed that
it is proportional to η−1/2. Numerical simulations [269] confirmed this property
of Kadomtsev’s model for sawtooth instabilities by semi-implicitly evolving the
nonlinear ideal equilibrium in resistive MHD (Fig. 19.31).

The semi-implicit method is also used to study the nonlinear growth and satu-
ration of ideal and resistive kink instabilities of line-tied coronal loops [26, 312].
Such loops become kink unstable when the twist exceeds a critical value depending
on the radial profile and the loop length. The nonlinear evolution of such m = 1
kink modes is similar to their equivalents in tokamaks but different due to the sta-
bilizing anchoring of the foot points of the loops in the dense photosphere. Here
too current sheets develop in which magnetic reconnection occurs and releases part
of the magnetic energy. This released energy may be dissipated and contribute to
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Fig. 19.31 (a) Contour plot of the magnetic flux and (b) current density as a func-
tion of radius through the symmetry plane for a nonlinearly saturated state of the
m = 1 internal kink mode in a “straight tokamak”. There is a current sheet at the
rational surface q = 1. (From Kerner [269].)

the observed heating of the loops, providing an alternative for the wave heating
mechanism discussed in the previous subsection.

19.4.4 Global simulations for tokamak plasmas

As a final example where nonlinear MHD simulations, using semi-implicit algo-
rithms, are heavily used, we discuss a state-of-the-art study from laboratory fu-
sion context. A US-based consortium, the NIMROD team (non-ideal MHD with
rotation, open discussion), has progressed to simulating long-term plasma dynam-
ics in global tokamak geometry. In NIMROD [415], the 3D toroidal geometry is
discretized using a 2D FEM representation in the poloidal cross-section (as was
found optimal for handling also the equilibrium problem for axi-symmetric toka-
mak plasmas, see Chapter 16), with a Fourier handling of the toroidal direction.
The Galerkin method is used, whereby nonlinear terms which depend on ϕ are
handled pseudo-spectrally in the periodic toroidal direction, using FFTs. The ma-
jor challenge is to account for the wide range in time scales of interest (as al-
ready discussed earlier in this chapter), as well as for the extreme and anisotropic
properties of high temperature, magnetized plasmas. The latter implies that one
wishes to compute plasma evolution over resistive time scales while facing mag-
netic Reynolds numbers of order 109 or higher, in conjunction with thermal con-
duction processes qualified by ratios κ‖/κ⊥ ≈ 109. In order to handle some even
more affordable numerical values, the temporal discretization must use implicit
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Fig. 19.32 Visualizing temperature iso-surfaces, various magnetic field lines col-
ored by the local temperature, and the heat load on the wall (orange color scale),
this 3D MHD simulation models a disruption which occurred in shot # 87009 of the
DIII-D tokamak. (An animation is available at nimrodteam.org.)

strategies. A modification akin to the semi-implicit strategies described earlier is
made to the momentum equation, involving the full self-adjoint linear ideal MHD
force operator about a steady state. In fact, the nonlinear equations are also written
in a manner which accounts for this strong background equilibrium field, remi-
niscent of the B0 + B1 strategy introduced by Tanaka [431] for shock-capturing
methods. The ∇ · B = 0 constraint is handled by introducing a diffusive source
term to the induction equation, recognized as the parabolic cleaning strategy men-
tioned in Section 19.3.1. The semi-implicit operator is modified in a manner which
nearly guarantees no numerical dissipation for linear stable modes, while unsta-
ble modes will grow at their physically correct growth rates, if the employed time
step is suitably restricted. In addition to this, physical dissipation terms (resistivity,
anisotropic thermal conduction, viscosity) are handled fully implicitly.

The main strength of the NIMROD strategy is its demonstrated ability to solve
for long term non-ideal evolution in global tokamak plasmas. The order of the
FEM used in the poloidal discretization must be higher than 2, but provided such
second or higher order elements are used, several stringent tests for tearing modes,
and extreme anisotropic heat conduction conditions were demonstrated success-
fully in [415]. Figure 19.32 shows a snapshot of a simulation where a disruption
(shot # 87009) in the DIII-D tokamak was simulated from beginning to end. The
initial MHD equilibrium was found unstable to a helical (2/1 in poloidal/toroidal
mode numbers) deformation with a prominent magnetic island structure. The insta-



484 Computational nonlinear MHD

bility grows and leads to a global disruption of the tokamak plasma. Figure 19.32
shows an impression of the plasma at the time of maximal heat load to the toka-
mak walls. The field lines are colored by local temperature and iso-surfaces of
temperature show significant deformation from their initial nested tori configura-
tion. The heat flux on the wall is also indicated: the reddish features at top and
bottom indicate where most heat is deposited at this instant. In an animation of the
disruption, one can follow the sudden loss of equilibrium, and see how eventually
a single field line connects top and bottom areas of maximal heat load on the toka-
mak walls. The plasma as a whole cools rapidly: one obviously wants to avoid
this kind of global disruption in actual fusion plasmas. Global tokamak modeling
will thereby serve a crucial role: it offers the only way to quantify macroscopic
plasma properties throughout nonlinear evolutions in the entire tokamak geometry.
Combined with detailed knowledge and feedback from MHD equilibrium recon-
structions and linear MHD spectral codes, one may hope to devise strategies for
controlling self-burning fusion plasmas. Eventually, fluid models of tokamak plas-
mas can be expected to be replaced by more elaborate fluid-like treatments which
gradually incorporate more and more kinetic effects. This requires detailed knowl-
edge of the temporal and spatial scales inherent in the more elaborate closures,
such that suitable numerical strategies can be tailored to the challenge. An up-to-
date review of these issues for a hierarchy of ever more sophisticated fluid models
can be found in [403], where various “extended MHD” models are discussed.

19.5 Literature and exercises

Notes on literature

Numerical methods

– Many excellent books cover computational hydrodynamics, e.g. Wesseling, Princi-
ples of Computational Fluid Dynamics [479]. Riemann solver based methods for gas
dynamics are thoroughly discussed in Toro, Riemann Solvers and Numerical Methods
for Fluid Dynamics [436]. Their application to MHD was pioneered in the paper by
Brio and Wu, ‘An upwind differencing scheme for the equations of ideal magnetohy-
drodynamics’ [70].

– The lecture notes for the 1997 Saas Fee Advanced Course on Computational Methods
for Astrophysical Fluid Flow [304] include material on finite volume methods for con-
servation laws, with a section on MHD, by LeVeque. The monograph by Murawski,
Analytical and Numerical Methods for Wave Propagation in Fluid Media [343], also
discusses aspects of modern shock-capturing schemes for the MHD system.

– Introductions to the very broad topics of computational plasma physics and com-
putational astrophysics, with sections on numerical MHD, are the books by Tajima,
Computational Plasma Physics [430] and Bodenheimer et al., Numerical Methods in
Astrophysics [54].
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Exercises

[ 19.1 ] Conservative versus primitive variable formulations for iso-thermal hydro

Consider the 1D iso-thermal hydrodynamic equations given by

∂ρ

∂t
+
∂(ρv)
∂x

= 0 ,

∂m

∂t
+
∂(mv + p)

∂x
= 0 .

These express conservation of mass in terms of the density ρ, and momentum m = ρv
conservation with velocity v. For an iso-thermal gas of uniform temperature, the gas pres-
sure is directly proportional to the density, i.e. p = c2i ρ, where ci denotes the constant iso-
thermal sound speed. We can alternatively write the governing equations in the form (19.3)
in terms of primitive variables V = (ρ, v)T.

– Compute the flux Jacobian FU and verify that

FU =

(
0 1

c2i −m2/ρ2 2m/ρ

)
, W(V) =

(
v ρ

c2i /ρ v

)
,

{
λ1 = v − ci
λ2 = v + ci

,

R =

(
1 1

v − ci v + ci

)
, R−1 =

⎛⎜⎝ 1
2

v + ci
ci

− 1
2ci

− 1
2

v − ci
ci

1
2ci

⎞⎟⎠ , R̂ =

⎛⎝ 1 1

−ci
ρ

ci
ρ

⎞⎠ ,

R̂−1 =

(
1
2 − 1

2ρ/ci
1
2

1
2ρ/ci

)
, R̃ =

(
v − ci ln ρ
v + ci ln ρ

)
.

– Note that the equations for the Riemann invariants (generally found from Eq.(19.8))
can be manipulated to the following characteristic equations, as also found from the
generalized Riemann invariants construction (19.10),

dv ± (ci/ρ)dρ = 0 , along curves dx/dt = v ∓ ci .
In these equations, dv = (∂v/∂t)dt+ (∂v/∂x)dx denotes the total velocity change.

[ 19.2 ] Linear hyperbolic systems

Consider the 2× 2 linear system{
ut + 0.5ux + wx = 0 ,

wt − 1.25ux + 3.5wx = 0 .

Show that this system is strictly hyperbolic. Compute its eigenvalues and the left and
right eigenvectors. Calculate the characteristic variables and verify that their evolution is
governed by constant coefficient linear advection equations. Compute the analytic solution
for the particular initial data (u,w) = (4, 1) for x < 0 and (u,w) = (2, 100) for x > 0.

[ 19.3 ] Shallow water magnetohydrodynamics

An interesting set of nonlinear conservation laws, known as the “shallow water” magneto-
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hydrodynamic equations, is given by

∂

∂t

⎛⎝ h

hv
hB

⎞⎠+∇ ·
⎛⎝ hv

hvv − hBB + 1
2gh

2I

hvB− hBv

⎞⎠ = 0 .

These equations govern the two-dimensional motion of a narrow layer of local height
h(x, y) of conducting fluid, with purely planar v = (vx, vy) and B = (Bx, By). The
magnetic field divergence constraint complements this with ∇ · (hB) = 0. The parameter
g represents a constant gravitational acceleration, perpendicular to the (x, y) plane.

– Compute the flux Jacobian of this five component system. Derive an equivalent quasi-
linear form in terms of primitive variables V = (h, vx, vy, Bx, By)T.

– Compute all the characteristic speeds, and the left and right eigenvectors for both
primitive and conservative variable formulations.

– Try to derive generalized Riemann invariants, and compute the structure coefficients
for the five wave modes. Discuss the Rankine–Hugoniot relations and the equations
governing (centered) simple waves.

You can verify your results and find physical explanations for the occurring wave modes
in this system in [111].

[ 19.4 ] FCT for Burgers’ equation

Implement and test the FCT method for numerically simulating the solution to the inviscid
Burgers equation (19.28) for a given initial triangular pulse (19.29). Quantify your result
against the correct analytic solution given by Eq. (19.31) for different resolutions.

[ 19.5 ] A Roe scheme for iso-thermal MHD

Construct a Roe-type Riemann solver based scheme for the 1.5D iso-thermal MHD system.
This can then be compared to the algorithm presented in [277], where a TVD scheme of
Roe-type was exploited for multi-dimensional iso-thermal MHD. Expressions for suitably
scaled eigenvectors are given there as well, but note the difference between our coefficients
α2

f , α2
s and theirs.
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Transonic MHD flows and shocks

20.1 Transonic MHD flows

20.1.1 Flow in laboratory and astrophysical plasmas

We started the study of the effects of background flow on waves and instabilities of
laboratory and astrophysical plasmas in Chapter 12. We also considered the mod-
ifications of the equilibrium caused by the flow. These modifications were rather
trivial for plane shear flows, but considerable for rotating plasmas due to centrifu-
gal forces. However, except for the forebodings of Chapter 18, the most substantial
effects have not been faced yet. The adjective “substantial” on background flows
obviously should refer to some standard on what is a sizeable velocity. For tran-
sonic gas dynamics, it is clear that the appropriate standard velocity is the sound
speed. For the macroscopic description of plasmas, which incorporates the dynam-
ics of ordinary gases, the three MHD speeds (slow, Alfvén and fast) collectively
take over the role of the sound speed. This implies that trans“sonic” MHD flows
will be characterized by different flow regimes depending on the speed of the back-
ground flow relative to those three MHD speeds. In addition, the relative direction
of the background velocity, v0, with respect to the direction of the background
magnetic field, B0, introduces an anisotropy in plasma dynamics that is not present
in ordinary gas dynamics.

Because of the important implications indicated above, the theory of MHD flows
is being extensively investigated at present, both in laboratory and in astrophysi-
cal contexts. In the linear analysis, the usual approach of a split in background
equilibrium and perturbations by waves and instabilities leads to substantial dif-
ficulties since these two topics become intermingled to some extent for transonic
flows [169, 171], as discussed in Section 18.2.2. This was found out when a dual
set of numerical codes FINESSE–PHOENIX [29, 173, 52] was developed, where the
first code computes transonic equilibria and the second one the waves and insta-
bilities of such equilibria. For the computation of transonic equilibria, the usual

487
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assumption of ellipticity breaks down, with concomitant complexity of bookkeep-
ing of solutions, whereas the appearance of new overstable modes due to transonic
transitions (see Section 18.4.3) indicates that an enormous field of research opens
up when the interaction of transonic flows and waves is explored. This may imply
that, eventually, nonlinear analysis of the complete dynamics (without making the
split in equilibrium and perturbations) is the more appropriate approach. This will
necessarily involve large-scale computing with the tools of computational nonlin-
ear MHD, expounded in Chapter 19. However, at present, the deep relationship
between linear instabilities in transonic MHD flows and the resulting nonlinear 3D
dynamics has hardly been investigated, let alone properly understood. Hence, let us
now turn to the most basic part of magnetohydrodynamics, leaving the techniques
of linearization and of a split in equilibrium and stability, and of solving differential
equations, and just consider what effects nonlinearity might have on a single point
in the flow. To our surprise, we will find out that, again, a rich structure is there,
with some common features with linear dynamics that have not been investigated,
even today. MHD never disappoints!

20.1.2 Characteristics in space and time

Recall the discussion of the characteristics of ideal MHD in Volume [1], Sec-
tion 5.4.3, Eqs. (5.116)–(5.119). That discussion mostly centered on waves and
instabilities of static equilibria, as illustrated by the Friedrichs diagrams of Fig 5.13
for the propagation of plane waves and point disturbances in plasmas without back-
ground flow. The generalization to plasmas with background flow (stationary equi-
libria) of Chapters 12 and 13, leads to seven characteristic speeds of the flow:

uE = vn ≡ n · v ,

u±s = vn ± vsn , vsn ≡
[ 1
2ρ

(
γp+B2 −

√
(γp+B2)2 − 4γpB2

n

)]1/2
,

u±A = vn ± vAn , vAn ≡ Bn/
√
ρ , Bn ≡ n ·B ,

u±f = vn ± vfn , vfn ≡
[ 1
2ρ

(
γp+B2 +

√
(γp+B2)2 − 4γpB2

n

)]1/2
.

(20.1)

By varying the direction of the normal n, this yields the space-time manifolds
along which perturbations propagate. For one spatial dimension, they were shown
in Fig. 5.14 [1], which we here repeat for convenience (Fig. 20.1).

Permitting two spatial dimensions, the temporal snapshots of the three MHD per-
turbations become the well-known figures of the Friedrichs group diagram. These
figures may exhibit an interesting new feature, depending on the magnitude of the
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f -

x

t

A - s - E s + A + f +

Fig. 20.1 Space-time characteristics of the three MHD waves (s±, A±, f±), trav-
eling in forward and backward directions, and the entropy disturbances (E), which
are just carried with the plasma flow.

Mach angle

Fig. 20.2 Sound in (a) subsonic and (b) supersonic gas flow about a point source.

background flow. This is illustrated in Fig. 20.2 for the case of sound waves in
ordinary fluids: when the flow velocity becomes supersonic, the spatial part of the
characteristics forms envelopes where information accumulates and discontinuous
solutions, or shocks, are formed. Whereas in subsonic flows the solutions propa-
gate everywhere in space, in supersonic flows these discontinuities separate space
in regions where the solutions propagate (hyperbolic regions) and regions where
they do not propagate (elliptic regions).

One of the deep problems in transonic flows is that the transitions from elliptic-
ity to hyperbolicity occur at locations that are not known a priori. Those locations
are part of the solution of the problem. In MHD, we will use the term “transonic”
as well to indicate flows that surpass one of the three characteristic speeds vA, vs,
vf defined in Eqs. (20.1). The theory of MHD shocks, associated with those tran-
sonic transitions, will be discussed in Sections 20.2 and 20.3. We will present the
subject from a new angle, time reversal duality (Section 20.3.2), and we will show
how this connects with the classification of MHD shocks in terms of converging
characteristics, with a central role for the intermediate shocks; see Wu [489].
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Another fundamental problem associated with the transonic transitions is the
construction of the stationary equilibrium state itself. So far, the tacit assumption
for the basic equilibrium state, providing the space in which the waves and in-
stabilities “live” (see Section 17.1), has been that the governing nonlinear partial
differential equation (for axi-symmetric equilibria, the Grad–Shafranov equation
discussed in Chapter 16) is elliptic. The numerical techniques exploited need this
property. In fact, all of the standard methods in use in MHD spectral analysis
are based on the assumption that the equilibria are described by elliptic equations
and the perturbations by hyperbolic ones. However, when the poloidal flow ve-
locity increases beyond certain critical values, the stationary equilibrium equations
become hyperbolic and both the classical paradigm of a split in equilibrium and
perturbations and the numerical techniques based on it break down. As a result,
the standard equilibrium solvers, as used in tokamak computations, diverge and we
need to rethink the problem completely. It should be noted that we have evaded
this problem in Chapter 18 by restricting the analysis to the elliptic flow regimes.
As we have seen, in contrast to ordinary fluid dynamics, in MHD such “transonic”
flow regimes exist.

The fundamental reason of the bankruptcy of the classical paradigm of equilib-
rium and perturbations is associated with the Lagrangian time derivative D/Dt ≡
∂/∂t + v · ∇ in the MHD equations. Whereas, the Eulerian time derivative ∂/∂t
produces the eigenfrequencies ω of the waves, the spatial derivative v ·∇ produces
not only the Doppler shifts of the perturbations but also the possibility of spatial
discontinuities of the equilibria. However, since the two pieces of the Lagrangian
time derivative really belong together, the waves and the stationary equilibria, with
transitions from ellipticity to hyperbolicity, are not separate issues. This is the fun-
damental reason for the difficulties mentioned in the previous section in the study
of stability of transonic MHD flows.

20.2 Shock conditions

One of the most striking physical phenomena in transonic flows is the occurrence of
shocks, where virtually all physical variables are discontinuous. We have encoun-
tered discontinuities at plasma–plasma and plasma–vacuum interfaces for static
and subsonic stationary flows in Chapter 4 [1] when discussing the different model
problems of laboratory and astrophysical plasmas. In contrast, in the theory of tran-
sonic flows, one of the essential problems is the occurrence of internal surfaces of
discontinuity where the same jump conditions provide boundary conditions that are
to be imposed at the positions of the shock fronts, which are a priori unknown, to
be determined together with the solution. In the present chapter, we just develop
the subject of shock conditions so far that they could be implemented in one of
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the general Riemann solvers discussed in Chapter 19. Although straightforward in
principle, this involves a surprising amount of algebra.

The jump conditions for the density, the velocity, the pressure and the mag-
netic field were derived from the MHD conservation equations in Volume [1], Sec-
tion 4.5, Eqs. (4.151)–(4.156). The basic “trick” consisted of integrating the evolu-
tion equations across a thin layer, of thickness δ, in which nonlinear and dissipative
effects smooth the discontinuities to large, but finite, variations in the normal di-
rection, and then taking the limit δ → 0. This turns the partial differential equation
into algebraic relations between the variables on the two sides of the shock. In a
sense, this procedure translates the basic nonlinearities of the MHD equations into
algebraic relations at just a single point. The jumps are denoted by the notation

[[f ]] ≡ f1 − f2 , (20.2)

where f1 indicates the value of a physical variable in the undisturbed, upstream,
part of the fluid in front of the shock, and f2 indicates the value in the shocked,
downstream, part of the fluid behind the shock.

For convenience, we repeat this general form of the jump conditions in the shock
frame, in which the shock is stationary and the fluid velocities v′ are evaluated with
respect to that frame. We only change the order of the equations to facilitate the
reductions to the final shock relations of Section 20.3:

[[ρv′n]] = 0 (mass) , (20.3)

[[Bn]] = 0 (normal flux) , (20.4)

ρv′n[[v
′
t]] = Bn[[Bt]] (tangential momentum) , (20.5)

ρv′n[[Bt/ρ]] = Bn[[v′
t]] (tangential magnetic flux) , (20.6)

[[ρv′n
2 + p+ 1

2B
2
t ]] = 0 (normal momentum) , (20.7)

ρv′n[[
1
2(v′n

2 + v′t
2) + e+ p/ρ+B2

t /ρ]] = Bn[[v′
t ·Bt]] (energy) , (20.8)

where e = (γ−1)−1p/ρ for the ideal plasmas that we are concerned about. Recall
that the momentum and magnetic flux equations have been projected in the direc-
tions normal (subscript n) and tangential (subscript t) to the shock front. As stated
in [1], Eq. (4.150), to properly discuss shocks, we need to restrict the possible
jumps by demanding that the entropy increases across the shock front:

[[S]] ≡ [[ρ−γp]] ≤ 0 (entropy) . (20.9)

This additional condition models the effects of a thin dissipative layer of thick-
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ness δ, where the large gradients of the physical variables become jumps in the
limit δ → 0 and entropy production is the only dissipative effect that remains.

20.2.1 Special case: gas dynamic shocks

Before analyzing the different MHD shocks on the basis of these equations, it is
instructive to discuss the ordinary gas dynamic shocks, which are contained as a
special case (B = 0). For ρv′n �= 0 , Eqs. (20.3)–(20.8) reduce to:

[[ρv′n]] = 0 , [[v′
t]] = 0 , (20.10)

[[ρv′n
2 + p]] = 0 , (20.11)

[[12v
′
n
2 + e+ p/ρ]] = 0 , e =

p

(γ − 1)ρ
. (20.12)

Since [[v′
t]] = 0 now, we may transform to a coordinate system moving with the

tangential flow so that v′
t = 0 . The velocities in the laboratory and shock frames

then have the relative magnitudes as illustrated in Fig. 20.3.

n
u

1 2

v1 v2

a

n

1 1v - u= v'

1 2

2 2v - u= v'

b

..

Fig. 20.3 Gas dynamic shock: (a) laboratory frame; (b) shock frame.

Dropping the primes for simplicity of the notation, the shock conditions become

ρ1v1 = ρ2v2 , (20.13)

ρ1v
2
1 + p1 = ρ2v

2
2 + p2 , (20.14)

1
2v

2
1 + e1 + p1/ρ1 = 1

2v
2
2 + e2 + p2/ρ2 , e1,2 =

p1,2

(γ − 1)ρ1,2
. (20.15)

These equations determine the values of the three downstream parameters ρ2, v2,
p2 in terms of the three upstream parameters ρ1, v1, p1. They are easily reduced to
more compact expressions involving only one parameter: gas dynamic shocks are
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essentially a one-parameter family. We will show this by two methods, one follow-
ing the traditional exposition, as in Landau and Lifschitz, Fluid Mechanics [294],
Chapter IX, and another one that anticipates the sequence of steps involved in the
analogous, but more complex, reduction for shocks in magnetohydrodynamics.

First, consider the shock conditions from the thermodynamic point of view,1 not
necessarily restricted to ideal gases. Defining the mass flow through the shock,
m ≡ ρvn, the specific volume, V ≡ ρ−1, internal energy, e, and enthalpy (or heat
function), w ≡ e+ pV , the jump conditions (20.10)–(20.12) become:

[[m]] = 0 , (20.16)

m2 = −[[p]]/[[V ]] , (20.17)

[[12m
2V 2 + w]] = 0 , or e1 − e2 + 1

2(p1 + p2)(V1 − V2) = 0 . (20.18)

Since, obviously, m2 > 0, the jump condition (20.17) permits solutions with
p2 > p1 and V2 < V1 as well as with p2 < p1 and V2 > V1. The latter ones
are eliminated by the entropy condition (20.9), as will be elaborated below. The
second expression (20.18) is called the Hugoniot or shock “adiabatic”, not to be

1 Recall the following definitions and relationships of the thermodynamical variables. There are four basic
thermodynamic parameters, viz. p, V (≡ ρ−1), s and T , of which only two are independent. Consequently,
the relationships s = s(p, V ) and T = T (p, V ) permit the representation of adiabatic (constant s) and iso-
thermal (constant T ) processes in a p–V diagram. Characteristic functions like the specific internal energy
e = e(T, V ) and the specific enthalpy w = w(T, p) permit the consideration of thermodynamic processes at
constant volume and constant pressure, with the associated specific heat coefficients,

CV ≡ ∂e/∂T |V , Cp ≡ ∂w/∂T |p . (i)

In the formulation of the first law of thermodynamics, the characteristic functions are considered as functions
of the entropy, e = e(s, V ), w = w(s, p), with

de = Tds− pdV , so that T = ∂e/∂s|V , p = −∂e/∂V |s , (ii)

dw = Tds+ V dp , so that T = ∂w/∂s|p , V = ∂w/∂p|s . (iii)

Partial differentiation of the latter expressions yields the relations of Maxwell, ∂T/∂V |s = ∂p/∂s|V , etc.
For the special case of ideal gases, the coefficients Cp and CV and, hence, their ratio γ ≡ Cp/CV , are

constant throughout the medium. The equation of state

pV = RT , R = Cp −CV = (γ− 1)CV , (iv)

involving the gas constant R (≈ (1 + Z)k/mi for plasmas ), then implies that the internal energy and the
enthalpy are simply proportional to the temperature:

e ≡ 1

γ − 1
pV = CV T , w ≡ e+ pV =

γ

γ − 1
pV = CpT , (v)

in agreement with (i). Exploiting these relations, integration of (ii) yields the expression for the specific entropy
for ideal gases:

s = CV lnS + const , S ≡ pV γ , (vi)

where, by the choice of the initial conditions [294], the value of s (or S) is constant throughout the medium (of
course, except for the jumps at the shock fronts).
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confused with the ordinary Poisson adiabatics that relate p and V for genuine adi-
abatic processes, with constant entropy.

 0 . 0  0 . 25  0 . 5  0 . 75  1 . 0  1 . 25
  0 .

  5 .

 10 .

 15 .

 20 .

V (≡1/ρ)

p

S1

S2

V2,min

p1

p2

V1V2

Fig. 20.4 Hugoniot adiabatic (dashed) connecting the upstream and downstream
states on the Poisson adiabatics (S1 and S2). Maximum compression is indicated
by the vertical dashed asymptote labeled V2,min.

As shown in Fig. 20.4 for the case of ideal gases, the Hugoniot adiabatic can also
be represented by a curve in the p–V diagram, viz. the curve which connects the
representative upstream point p1, V1 to all possible downstream points p2, V2 for
the different values of the parameter m. According to Eq. (20.17), the slope of the
chord connecting these points is just−m2. The explicit expression of the Hugoniot
adiabatic for ideal gases is obtained from the expression (20.18) by substituting the
equation of state e = pV/(γ − 1) :

p2

p1
=
γ + 1− (γ − 1)V2/V1

(γ + 1)V2/V1 − γ + 1
. (20.19)

This relation is exhibited in Fig. 20.4 (dashed line) together with the two Poisson
adiabatics (labeled S1 and S2) for the upstream and downstream states. Notice the
distinct difference between the Hugoniot and the Poisson adiabatic: the Hugoniot
adiabatic “nestles” against the upstream Poisson adiabatic S1 at p1, V1 (where the
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values of the two functions, and their first and second derivatives are all equal)
but it intersects the downstream Poisson adiabatic S2 at p2, V2. This illustrates an
important property of shocks: due to the nonlinearity, they are not additive. If a
point on a Hugoniot adiabatic is taken as an upstream state for a second shock, the
corresponding Hugoniot adiabatic will be different from the first one and the new
shock will overtake the old one.

Introducing the shock strength, σ ≡ 1 − V2/V1 (≡ ρ1/ρ2 ), which theoreti-
cally ranges from 0 for weak or infinitesimal shocks (V2 = V1) to 1 for infinite
compression (V2 = 0), it is noted from Eq. (20.19) that there is actually a limit
to the amount of compression, viz. (V2/V1)min = (γ − 1)/(γ + 1) (= 1/4 for
γ = 5/3) where p2 → ∞ . This is indicated by the vertical asymptote to the
Hugoniot adiabatic in Fig. 20.4 which corresponds to maximum shock strength,
σ → σmax ≡ 1− (V2/V1)min ≡ 2/(γ + 1) (= 3/4 for γ = 5/3).

In our second approach, we stress the central role of sound waves in the forma-
tion of gas dynamic shocks. This is most conveniently expressed by means of the
squared upstream and downstream Mach numbers,

M2
1 ≡

v2
1

v2
s,1

≡ ρ1v
2
1

γp1
, M2

2 ≡
v2
2

v2
s,2

≡ ρ2v
2
2

γp2
. (20.20)

The mass and momentum conservation relations (20.13) and (20.14) then yield the
following ratios of the primitive variables on the two sides of the shock:

ρ2

ρ1
=
v1
v2

=
M2

1 (γM2
2 + 1)

M2
2 (γM2

1 + 1)

[
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

]
, (20.21)

p2

p1
=
γM2

1 + 1
γM2

2 + 1

[
=

2γM2
1 − γ + 1
γ + 1

]
. (20.22)

In addition to the trivial solution without jumps (M2
2 = M2

1 ), the energy con-
servation relation (20.15) yields the distilled energy jump condition, relating the
downstream to the upstream Mach number:

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − γ + 1

. (20.23)

Substituting this condition, Eqs. (20.21) and (20.22) reduce to the expressions in
square brackets.

We now exploit the principle of scale-independence of the MHD equations, in-
troduced in Section 4.1.2 [1], which also applies to the equations of hydrodynamics
(HD). This principle implies that in any ideal MHD, or HD, problem three parame-
ters can be found that should not be considered as free since they just fix the scales
of length, time and mass, which can be eliminated by defining appropriate dimen-
sionless variables. Here, since the problem is essentially time-independent, only
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Fig. 20.5 Duality between entropy-forbidden jumps (dashed curve) and entropy-permitted
shocks (solid curve) in hydrodynamics. An arbitrary point on the permitted part of the
jump curve (filled circle) and its forbidden dual (open circle) are indicated together with
corresponding points on the curves for p2/p1 and ρ2/ρ1. The point S indicates sound
waves (HD shocks of infinitesimal strength).

two such scale parameters occur, viz. ρ1 and p1. In addition, two parameters have
been eliminated by moving to a frame with vanishing tangential velocity. Hence,
of the five arbitrary downstream parameters ρ1, v1, p1, only one should be counted
as free. This is expressed by the upstream Mach number M1. The downstream
variables are then expressed by the dimensionless parameters ρ2/ρ1 and p2/p1,
determined by the conditions (20.22), and the Mach number M2 (the dimension-
less velocity), determined by the distilled jump condition (20.23). This proves that
M1 is the only controlling parameter for gas dynamic shocks.

The distilled jump condition (20.23) is shown in Fig. 20.5 as a curve in the
M2

1 –M2
2 plane. It appears to be defined for all values M2

min ≤ M2
1 < ∞ and

M2
min ≤ M2

2 < ∞, where M2
min ≡ 1

2(1 − 1/γ) (= 1/5 for γ = 5/3). Here,
M2

1 = M2
min marks the boundary of an unphysical domain (indicated in grey)

where p2 < 0, and M2
2 = M2

min marks the boundary of an unphysical domain
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(also in grey) beyond maximum compression, (ρ2/ρ1)max ≡ (γ + 1)/(γ − 1)
(= 4 for γ = 5/3). However, we still have to implement the entropy condition
(20.9), similarly to above, leading to the distilled entropy condition:

S2

S1
≡ p2

p1

(
ρ1

ρ2

)γ
=
(
M2

2

M2
1

)γ(γM2
1 + 1

γM2
2 + 1

)γ+1

≥ 1 (20.24)

[
⇒ 2γM2

1 − γ + 1
γ + 1

(
(γ − 1)M2

1 + 2
(γ + 1)M2

1

)γ
≥ 1
]
.

This condition is only satisfied in the dotted areas of theM2
1 –M2

2 plane of Fig. 20.5.
The curve M2

2 = M2
2 (M2

1 ) enters one of these for M2
1 ≥ 1, where M2

2 ≤ 1 ,
v1/v2 = ρ2/ρ1 ≥ 1, and p2/p1 ≥ 1. Hence, entropy-permitted shocks (heavy
solid curve) are only obtained for supersonic upstream flow, corresponding to sub-
sonic downstream flow. Vice versa, entropy-forbidden jumps (dashed part of the
jump curve) are obtained for M2

1 < 1, where M2
2 > 1. Note that this part of

the distilled jump curve lies just outside the other dotted area of positive entropy
jump, but it touches it at the central sonic point M2

1 = M2
2 = 1 indicated by

S in Fig. 20.5. This point corresponds to sound waves, i.e. shocks of infinitesi-
mal strength (σ → 0 ). It marks the transition from forbidden jumps to permitted
shocks. The symmetry of the jump curve with respect to the sonic point has impor-
tant consequences, as we will show now.

The procedure of replacing entropy conservation of ideal HD or MHD by the
dissipative concept of entropy increase severely restricts the permitted dynamics.
(For example, the entropy waves introduced in [1], Section 5.2.1, that would occur
at M2

1 = M2
2 = 0 , are eliminated since weak entropy shocks would be a contra-

diction in terms.) However, since entropy increase may be considered as the arrow
of time, the discarded entropy-forbidden jumps may be turned into physically ac-
ceptable solutions by just reversing this arrow, i.e. by reversing the direction of the
flow. This does not affect the jump conditions since they do not involve the Mach
numbers themselves, only their squares, but the roles of upstream and downstream
states are interchanged and what previously was a forbidden jump becomes a per-
mitted shock for the reversed flow, and vice versa. Exploiting the symmetry of the
jump curve by defining parameters that measure the “distance” to the sonic point S,

Δ1 ≡M2
1 − 1 , Δ2 ≡M2

2 − 1 , (20.25)

the distilled jump condition (20.23) is transformed into the more concise form

Δ2 = − Δ1

1−Δ1/Δmin
, Δmin ≡ −1

2(1 + 1/γ) , (20.26)

where Δmin (= −4/5 for γ = 5/3) corresponds to M2
min defined above. The
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principle of time reversal duality between entropy-forbidden jumps and entropy-
permitted shocks is now expressed by the correspondence

Δ2 = Δ±
2 (Δ1) ⇐⇒ Δ1 = Δ∓

1 (Δ2) , (20.27)

with associated parameter ranges{ Δ+
2 : 0 ≤ Δ1 <∞

Δ−
2 : Δmin < Δ1 ≤ 0

⇐⇒
{ Δ−

1 : Δmin < Δ2 ≤ 0

Δ+
1 : 0 ≤ Δ2 <∞

.

Except that reflected shocks frequently occur in nature, this duality also may be
exploited in problems without reflection to express shock conditions in terms of
downstream instead of upstream controlling parameters. In HD this involves the
simple operation of inverting the distilled jump relation (20.23), but in MHD this
extremely useful operation is no longer simple at all, as we will see.

A final, parenthetical, remark: the subject of gas dynamic shocks is a beautiful
one, too bad it is stained by the activities of war. Just note the dates of the original
contributions to the field as cited in, e.g., Refs. [97], [200], [294] and [405].

20.2.2 MHD discontinuities without mass flow

We now discuss MHD discontinuities. Additional possibilities arise, both in HD
and in MHD, when there is no mass flow across the discontinuity. In MHD, this
gives rise to the contact and tangential discontinuities already introduced in Sec-
tion 4.5.2 [1]. The gas dynamic counterpart was skipped over in Section 20.2.1
since tangential velocities were neglected there, in agreement with the jump condi-
tions (20.10). However, in the absence of mass flow across the surface of disconti-
nuity, the original conditions (20.3)–(20.9) also admit the solutions

m ≡ ρvn = 0 ⇒ [[p]] = 0 , but [[ρ]] �= 0 , [[vt]] �= 0 . (20.28)

The fluid density and the tangential velocity then display jumps of arbitrary mag-
nitude, as is usual at the interface between two fluids.

Introducing a magnetic field, it is clear from the tangential jump conditions
(20.5) and (20.6), both involving v′

t and Bt, that a transformation to v′
t = 0 , as il-

lustrated in Fig. 20.3, is generally not possible. The tangential velocity is an essen-
tial constituent of MHD discontinuities, both for the present discontinuities without
mass flow and for the ones with mass flow discussed in the next section. Recall
that the jump conditions (20.3)–(20.9) refer to the shock frame so that the condition
for absence of mass flow should be written with a prime: v′n1,2 ≡ vn1,2 − u = 0
(Fig. 20.3(b)), whereas vn1 = vn2 = u in the laboratory frame (Fig. 20.3(a)).
This implies that these discontinuities are just carried with the fluid flow. As in
Section 20.2.1, we will consistently exploit the shock frame but drop the primes.
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Two very different kinds of discontinuity without mass flow are obtained de-
pending on whether B has a component normal to the discontinuity or not. In the
former case (Bn �= 0), discontinuity of the tangential velocity is not possible and
only the density may jump, so that contact discontinuities (paragraph (a) below)
are more restrictive in plasmas than in ordinary fluids. In the latter case (Bn = 0),
both ρ and vt may jump, as in the gas dynamic case, but continuity of p is replaced
by continuity of p + 1

2B
2 so that tangential discontinuities (paragraph (b) below)

display a much wider variety in plasmas than in ordinary fluids.

Fig. 20.6 (a) Contact discontinuities; (b) tangential discontinuities.

We now discuss the two discontinuities without mass flow separately.

(a) Contact discontinuities If the mass flow vanishes (ρvn = 0) and the normal
magnetic field does not vanish (Bn �= 0) at the discontinuity, then

[[vt]] = 0 , [[p]] = 0 , [[Bt]] = 0 , [[Bn]] = 0 , (20.29)

[[ρ]] �= 0 . (20.30)

In contrast to the gas dynamic contact discontinuity of Eq. (20.28), jumps in the
tangential flow are now inhibited by the normal magnetic field. Hence, all quanti-
ties, except the density, are continuous across the discontinuity (Fig. 20.6(a)).

Since the density jumps, the entropy also jumps, [[S]] �= 0 . Such a jump is
just carried with the fluid without interaction with the other quantities. For small
amplitudes, when linear theory applies, the perturbations just transform into the
entropy waves discussed in Section 5.2.2, Eqs. (5.45) [1]. We encountered these
jump conditions in Section 4.5 and 4.6 [1] as the boundary conditions for plasmas
with a jump in the density (astrophysical plasma models IV–VI).
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(b) Tangential discontinuities If both the mass flow and the normal magnetic field
vanish at the discontinuity (ρvn = 0 and Bn = 0), then

[[p+ 1
2B

2
t ]] = 0 , (20.31)

[[ρ]] �= 0 , [[vt]] �= 0 , [[p]] �= 0 , [[Bt]] �= 0 . (20.32)

Hence, nearly arbitrary jumps of ρ, vt, p, Bt are possible and the only restriction
is that the total pressure should be constant across the discontinuity (Fig. 20.6(b)).
Such discontinuities are of considerable interest in plasma physics since they pro-
vide a powerful tool for modeling the dynamics of plasma–plasma interfaces sep-
arating plasmas with different properties. We have come across this type of dis-
continuity in the context of plasma confinement when discussing the boundary
conditions for the laboratory plasma models II and II* in Section 4.6 [1].

The jumps in the tangential velocity and magnetic field are due to singularities
of the vorticity ω ≡ ∇× v and of the current density j = ∇×B , i.e. vortex and
current sheets of strength

ω∗ = n× [[vt]] �= 0 , j∗ = n× [[Bt]] �= 0 . (20.33)

They produce changes not only of the magnitudes, but also of the directions of vt

and Bt, as indicated in Fig. 20.6(b) by the angle ϕ for Bt.
The jumps in the pressure and the density here admit solutions both with and

without entropy jump. This indicates that these discontinuities represent some kind
of a degeneracy. In particular, for infinitesimal amplitudes, they transform into a
superposition of zero-frequency Alfvén and magneto-sonic waves. This degeneracy
is lifted by contact discontinuities as well as by the discontinuities of the next
section.

20.2.3 MHD discontinuities with mass flow

The generalization of the gas dynamic shocks of Section 20.2.1 to plasmas with a
magnetic field requires mass flow across the surface of discontinuity. It leads to the
two major classes of MHD discontinuities that operate in transonic plasmas, viz.
rotational (or Alfvén) discontinuities and magneto-acoustic shocks. Their analysis
involves quite different descriptions, but we will keep it on the same footing as
long as possible.

In this case, the full potential of the jump conditions (20.3)–(20.9) is realized,
so that it is expedient to recast them into dimensionless form. This can be effected
by means of the normal mass flow ρvn and the normal magnetic field Bn, since
these variables are constant across the discontinuity according to the first two con-
ditions. Before we get rid of the dimensions, we first reformulate the remaining
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jump conditions (20.5)–(20.9):

ρvn[[vt]] = Bn[[Bt]] , (20.34)

B2
n[[Bt]] = ρ2v2

n[[Bt/ρ]] , (20.35)

[[p+ 1
2B

2
t ]] + ρ2v2

n[[1/ρ]] = 0 , (20.36)[[
e+ p/ρ

]]
+ 1

2(ρvn/Bn)2
[[
B2/ρ2

]]
= 0 , (20.37)

[[ρ−γp ]] ≤ 0 . (20.38)

Here, the jump condition (20.35) is obtained by combining the tangential con-
ditions (20.5) and (20.6), whereas the derivation of the energy condition (20.37)
from Eq. (20.8) involves a number of steps that are given in small print below.

� Reduction of the energy condition The energy conservation relation (20.8) is usu-
ally transformed (see Landau and Lifschitz, Electrodynamics of Continuous Media [295],
Chapter VIII) by generalizing the shock adiabatic (20.18) with magnetic contributions,

[[e]] +
{

1
2 (p1 + p2) + 1

4 (Bt1 −Bt2)2
}

[[1/ρ]] = 0 . (20.39)

However, for the purpose of reducing the jump conditions to a minimum number of free
parameters, it is more expedient to transform it into[[

e+
p

ρ
+ 1

2v
2
n + 1

2

∣∣∣vt − Bn

ρvn
Bt

∣∣∣2 +
B2

t

ρ

(
1− B2

n

2ρv2
n

)]]
= 0 ,

where the fourth term vanishes due to Eq. (20.5), and the third and fifth term combine to[[
1
2v

2
n +

B2
t

ρ

(
1− B2

n

2ρv2
n

)]]
=
[[v2

nB
2

2B2
n

]]
− B2

n

2ρ2v2
n

[[
(ρv2

n/B
2
n − 1)2B2

t

]]
=
[[v2

nB
2

2B2
n

]]
due to Eq. (20.35). This yields the energy conservation condition (20.37). �

We now exploit ρvn and Bn to create dimensionless variables that characterize
the states on the two sides of the shock. To that end, we first introduce the square
of the normal Alfvén Mach number,

M2
An ≡

v2
n

v2
An

≡ ρv2
n

B2
n

(
=
ρvn
B2

n

· vn =
ρ2v2

n

B2
n

· 1
ρ

)
, (20.40)

which is the MHD counterpart of the ordinary Mach number of hydrodynamics.
Since the latter does not occur in MHD, there is no confusion if we simplify the
notation by suppressing the subscripts and indicate the square of the normal Alfvén
Mach number also by M2. According to the equalities (20.40) in brackets, this
quantity may be considered as the dimensionless normal speed (apart from the sign,
see below), or as the dimensionless inverse density (or specific volume). Hence, the
ratio of the normal speeds is proportional, and the ratio of the densities is inversely
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proportional, to the ratio of the squares of the normal Alfvén Mach number across
the discontinuity,

vn2

vn1
=
ρ1

ρ2
=
M2

2

M2
1

. (20.41)

The jump conditions (20.34)–(20.38) simplify considerably by introducing the fol-
lowing dimensionless variables:

v̄ni ≡ ρ|vn|
B2

n

vni = −M2
i , B̄n ≡ Bn

|Bn| = −1 , (20.42)

v̄ti ≡ ρ|vn|
B2

n

vti , B̄ti ≡ Bti

|Bn| , p̄i ≡ pi
B2

n

(i = 1, 2) , (20.43)

where B̄ti is directly related to the angle ϑi between the magnetic field and the
shock normal, and p̄i is related to the ratio βni between the pressure of the plasma
and that of the normal magnetic field:

tanϑi ≡ Bti/|Bn| ≡ B̄ti , βni ≡ 2pi/B2
n ≡ 2p̄i . (20.44)

Since the direction of the flow is opposite to the normal and the sign of the magnetic
field is not relevant for the shock conditions, in Eq. (20.42) we have assumed both
ρvn < 0 and Bn < 0 (as illustrated in Fig. 20.7).

With this normalization, the jump conditions become:

[[v̄t]] = [[B̄t]]
(
⇒ ω̄∗ = n× [[v̄t]] = j̄∗ = n× [[B̄t]]

)
, (20.45)

[[(M2 − 1)B̄t]] = 0 , (20.46)

[[M2 + p̄+ 1
2B̄

2
t ]] = 0 , (20.47)[[ γ

γ − 1
p̄M2 + 1

2(1 + B̄2
t )M4

]]
= 0 , (20.48)

[[ p̄M2γ ]] ≤ 0 . (20.49)

Apart from the degree of freedom of the rotational discontinuities, discussed below,
the system (20.45)–(20.48) completely determines the jumps across the disconti-
nuity for given values of the upstream parameters, whereas the inequality (20.49)
determines whether such a jump qualifies as a shock or not.

Here again two possibilities arise, according to whether the thermodynamic vari-
ables jump (genuine shock) or not across the discontinuity. The latter possibility
leads to discontinuities without a gas dynamic analog, viz. rotational discontinu-
ities (paragraph (c) below), which may be considered as the finite amplitude man-
ifestation of the Alfvén wave. The former possibility leads to magneto-acoustic
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shocks (paragraph (d) below), which come in the three kinds of slow, intermedi-
ate and fast (Section 20.2.4). They are associated with the two magneto-acoustic
waves whereas the Alfvén speed plays a central role.

We now discuss the two discontinuities with mass flow separately.

(c) Rotational (or Alfvén) discontinuities If the density is continuous across the
discontinuity, [[ρ]] = 0, the normal velocity is also continuous, [[vn]] = 0, so that

M2
1 = M2

2 = 1 , [[p̄]] = 0 , [[B̄2
t ]] = 0 , (20.50)

[[v̄t]] = [[B̄t]] �= 0 . (20.51)

Hence, all thermodynamic variables (p, ρ, e and S) and the magnitude of B are
continuous, but the tangential magnetic field Bt turns through an angle ϕ about the
normal n (proportional to the vortex and current sheets given inside the brackets
of Eq. (20.45)). Moreover, the normal velocity and the jump in the tangential ve-
locity are equal to their respective Alfvén velocities. This discontinuity is properly
called a rotational, or Alfvén, discontinuity since a rotational jump of the tangen-
tial magnetic field about the normal propagates with the jump of tangential Alfvén
speed.

Rotational discontinuities are essentially determined by prescribingM2 = 1 and
choosing values for the three free parameters,

ϕ ≡ 2 arcsin (1
2 |[[B̄t]]|/B̄t) , βn ≡ 2p̄ , ϑ ≡ arctan B̄t , (20.52)

which describe the change of the direction of the tangential magnetic field, the
fixed value of the pressure, and the fixed angle of the magnetic field with the nor-
mal. Note that, whereas genuine shocks are (nearly) completely determined by the
values of the upstream parameters, the free parameter ϕ of rotational discontinu-
ities is not determined at all by the values of the upstream parameters.

(d) Magneto-acoustic shocks If the density is discontinuous across the disconti-
nuity, [[ρ]] �= 0 , the normal velocity is also discontinuous, [[vn]] �= 0, so that the
full system of jump conditions (20.45)–(20.49) is needed to fix the parameters. The
essential features are given by

M2
1 �= M2

2 , [[p̄]] �= 0 , [[B̄2
t ]] �= 0 , (20.53)

[[v̄t]] = [[B̄t]] ‖ B̄t1 ‖ B̄t2 , (M2
1 − 1)B̄t1 = (M2

2 − 1)B̄t2 . (20.54)

Hence, all thermodynamic variables (p, ρ, e and S) and the magnitude of B̄ are
discontinuous, but the vectors B̄t1, B̄t2, n and [[v̄t]] all lie in the same plane. This
discontinuity is called a magnetohydrodynamic shock. It is a genuine generaliza-
tion of the gas dynamic shocks for magnetized plasmas.
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MHD shocks are essentially determined by fixing ϕ = 0 and choosing values
for the three free upstream parameters

M2
1 ≡ −v̄n1 ≡ 1/ρ̄1 , βn1 ≡ 2p̄1 , ϑ1 ≡ arctan B̄t1 , (20.55)

which determine the values of the downstream parameters M2
2 , βn2 and ϑ2 accord-

ing to the jump conditions (20.45)–(20.47). The substantial algebra involved in the
reduction of these conditions will be completed in Section 20.3.

Fig. 20.7 Top: tangential magnetic fields and velocities in the de Hoffmann–Teller
frame for (a) rotational discontinuities and (b) shocks; v̄∗

ti = M2
i B̄ti (i = 1, 2).

Bottom: projection (on a different scale) in the e–n plane, with e ‖ [[v̄t]] = [[B̄t]].
For (a), the constant part B̄τ of B̄ti ⊥ e does not show up in this projection, where
B̄i = B̄σ

i + B̄τ , B̄σ
i = ±B̄t sin 1

2ϕ e + B̄nn , B̄n = −1 , B̄τ = B̄t cos 1
2ϕ e× n .

The geometric meaning of the jump conditions for the MHD discontinuities be-
comes much clearer when the tangential velocities and magnetic fields are aligned
by means of a transformation to a tangentially moving frame in which the normal
electric field vanishes. Since there are infinitely many of such tangential transfor-
mations, one can find a particular one involving the normal velocities as well such
that the complete electric field vanishes, E∗

i = v∗
i × Bi = 0 , both in front and

behind the shock. Since, by definition, v̄ni ≡ −M2
i , this alignment of the trans-
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formed velocities v∗
i with the magnetic field Bi is obtained by transformation to

the de Hoffmann–Teller frame [108],

v̄i → v̄∗
i ≡M2

i B̄i (i = 1, 2) . (20.56)

The boost w̄ ≡ v̄∗ − v̄ effecting this is the same in front and behind the shock, as
follows from the jump conditions:

[[w̄t]] ≡ [[v̄∗
t − v̄t]] ≡ [[M2B̄t − v̄t]]

(20.45)= [[(M2 − 1)B̄t]]
(20.46)= 0 ,

w̄ni ≡ v̄∗ni − v̄ni ≡ −M2
i − v̄ni ≡ 0 ⇒ [[w̄n]] = 0 . (20.57)

The first part of the last line shows that the boost is actually only tangential. The de
Hoffmann–Teller transformation also holds for relativistic shocks. As noted by the
authors in Ref. [108], it fails for perpendicular shocks (ϑ = π/2) since thenBn = 0
but vn �= 0. In that case, M2

i and the normalizations (20.44) become undefined.
This defect will be cured in Section 20.3.3 by our final representation (20.93) for
the velocities in the de Hoffmann–Teller frame.

In conclusion, in the de Hoffmann–Teller frame, the tangential vectors v̄∗
t and

B̄t rotate with constant amplitude over the same angle ϕ for rotational (Alfvén)
discontinuities (Fig. 20.7(a)), whereas they have constant direction but changing
amplitudes for shocks (Fig. 20.7(b)). The directional changes of B̄ and v̄∗ in the
plane through the jumps and the normal (bottom panels of Fig. 20.7) alone do
not permit us to distinguish between rotational discontinuities and shocks because
intermediate shocks show similar behavior to rotational discontinuities in that plane
(see Fig. 20.8(b) of the next sub-section). Those two kinds of discontinuity are
distinguished by the presence or absence of a constant contribution of B̄ti in the
direction orthogonal to that plane.

20.2.4 Slow, intermediate and fast shocks

Restricting the discussion now to MHD shocks, it may appear surprising that they
come in three, rather than two, flavors. Anticipating the analysis of Section 20.3,
where we will show that the entropy condition only permits jumps withM2

1 ≥M2
2 ,

those three arise due to the relationship (20.54) between B̄t1 and B̄t2:

M2
2 ≤ M2

1 ≤ 1 ⇒ |B̄t1| ≥ |B̄t2| (slow shocks),

M2
2 ≤ 1 ≤M2

1 ⇒ B̄t1/B̄t2 < 0 (intermediate shocks),

1 ≤ M2
2 ≤M2

1 ⇒ |B̄t1| ≤ |B̄t2| (fast shocks). (20.58)

The magnetic fields Bt1and Bt2, and hence the velocities v∗
t1 and v∗

t2, have the
same directions for slow and fast shocks, with breaking towards the normal for
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slow shocks (Fig 20.8(a)) and away from it for fast shocks (Fig 20.8(c)), but they
have opposite directions for intermediate shocks (Fig 20.8(b)).

When the angles ϑi of the directions of the magnetic fields are varied, several
significant limiting cases are encountered.

• Perpendicular shocks (ϑ1 = ϑ2 = π/2) In this limit, the normal Alfvén Mach num-
ber is not defined, so that the normalizations (20.40) and (20.42) can no longer be
exploited and one should go back to the original jump conditions (20.34)–(20.37) with
Bn = 0 and ρvn �= 0. Equation (20.35) then yields [[Bt/ρ]] = 0, so that ϕ = 0
and a rotational counterpart of the tangential discontinuity illustrated in Fig. 20.6(b)
of Section 20.2.2 becomes impossible. However, perpendicular shocks are perfectly
valid generalizations of tangential discontinuities with ϕ = 0 and jumps in p and B̄t

such that [[p + 1
2B

2
t ]] = 0. The shock relations for this case are easily obtained from

the general relations derived by replacing the variables M2
1 and M2

2 by vn1 and vn2,
and properly taking the limit Bn → 0.

• Parallel shocks (ϑ1 = ϑ2 = 0) When the magnetic field is parallel to the normal,
both upstream and downstream (Fig 20.8(d)), and hence also the velocities v∗

i , the
relation (20.54) is trivially satisfied: B̄t1 = B̄t2 = 0. In that case, the jump conditions
(20.45)–(20.48) reduce to the hydrodynamic jump conditions (20.13)–(20.15). This
follows from the relationship between the hydrodynamical (sound) Mach number and
the magnetohydrodynamical (normal Alfvén) Mach number,

ρiv
2
ni ≡ γpiM2

i

∣∣
HD
≡ B2

nM
2
i

∣∣
MHD

. (20.59)

Therefore, these shocks are sometimes called hydrodynamic shocks. Nevertheless, the
normal Alfvén Mach number is defined so that one can still distinguish between fast
and slow parallel shocks.

• Switch-on shocks (ϑ1 = 0, ϑ2 �= 0) When the upstream magnetic field is parallel
to the normal (B̄t1 = 0), as in a parallel shock, the downstream magnetic field may
have a different direction (it is switched on: B̄t2 �= 0, as illustrated in Fig 20.8(e)).
According to Eq. (20.54), this happens when M2

2 = 1 so that M2
1 > 1. Accordingly,

the switch-on shock should be termed intermediate or fast.

• Switch-off shocks (ϑ1 �= 0, ϑ2 = 0) The relation (20.54) between B̄t1 and B̄t2 is also
satisfied in the opposite case (B̄t1 �= 0 , B̄t2 = 0), when the magnetic field is switched
off (Fig 20.8(f)). This happens forM2

1 = 1 so thatM2
2 < 1 : switch-off shocks should

be termed intermediate or slow.

This appears to complete the classification of the different kinds of MHD shock.
However, we still have to demonstrate that the complete set of jump conditions,
including the ones associated with energy conservation and entropy production,
can be satisfied for all those cases. This will be done in the next section, which
will shed light on why and when the values of the downstream parameters may
not be completely determined by the values of the upstream parameters. Thus, the
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Fig. 20.8 MHD shocks: (a) slow shock, (b) intermediate shock, (c) fast shock. Lim-
iting cases: (d) parallel (“HD”) shock, (e) switch-on shock, (f) switch-off shock.
The normalization is given by B̄ti ≡ Bti/|Bn| = tanϑi, B̄n ≡ Bn/|Bn| = −1.

distinction between fast, intermediate and slow shocks will be uniquely established.
In doing so, quite a number of additional distinctions come into view.

20.3 Classification of MHD shocks

20.3.1 Distilled shock conditions

We will now complete the reduction of the MHD shock conditions (20.45)–(20.49)
such that they can be solved uniquely, yielding expressions for v̄t2, B̄t2, p̄2, M2

2 in
terms of v̄t1, B̄t1, p̄1, M2

1 .
The first condition (20.45) has actually been superseded by the de Hoffman–

Teller transformation (20.56) since it provides all relevant relationships between
the downstream and upstream velocities in that preferred frame:{ v̄∗n1 = M2

1 B̄n = −M2
1

v̄∗t1 = M2
1 B̄t1 = M2

1 tanϑ1

⇒
{ v̄∗n2 = M2

2 B̄n = −M2
2

v̄∗t2 = M2
2 B̄t2 = M2

2 tanϑ2

. (20.60)

However, the tangential velocity parameters v̄∗t1 and v̄∗t2 do not appear in the final
form of the distilled shock conditions that we are going to derive so that we can de-
fer discussion of the implications of Eqs. (20.60) for the velocity to Section 20.3.3,
after we have completed the solution of the shock conditions.
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The next two relations (20.46) and (20.47) determine B̄t2 and p̄2:

B̄t2 =
M2

1 − 1
M2

2 − 1
B̄t1 , (20.61)

p̄2 = p̄1 + (M2
1 −M2

2 )
[
1− 1

2B̄
2
t1

M2
1 +M2

2 − 2
(M2

2 − 1)2
]
. (20.62)

Substituting these expressions into the jump condition (20.48) yields, after dividing
out a factor ∼ (M2

2 −M2
1 ) (i.e. eliminating the trivial solutions without jumps),

the distilled energy jump condition:

f = f(M2
2 ;M2

1 , B̄
2
t1, p̄1) = 0 (20.63)

≡ 1
2(M2

2 − 1)2
{
(γ + 1)M2

2 − (γ − 1)M2
1 − 2γp̄1

}
+1

2B̄
2
t1

{
(γ − 1)(M2

2 − 1)(M2
1 −M2

2 )−M2
2 (M2

1 +M2
2 − 2)

}
.

Similarly, the inequality (20.49) for entropy increase across the shock yields the
distilled entropy condition:

g = g(M2
2 ;M2

1 , B̄
2
t1, p̄1) ≥ 0 (20.64)

≡ (M2
2 − 1)2

{
M2

1 −M2
2 − p̄1

[
(M2

1 /M
2
2 )γ − 1

]}
−1

2B̄
2
t1(M

2
1 −M2

2 )(M2
1 +M2

2 − 2) .

Solutions of the distilled energy jump condition are permitted jumps, but they only
qualify as shocks when they also satisfy the distilled entropy inequality.

It is straightforward to plot these conditions for particular parameter values:
Figs. 20.9–20.11. For definiteness, we here present solutions demonstrating the
wide variety of MHD shocks before the analysis actually has been completed.
Consequently, explanation of the symbols along the curves and of the parameter
regions I, II and III has to await the exposition of Section 20.3.2. Also notice that
B̄ti and p̄i have been replaced by the parameters ϑi and βi, defined there.

In Fig. 20.9, the complete jump curve M2
2 = M2

2 (M2
1 ) is shown without sup-

pressing the entropy-forbidden parts, as done in Fig. 20.5 of Section 20.2.1 for
the gas dynamic jumps and shocks. In addition to the advantages of duality, ex-
posed in the next sub-section, keeping them reveals the true character of the in-
termediate jumps/shocks as a continuous transition in parameter space between
the slow and fast jumps/shocks. The S-shaped jump curve intersects the diago-
nal M2

1 = M2
2 at the points labeled S, A and F, where also the entropy-permitted

(dotted) and the entropy-forbidden (white) areas interchange position. As in gas
dynamics (Fig. 20.5), precisely at those points, the jump curve leaves or enters
the dotted areas, distinguishing entropy-forbidden jumps from entropy-permitted
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Fig. 20.9 Jump curve for parameter region II (ϑ1 = 0.2π, β1 = 0.4): slow (green),
intermediate (red) and fast (blue) entropy-forbidden jumps (dashed) as well as entropy-
permitted shocks (drawn) are shown. The latter occur when the jump curve intersects the
dotted areas, where the entropy increases downstream. The points S, A and F indicate
slow, Alfvén and fast waves (≡ weak discontinuities).

shocks. The latter only occur for values of M2
1 and M2

2 below the diagonal. Ac-
cording to Eq. (20.41), this implies that MHD shocks are compressive.

Going downward, the overall trend of the jump curve is prograde, i.e. decreasing
with respect to decreases of both M2

1 and M2
2 , up to the point B and past the

point C, but it is retrograde, i.e. increasing with respect to M2
1 and decreasing with

respect toM2
2 in between B and C. The implications for the intermediate jumps and

shock are analyzed in depth in Section 20.3.2. As a mnemonic, the labels B–A–C
have been chosen to indicate the backward (retrograde) part of the jump curve and
the labels D–E to demarcate the boundaries of the intermediate jumps.

The corresponding solutions ϑ2 = ϑ2(M2
1 ) and β2 = β2(M2

1 ) of Eqs. (20.61)
and (20.62) are shown in Fig. 20.10 for the same values of ϑ1 and β1 as in Fig. 20.9.
The first plot clearly shows the distinct directional differences between the different
kinds of shock described by Eq. (20.58): ϑ2 ≤ ϑ1 for slow shocks, ϑ2 ≤ 0 for



510 Transonic MHD flows and shocks

(a)

 0 . 0  0 . 5  1 . 0  1 . 5  2 . 0  2 . 5
- 0 . 5

- 0 . 25

 0 . 0

 0 . 25

 0 . 5

M1
2

ϑ2/π

S

A

F

B
C

ED

L

H

(b)

 0 . 0  0 . 5  1 . 0  1 . 5  2 . 0  2 . 5
 0 . 0

 0 . 6

 1 . 2

 1 . 8

 2 . 4

M1
2

β2

S A F

B

C

D

E

L

H ∞

Fig. 20.10 (a) Downstream angle ϑ2(M2
1 ) and (b) relative pressure β2(M2

1 ) of MHD
jumps/shocks for the parameter values as Fig. 20.9 (ϑ1 = 0.2π, β1 = 0.4). For M2

1 < L,
the jump curve is unphysical because β2 < 0. The symbol H indicates the asymptote of
the curves for M2

1 →∞.

intermediate shocks and ϑ2 ≥ ϑ1 for fast shocks. The second plot shows the
enormous variation of the downstream pressure when the upstream Alfvén Mach
number is varied. Similar to the situation for gas dynamic jumps and shocks, the
downstream value of the pressure p̄2 (or β2) from Eq. (20.62) cannot be guaranteed
to be positive for arbitrary values of the upstream parameters. Consequently, the
parts of the jump curve where β2 < 0 should be discarded as being unphysical.
For the parameters of Figs. 20.9 and 20.10, this occurs for 0 ≤M2

1 < L.
The jump curve of Fig. 20.9 intersects different regions of the M2

1 –M2
2 plane

characterizing the upstream and downstream states of the flow in terms of the char-
acteristic speeds vA, vf and vs of the Alfvén, fast and slow waves of Eqs. (20.1):

M2
A ≡ 1 , M2

f,s ≡
v2
f,sn

v2
An

= 1
2(γp̄+ B̄2)± 1

2

√
(γp̄+ B̄2)2 − 4γp̄ . (20.65)

The shocks may be classified according to the ranges ofM2
1 andM2

2 with respect to
these transition values. Before we proceed to compartmentalize the M2

1 –M2
2 plane

to that end, we call the attention of the reader to the most significant behavior of
the jump curve when it crosses the diagonal at the points S, A and F. This is most



20.3 Classification of MHD shocks 511

effectively discussed in terms of the shock strength, σ ≡ 1−M2
2 /M

2
1 . Expressing

the distilled jump condition (20.63) in terms of σ instead of M2
2 , and then taking

the limit of infinitesimal shock strength, we obtain the following expression:

f0 ≡ lim
σ→0

f(σ;M2
1 , B̄

2
t1, p̄1) = (M2 −M2

S)(M2 − 1)(M2 −M2
F) = 0 , (20.66)

where M2
S indicates the intersection of the curves M2

1 = M2
s1 and M2

2 = M2
s2

defined below, and similarly for M2
F. Hence, the slow, Alfvén and fast waves of

linear MHD may be considered as shocks of infinitesimal strength. (However, note
the caveat in Section 20.3.3 on the relation of Alfvén waves to “weak” intermediate
shocks.) In this way, the three-fold dynamics of linear MHD returns in the classi-
fication of the nonlinear shocks. Note that the distilled entropy condition (20.64)
again (as in gas dynamics, see Section 20.2.1) eliminates the possibility of a finite
amplitude analog of the non-propagating entropy wave of Eq. (20.1).

The upstream states of the shock separate in four by the three vertical linesM2
1 =

M2
s1 ≡ M2

s (B̄2
t1, p̄1) (≤ 1 ), M2

1 = M2
A1 (≡ 1 ) and M2

1 = M2
f1 ≡ M2

f (B̄2
t1, p̄1)

(≥ 1 ). The downstream transition curves are more involved, except for the Alfvén
line M2

2 = M2
A2 (≡ 1), as they require solving M2

2 = M2
s,f2 ≡M2

f,s(B̄
2
t2, p̄2) with

B̄2
t2 and p̄2 expressed in (M2

1 ,M
2
2 ; B̄2

t1, p̄1) through Eqs. (20.61) and (20.62). This
yields a quartic for the downstream magneto-sonic transition values:

h = h(M2
2 ;M2

1 , B̄
2
t1, p̄1) = 0 (20.67)

≡ (M2
2 − 1)3

{
γM2

1 − (γ + 1)M2
2 + γp̄1

}
+B̄2

t1

{
M2

2 (M2
1 − 1)2 − 1

2γ(M
2
2 − 1)(M2

1 −M2
2 )(M2

1 +M2
2 − 2)

}
,

determining the slow and fast transition curves labeled M2
s2 and M2

f2 in Fig. 20.9.
One of the two curves touches the central Alfvén point M2

1 = M2
2 = 1 (viz. the

fast curve for the parameters of Fig. 20.9) whereas the other one stays at a finite
distance from it (viz. the slow curve, which leaves a tiny gap that is hardly visible).
Together with the Alfvén line M2

2 = M2
A2 ≡ 1, this again yields three (dashed)

curves separating the four kinds of downstream states.
The dashed transition curves divide the M2

1 –M2
2 plane into pairs of upstream

and downstream flow regimes which traditionally are labeled from 1 to 4:

1 – super-fast, for M2 > M2
f (i.e. |vn| > |vfn|);

2 – sub-fast, super-Alfvénic, for M2
A < M2 < M2

f (i.e. |vAn| < |vn| < |vfn|);

3 – super-slow, sub-Alfvénic, for M2
s < M2 < M2

A (i.e. |vsn| < |vn| < |vAn|);

4 – sub-slow, for M2 < M2
s (i.e. |vn| < |vsn|).

Accordingly, the fast shocks shown in Fig. 20.9 are 1–2 (super-fast → sub-fast)
transitions, the intermediate shocks are 2–3 (super-Alfvénic → super-slow) and
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Fig. 20.11 (a) Jump curve and (b) downstream angle for parameter region I (ϑ1 = 0.1π,
β1 = 0.3); jumps are unphysical to the left of L on the jump curve. (c) Jump curve and (d)
pressure for parameter region III (ϑ1 = 0.3π, β1 = 0.6); jumps are unphysical to the left
of L1 and between L2 and L3 on the jump curve.

2–4 (super-Alfvénic → sub-slow) transitions, whereas the slow shocks are 3–4
(super-slow→ sub-slow) transitions. For different parameter choices, the interme-
diate part of the shock curve (labeled A–X–C–Y–E now) protrudes into the super-
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fast regime 1, so that also 1–3 and 1–4 intermediate shocks appear (Fig. 20.11(a),
parameter region I). Similarly, the entropy-forbidden part of the jump curve (la-
beled D–U–B–V–A, not all inside the frame) protrudes into the sub-slow regime 4,
admitting 4–1 and 4–2 intermediate jumps (Fig. 20.11(b), parameter region III).

All of these solutions were obtained from the distilled jump condition (20.63),
which is a cubic equation in M2

2 . Extensive literature exists on the MHD jump
conditions based on quite different representations with a cubic equation, see e.g.
Refs. [306], [253] and [482]. One can show these to be equivalent, but there is
surprisingly little overlap with the results obtained.

In conclusion, anticipating the terminology of the next section, we encounter the
following succession of entropy-forbidden jumps (−) and permitted shocks (+)
along the jump curves, separated by the indicated transition points:

F+
12 ,F

−
21 , P̂

−
31 ,
[
P−

41 , R̂
−
42 ,
]

R−
32 ,R

+
23 ,
{
R̂+

13 ,P
+
14 ,
}

P̂+
24 , S

+
34 , S

−
43 .

(20.68)
H F D U B V A X C Y E S L

The discontinuities in square brackets are missing in parameter regions I and II,
and the ones in curly brackets are missing in parameter regions II and III.

20.3.2 Time reversal duality

The examples of Section 20.3.1 clearly exhibit the central role of the Alfvén point
A (analogous to the sonic point S in gas dynamics), and of the intermediate shocks
about that point, in the theory of MHD shocks. Hence, we again define parameters

Δi ≡M2
i − 1 (−1 ≤ Δi ≤ ∞) , (20.69)

measuring the “distances” to A, and replace B̄ti and p̄i by ϑi and βni, according
to the definitions (20.44). Also, since scaling considerations have been sufficiently
implemented now, we replace βni by the more practical parameters βi ≡ 2pi/B2

i :

βni = βi(1 + tan2ϑi) . (20.70)

By means of the parameter sets Δi, ϑi, βi, the jump conditions (20.61)–(20.64)
acquire their most compact expression.

The distilled energy jump condition becomes the following cubic:

Δ3
2 + pΔ2

2 + qΔ2 + r = 0 ⇒ Δ2 = Δ2(Δ1, ϑ1, β1) , (20.71)

p ≡ 2− (γ − 1)Δ1 − γβ1 − γ(1 + β1) tan2ϑ1

γ + 1
,

q ≡ − [ 1 + (2− γ)Δ1 ] tan2ϑ1

γ + 1
, r ≡ −tan2ϑ1

γ + 1
.
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Once this equation is solved, ϑ2 and β2 are found by substitution:

ϑ2 = arctan
(Δ1

Δ2
tanϑ1

)
⇒ ϑ2 = ϑ2(Δ1, ϑ1, β1) , (20.72)

β2 =
β1 + 2(Δ1 −Δ2) + (1 + β1 −Δ2

1/Δ
2
2) tan2ϑ1

1 + (Δ2
1/Δ

2
2) tan2ϑ1

⇒ β2 = β2(Δ1, ϑ1, β1) . (20.73)

The equations (20.71)–(20.73) constitute the distilled ideal MHD jump problem.
With the addition of the distilled entropy condition,

Δ2 ≤ Δ1 , (20.74)

this becomes the distilled MHD shock problem.
The original six free downstream parameters ρ1, p1, vn1, vt1, Bn1, Bt1 of this

problem have been reduced to the three basic parameters Δ1, ϑ1, β1 by exploitation
of the scale-independence of the MHD equations, eliminating two parameters (e.g.
ρ1 and Bn1), and of the de Hoffmann–Teller transformation, eliminating one of
the two velocity components. Consequently, MHD shocks are essentially a three-
parameter family of solutions. Even after this maximal reduction, the MHD shock
problem is much more complex than the gas dynamic one, as is manifest from
the solutions of Figs. 20.9–20.11. However, we may still apply the principle of
time reversal duality, formulated in Section 20.2.1, if we succeed in properly dis-
tinguishing the different sub-classes of solutions. This is the goal of the present
section.

Since the distilled jump condition (20.71) is cubic in Δ2, but linear in Δ1, it is
more easily solved from the inverse jump relation for Δ1:

Δ1 =
(γ + 1)Δ2

2 + [ 2− γβ1 − γ(1 + β1) tan2ϑ1] Δ2 − tan2ϑ1

(γ − 1)Δ2
2 + (2− γ) tan2ϑ1Δ2 + tan2ϑ1

Δ2 . (20.75)

The different limits of this relation exhibit the peculiarities of the jump curve.

– Around the Alfvén point M2
1 = M2

2 = 1 (or Δ1 = Δ2 = 0), the jump curve is
retrograde, i.e. M2

1 increases when M2
2 decreases:

|Δ1| ∼ |Δ2| � 1 ⇒ Δ1 ≈ −Δ2 . (20.76)

– For large M2
1 and M2

2 , the jump curve has a constant slope (= 4 for γ = 5/3):

Δ1 ∼ Δ2 	 1 ⇒ Δ1 ≈ γ + 1
γ − 1

Δ2 . (20.77)

– For ϑ1 = 0, when ϑ2 = 0 as well (according to Eq. (20.72)), the jump curve degener-
ates into a straight line:

(γ − 1)Δ1 − (γ + 1)Δ2 = 2− γβ1 . (20.78)
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This yields the HD limit of parallel shocks (Figs. 20.8(d)). The expression (20.78) may
be transformed into the HD expression (20.23) by converting the Alfvén Mach number
into the HD Mach number through Eq. (20.59). This shows that the striking difference
of decreasing HD shock curves (Fig. 20.5) and overall increasing MHD shock curves
(Fig. 20.9) is not deep, just results from different definitions of the Mach numbers.

– The expressions for perpendicular shocks may also be obtained from Eq. (20.75), or
(20.71), in the limit ϑ1 → ±π/2. This is left as an exercise for the reader.

– The denominator of the expression (20.75) never vanishes for physical values of the
parameters (since Δ2 ≥ −1), except when both ϑ1 = 0 and Δ2 = 0. The numerator
then also vanishes, so that the limits ϑ1 → 0 and Δ2 → 0 may be taken such that
ϑ2 �= 0 according to Eq. (20.72). This yields switch-on shocks (Figs. 20.8(e)).

Similarly, the quartic (20.67) for the magneto-sonic transition values M2
f,s2(M

2
1 ) is

more easily solved from the inverse relation Δf,s1(Δ2), which is a quadratic:

Δf,s1 = −s±
√
s2 − t , s ≡ γΔ3

2

[ 2 + (2− γ)Δ2 ] tan2ϑ1
, (20.79)

t ≡ − [ 2− γβ1 − γ(1 + β1) tan2ϑ1 + 2(γ + 1)Δ2 ] Δ3
2

[ 2 + (2− γ)Δ2 ] tan2ϑ1
.

The slow and fast transition curves, labeled M2
s2 and M2

f2 in Fig. 20.9, are obtained
by inverting these solutions again (a trivial plotting operation), where the two roots
labeled ± correspond to the Δ1 ≥ 0 and Δ2 ≤ 0 parts of each curve.

We now analyze the consequences of the S-shape of the distilled jump curve,
associated with the possibility of multiple solutions of the cubic Δ2 = Δ2(Δ1),
where intermediate jumps/shocks occur together with slow or fast jumps/shocks
for the same values of the upstream parameters Δ1, ϑ1, β1. This is actually not
so exceptional since rotational/Alfvén discontinuities even have infinite multiplic-
ity, labeled by the angle ϕ defined in Eq. (20.52). However, the indeterminacy of
the downstream state in the range of intermediate shocks has frequently been as-
sociated with lack of evolutionarity of these shocks and, consequently, abandoned.
We will come back to this at the end of this section, but for now note that dis-
carding these solutions, unfortunately, has seriously hampered the development of
the structure of the MHD shock relations as presented here. This negative role of
evolutionarity is extensively discussed by Kennel, Blandford and Coppi [253].

Since the original cubic (20.71) is a multi-valued function of Δ1, but the inverse
jump relation (20.75) is a single-valued function of Δ2, the jump curve along the
points H, . . . ,L depicted in Fig. 20.9 is monotonically decreasing in Δ2, but either
decreasing (along H–F–D–B and C–E–S–L) or increasing (along B–A–C) in Δ1.
We call the corresponding intermediate jumps in these ranges prograde (indicated
by P) when Δ1 and Δ2 decrease/increase together and retrograde (indicated by
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R) when they have opposite monotonicity. The additional distinctions of quasi-
prograde (indicated by P̂) and quasi-retrograde (indicated by R̂) encountered in
Figs. 20.9–20.11 are explained below, when the time reversed problem is consid-
ered. We already notice that the downstream parameters have an advantage over
the upstream ones in that the jump curve is monotonic in Δ2, but not in Δ1.

To complete the classification, we need to introduce eleven transition points,
delimiting the twelve different kinds of MHD jumps and shocks that (may) occur
on the jump curve. They are all determined by simple algebraic equations, only
involving the parameters ϑ1 and β1.

– Alfvén, fast and slow points A , F and S ,

ΔA = 0 , ΔF,S = −a±
√
a2 − b , (20.80)

a ≡ 1
2 (1− 1

2γβ1)− 1
2 (1 + 1

2γβ1) tan2ϑ1 , b ≡ − tan2ϑ1 .

– Intermediate demarcation points D and E ,

Δ1D,E = 0 , Δ2D,E = −c±
√
c2 − d , (20.81)

c ≡ 1− 1
2γβ1 − 1

2γ(1 + β1) tan2ϑ1

γ + 1
, d ≡ − tan2ϑ1

γ + 1
.

– Intermediate turning points B and C , determined by a quartic for Δ2B,C,

Δ4
2 + eΔ3

2 + fΔ2
2 + gΔ2 + h = 0 , e ≡ 2(2− γ)

γ − 1
tan2ϑ1 , (20.82)

f ≡ 4γ + 2 + (2− γ) [ 2− γβ1 − γ(1 + β1) tan2ϑ1]
(γ + 1)(γ − 1)

tan2ϑ1 ,

g ≡ 2 [ 2− γβ1 − γ(1 + β1) tan2ϑ1]
(γ + 1)(γ − 1)

tan2ϑ1 , h ≡ − tan4ϑ1

(γ + 1)(γ − 1)
,

with corresponding Δ1B,C determined by the inverse jump condition (20.75).

– Region I transition points X and Y, and region III transition points U and V,

Δ1X,Y = ΔF , Δ2X,Y = −u±
√
u2 − w , (20.83)

Δ1U,V = ΔS , Δ2U,V = −v ±
√
v2 − w , (20.84)

u ≡ ΔF + 1− 1
2γβ1 − 1

2 (1 + β1) tan2ϑ1

γ + 1
,

v ≡ ΔS + 1− 1
2γβ1 − 1

2 (1 + β1) tan2ϑ1

γ + 1
, w ≡ tan2ϑ1

γ + 1
.

This enables the construction of all the points of the sequence (20.68) that appear
in our new terminology for the different MHD jumps and shocks.
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Fig. 20.12 Regions I, II and III of the β1–ϑ1 parameter plane determining the different
shapes of the jump curves, i.e. the permitted intermediate jumps and shocks. Parameter
regions I and II apply for Δ1 ≥ 0, regions II and III apply for Δ1 ≤ 0.

The points H and L refer to the high and low Δ1 extremes of the jump curve. In
Figs. 20.9–20.11, the label H indicates either the limiting value of the asymptote
(horizontal dash) or its slope (inclined dash with ∞ on the right) for Δ1 → ∞,
exploiting Eq. (20.77). The low side is either limited by Δ1 = −1 or by L, corre-
sponding to vanishing numerator of the expression (20.73) for β2. This may also
happen in the middle of the jump curve (e.g. in between L2 and L3 in Fig. 20.11(c),
where three of the intermediate jumps have been struck through), so that the parts
corresponding to β2 < 0 have to be eliminated. There is nothing disturbing about
this (it also occurs in HD, see Fig. 20.5), but, unfortunately, the criterion β2 ≥ 0
can only be applied after the shock problem has been solved, not before.

The parameter regions I, II and III can be determined before solving the shock
problem. They just depend on the values of the two parameters ϑ1 and β1: see
Fig. 20.12. The criteria for parameter regions I and III directly follow from the
discriminants of the expressions (20.83) and (20.84):

DI ≡ u2 − w ≥ 0 , DIII ≡ v2 − w ≥ 0 , (20.85)

whereas parameter region II occurs when neither of these criteria is satisfied. Pa-
rameter region I refers to the presence (DI ≥ 0) or absence (DI < 0) of the
transition points C, X and Y of the intermediate shocks to the right (Δ1 ≥ 0) of
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the Alfvén point. For DI = 0, the points C, X and Y coalesce, so that for DI < 0,
the intermediate shocks R̂+ and P+ (shown in Fig. 20.11(a)) disappear. Parameter
region III refers to the presence (DIII ≥ 0) or absence (DIII < 0) of the tran-
sition points B, U and V of the intermediate jumps to the left (Δ1 ≤ 0) of the
Alfvén point. For DIII = 0, the points B, U and V coalesce, so that for DIII < 0,
the intermediate jumps R̂− and P− (shown in Fig. 20.11(c), although unphysical
for the particular parameter values chosen) disappear. Consequently, in parame-
ter region II (Fig. 20.9) none of the labels X, Y and U, V appear, and only the
intermediate shocks R+ and P̂+ and jumps R− and P̂− remain.

Let us now consider the time reversed problem, analogous to our exposition
in Section 20.2.1 of HD jumps and shocks. Reversing the direction of time, i.e.
reversing the flow, does not alter the distilled ideal MHD jump problem (20.71)–
(20.73) since the Alfvén Mach number only occurs squared there. This is why
jumps and shocks could be treated on an equal footing until now. Only when the
additional entropy condition (20.74) is considered, i.e. when downstream entropy
increase is used to fix the arrow of time for the enlarged dissipative system, are
jumps and shocks discriminated. For the complete distilled MHD shock problem
(20.71)–(20.74), the shocks survive and the jumps should be discarded.

An alternative point of view is to interpret the time reversal operation as just
interchanging the roles of upstream and downstream states. The different jumps
and shocks obtained in Figs. 20.9–20.11 then exchange position. Instead of jump
curves M2

2 = M2
2 (M2

1 ;ϑ1, β1), one obtains jump curves M2
1 = M2

1 (M2
2 ;ϑ2, β2).

These remain S-shaped, but they connect the different jumps and shocks in a com-
pletely different order, as illustrated by Fig. 20.13(b). For example, the intermedi-
ate shock R+

23 of Fig. 20.13(a) becomes the intermediate jump R−
23 of Fig. 20.13(b).

These may be considered as the solutions of two different physical problems, but
they may also be considered as solutions of the same problem described by two
different representations. This permits us to classify the MHD shocks in a new
way, viz. by noting that some of the intermediate (IM) jumps/shocks remain ret-
rograde and prograde with respect to M2

1 –M2
2 dependences, viz. R± → R∓ and

P± → P∓, but others get the opposite sense of monotonicity, viz. P̂± → R̂∓ and
R̂± → P̂∓. We call the latter quasi-retrograde and quasi-prograde.

Time reversal duality between entropy-forbidden jumps and entropy-permitted
shocks in MHD is now expressed by the following correspondence:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ2 = Δα±
2 (Δ1, ϑ1, β1)

ϑ2 = ϑα±2 (Δ1, ϑ1, β1)

β2 = βα±2 (Δ1, ϑ1, β1)

⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ1 = Δα∓

1 (Δ2, ϑ2, β2)

ϑ1 = ϑα∓1 (Δ2, ϑ2, β2)

β1 = βα∓1 (Δ2, ϑ2, β2)

, (20.86)

α+ ≡ (F+, R̂+,R+,P+, P̂+, S+) , α− ≡ (F−, P̂−,R−,P−, R̂−, S−) .
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Fig. 20.13 Time reversal duality between entropy-forbidden jumps and entropy-permitted
shocks in MHD and classification of discontinuities: (a) jumps and shocks connected by
the forward jump curve (schematic, in grey), (b) jumps and shocks connected by the inverse
jump curve. Parts of the curves are missing (connected by the dashed short cuts) for the
parameter regions indicated.

With the expressions (20.71)–(20.73) of the distilled jump conditions, this scheme
not only yields a straightforward prescription for the construction of shocks at each
point of a transonic plasma, but it also permits us to uniquely classify the MHD
jumps and shocks by means of the monotonicity properties of the jump curves.
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The following unique characterization of the six dual pairs of entropy-allowed
shocks (bold italic+) and entropy-forbidden jumps (italic−) in magnetohydrody-
namics emerges:

• Fast shocks F+
12 : ΔF ≤ Δ1 <∞ , ΔF ≤ Δ2 <∞ ;

• Fast jumps F−
21 : 0 ≤ Δ1 ≤ ΔF , Δ2D ≤ Δ2 ≤ ΔF ;

• Quasi-retrograde IM shocks R̂+
13 : Δ1C ≥ Δ1 > Δ1X/C , Δ2C ≤ Δ2 < Δ2X/C ;

• Quasi-prograde IM jumps P̂−
31 : Δ1U/B ≤ Δ1 ≤ 0 , Δ2U/B ≤ Δ2 ≤ Δ2D ;

• Retrograde IM shocks R+
23 : Δ1X/C ≥ Δ1 ≥ 0 , Δ2X/C ≤ Δ2 ≤ 0 ;

• Retrograde IM jumps R−
32 : 0 ≥ Δ1 ≥ Δ1V/B , 0 ≤ Δ2 ≤ Δ2V/B ;

• Prograde IM shocks P+
14 : Δ1Y/C < Δ1 ≤ Δ1C , Δ2Y/C < Δ2 ≤ Δ2C ;

• Prograde IM jumps P−
41 : Δ1B ≤ Δ1 < Δ1U/B , Δ2B ≤ Δ2 < Δ2U/B ;

• Quasi-prograde IM shocks P̂+
24 : 0 ≤ Δ1 ≤ Δ1Y/C , Δ2E ≤ Δ2 ≤ Δ2Y/C ;

• Quasi-retrograde IM jumps R̂−
42 : Δ1V/B > Δ1 ≥ Δ1B , Δ2V/B < Δ2 ≤ Δ2B ;

• Slow shocks S+
34 : ΔS ≤ Δ1 ≤ 0 , ΔS ≤ Δ2 ≤ Δ2E ;

• Slow jumps S−
43 : − 1 ≤ Δ1 ≤ ΔS , − 1 ≤ Δ2 ≤ ΔS .

(20.87)
Here, for the sake of comparison with the standard terminology, the redundant
notation in terms of α± as well as the indices ij is presented. Of course, exploiting
either one is enough. Due to the peculiar properties of the intermediate jumps and
shocks, the jump curve folds over in the Alfvénic range. As a result, the indicated
parameter ranges from the relations (20.80)–(20.84) overlap in Δ1 but not in Δ2,
so that any shock or jump is uniquely described by the latter value, i.e. byM2

2 . One
also recognizes the associated sub-structure: the “core” IM discontinuities R±, P±

(on the anti-diagonals of Figs. 20.13) are separated from the fast discontinuities F±

by the quasi-retrograde/prograde IM discontinuities R̂+, P̂−, and from the slow
discontinuities S± by the quasi-retrograde/prograde IM discontinuities P̂+, R̂−.

20.3.3 Angular dependence of MHD shocks

The problems of parameter reduction by the distilled jump conditions and of the
classification of MHD shocks being completely solved now, it remains to show
how the downstream velocities of the different discontinuities depend on the angle
of incidence ϑ1 of the upstream velocity. This will complement the provisional
illustrations of Fig. 20.8 with a more quantitative description. Since the three val-
ues MS, MA (≡ 1) and MF of the normal Alfvén Mach number corresponding
to the three linear MHD waves play a central role in the classification of shocks,
a generalization of the Friedrichs diagram (see Figs. 5.5 and 5.13 [1]) would ap-
pear to give the most logical angular representation. In the present context, this
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Fig. 20.14 Friedrichs-type diagram: “weak” shocks for β1 = 0.4. In the limit
σ → 0 , slow and fast shocks become magneto-acoustic waves, but intermediate
shocks never (except for ϑ1 → 0) become weak: ϑ2 �= ϑ1. Instead, Alfvén waves
are obtained from the rotational (or Alfvén) discontinuity in the limit ϕ → 0 or π.
Dots correspond to a discrete set of angles ϑ1k = ±(k/20)π, with k = 0, 1, . . . , 10.
For distinction, the velocity vectors are shown at k = 2 for slow shocks, at k = 4
for intermediate shocks and rotational discontinuities, and at k = 6 for fast shocks.

becomes a superposition of the three pairs of equal upstream and downstream ve-
locities at M = MS, MA and MF for all angles |ϑ1| = |ϑ2| ≤ π/2, as represented
in Fig. 20.14. Two caveats are in order here.

First, the shock strength, defined as σ ≡ 1 −M2
2 /M

2
1 , and leading to the ex-

pression (20.66) for “weak” shocks, is actually misleading with respect to the in-
termediate shocks and their relationship with Alfvén waves. In the limit σ → 0,
when both M2

1 → 1 and M2
2 → 1 along the jump curve, but from opposite sides

of the Alfvén point according to Eq. (20.76), the retrograde intermediate jumps
R− and shocks R+ coalesce, but they do not become weak (hence the quotation
marks above). In general (except for ϑ1 → 0), a finite jump of the directions of the
magnetic field and velocity remains, since ϑ1 = −ϑ2. Hence, intermediate shocks
almost never become weak, and, in the limit σ → 0, they do not become Alfvén
waves. Instead, Alfvén waves proper emerge from the rotational discontinuities
(appropriately called Alfvén discontinuities) in the limit ϕ → 0 or π. Whereas
the central Alfvén point M = MA = 1 and the intermediate jumps and shocks
around it clearly mold the shape of the jump curve, intermediate discontinuities
remain magneto-acoustic phenomena, with jumps restricted to the plane through
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the magnetic field and the normal, whereas Alfvén discontinuities have jumps in a
plane perpendicular to that. The two kinds of discontinuity may be superposed at a
particular point in time, but in the subsequent nonlinear dynamics the orientations
of those planes will change and a complicated, non-constant, mix of Alfvén-type
and magneto-sonic type of discontinuity will emerge.

Second, the Friedrichs diagram is actually an awkward representation for the
angular dependence of MHD shocks since it presents the phase speeds of the dif-
ferent MHD waves in the direction of the normal n. According to Eqs. (5.79) and
(5.82) [1], this yields the expressions

(vph)A =
B√
ρ
· cosϑ , (20.88)

(vph)F,S =
B√
ρ
·
√

1
2(1 + 1

2γβ)± 1
2

√
(1 + 1

2γβ)2 − 2γβ cos2 ϑ ,

exhibiting the well known feature that the Alfvén and slow waves do not propa-
gate in the perpendicular directions ϑ = ±π/2. Exploiting such a representation
for strong shocks is undesirable since it requires separate treatment for the per-
pendicular shocks. In fact, the representation of Fig. 20.14 is a superposition of
three plots, corresponding to the three special values (20.66) of the Alfvén Mach
number,

MA = 1 , (20.89)

MF,S =
1

|cosϑ|

√
1
2(1 + 1

2γβ)± 1
2

√
(1 + 1

2γβ)2 − 2γβ cos2 ϑ ,

where the latter two even cover a range of values when ϑ is varied. This is not what
we want. To study the effect of the angle of incidence of a shock, we wish to keep
the value of the Alfvén Mach number M1 (and also β1) fixed, and just vary ϑ1.
Note that, in contrast to the phase speeds (20.88), the values for the Alfvén Mach
numbers (20.89) do not vanish for ϑ = ±π/2. Clearly, dividing by |cosϑ| makes
a crucial difference. We will make use of this.

We now return to the expressions (20.60) for the velocities v̄∗
1 and v̄∗

2. For
fixed M2

1 , but varying ϑ1, the left expression for v̄∗
1 corresponds to a straight line

so that perpendicular shocks are properly described in the limit ϑ1 → ±π/2, but
|v̄∗

1| → ∞ there. This may be remedied by exploiting a powerful property of the de
Hoffmann–Teller transformation by which the expressions for the velocities can be
simplified even further. Since v∗

i and Bi are parallel, the squares of the upstream
and downstream normal Alfvén Mach numbers may be written as

M2
i ≡

ρiv
2
ni

B2
n

=
ρiv

∗2
i

B2
i

(i = 1, 2) . (20.90)
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Fig. 20.15 Polar plot of the velocities v∗
1,2(ϑ1) in the de Hoffmann–Teller frame

for M1 = 1 and β1 = 0.4. Vectors for the retrograde IM shock, the switch-off slow
shock and the switch-off fast jump are shown at k = 4 (ϑ1 = 0.2π). The fast jump
becomes unphysical beyond L (corresponding to ϑ1 > 0.279π) since β2 < 0 there.

In other words: for the velocities in de Hoffmann–Teller frame, the normal Alfvén
Mach number coincides with the Alfvén Mach number itself ! This means that the
Alfvén Mach number Mi can be exploited as a measure for the total velocity, not
just for the normal component as implied by the expressions (20.60).

Recall that the bars on the velocities v̄∗
1 and v̄∗

2 come from the normaliza-
tion (20.42)–(20.43) that we exploited so far, where the constancy of the factors
ρvn andBn across the surface of discontinuity was utilized to symmetrize the jump
conditions as far as possible with respect to upstream and downstream values of the
parameters. This having been accomplished, we may now return to the real world,
so to speak, and normalize the velocities in a more practical way, based on the
upstream value vA1 = B1/

√
ρ1 of the Alfvén speed:

v̄∗
1 ≡

ρ|vn|
B2

n

v∗
1 =

M1

cosϑ1
ṽ∗

1 , v̄∗
2 ≡

ρ|vn|
B2

n

v∗
2 =

M2

λ cosϑ2
ṽ∗

2 , (20.91)

where ṽ∗
i ≡ v∗

i /vA1 and the factor λ converts the downstream velocity into the
upstream normalization:

λ ≡ vA2

vA1
≡ B2

B1

√
ρ1

ρ2
=

cosϑ1

cosϑ2

M2

M1
. (20.92)

Dropping the tildes, as usual, this yields the following asymmetric expressions for
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the upstream and downstream velocities in the de Hoffmann–Teller frame:{ v∗n1 = −M1 cosϑ1

v∗t1 = M1 sinϑ1

⇒
{ v∗n2 = −λM2 cosϑ2

v∗t2 = λM2 sinϑ2

. (20.93)

Now, the upstream Alfvén Mach number M1 and the effective downstream Alfvén
Mach number λM2 are just the normalized total upstream and downstream veloc-
ities. For fixed M1 and β1, the locus of the endpoints of the velocity v∗

1(ϑ1) is
a half-circle and the corresponding locus for v∗

2(ϑ1) may be computed from the
explicit solutions of the distilled jump problem (20.71)–(20.73) obtained. Hence,
with this normalization, a much more effective representation of the polar plots
is obtained than that resulting from either the Friedrichs representation or the one
given by the original expressions (20.60). This is illustrated by Fig. 20.15, which
shows the velocities of the three jumps/shocks that occur at M1 = 1.

Since the Alfvén point A of the jump curve of Fig. 20.9 is a fixed point (M1 =
M2, irrespective of the values of ϑ1 and β1) of the transformation M1 → M2, the
absolute magnitude of the velocity of the retrograde intermediate shocks R+ (limit
M1 ↓ 1) is the same upstream and downstream. Hence, the polar plot for R+ is
a circle in Fig. 20.15. With respect to the angular dependence ϑ2 = ϑ2(ϑ1) for
the retrograde IM shocks, close to the point A, it follows from Eqs. (20.76) and
Eq. (20.72) that

ϑ2 ≈ −ϑ1 , (20.94)

thus producing a second reason for the terminology retrograde. At A, this becomes
ϑ2 = −ϑ1 so that the directions of the upstream and downstream velocities for the
M = 1 retrograde IM shocks on the circle of Fig. 20.15 continuously change from
ϑ1 = ϑ2 = 0 (parallel shock) to ϑ1 = −ϑ2 = π/2 (perpendicular shock). This
shows, once more, the central role of the intermediate shocks for the description of
MHD discontinuities. In contrast, for the points D and E of Fig. 20.9, which demar-
cate the transitions from intermediate to fast and slow jumps or shocks, the down-
stream Mach numberM2 depends on ϑ1, so that the magnitudes of the downstream
velocities vary but, since M1 = 1, the downstream angle ϑ2 = 0 according to
Eq. (20.72). Hence, these points correspond to switch-off fast–intermediate jumps
F− (limit M1 ↑ 1) and switch-off slow–intermediate shocks S+ (limit M1 ↓ 1) for
all values of the upstream angle ϑ1. Recall that, by the principle of time reversal
duality, corresponding switch-on fast–intermediate shocks F+ and switch-on slow–
intermediate jumps S− may be obtained from these solutions by just interchanging
the upstream and downstream values of the parameters.

We now complete the description of the angular dependence of MHD shocks by
discussing the rather complex behavior for sub- and super-Alfvénic values of M1,
where we have selected just four representative cases in Fig. 20.16. These pictures
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Fig. 20.16 Polar plot of the velocities v∗
1,2(ϑ1) in the de Hoffmann–Teller frame

for β1 = 0.4 and increasing Alfvén Mach number: (a) M1 = 0.55, (b) M1 = 0.95,
(c) M1 = 1.05, (d) M1 = 1.8. Velocity vectors are shown at k = 4 (ϑ1 = 0.2π).
The dashed circle on the upstream side indicates the Alfvén speed, M1 = 1.

should be considered as mere illustrations of the different kinds of shocks since
the actual solution of the distilled MHD shock problem has already been obtained
in Section 20.3.2. Also note that, for proper interpretation of the polar plots of
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Figs. 20.15 and 20.16, one would need the corresponding dependence of β2(ϑ1),
which is not shown, with possible crossings to negative values like in Figs. 20.10(b)
and 20.11(d). For example, the switch-off fast jumps F− of Fig. 20.15 only exist
for incident angles 0 ≤ ϑ1 ≤ 0.279π. For larger angles they become unphysical
since β2 < 0 then: there is simply no discontinuity possible for those values of the
upstream parameters.

In Figs. 20.16(a) and (b), the polar velocity plots are shown for sub-Alfvénic
values of M1. For those values, parameter region II (jump curves as in Fig. 20.9)
applies for smaller ϑ1 and parameter region III (jump curves as in Fig. 20.11(c))
applies for larger angles. The resulting polar plot of slow jumps and shocks for
M1 = 0.55 is shown in Fig. 20.16(a). Since M1 is far below the Alfvénic value 1,
the intermediate jumps (which would have had much larger values of M2 than the
slow discontinuities) are eliminated because they are all unphysical (β2 < 0). The
remaining slow discontinuities are S− jumps for ϑ1 < 0.161π and S+ shocks for
ϑ1 ≥ 0.161π. Hence, in contrast to the Friedrichs diagram, weak slow shocks
now only occur for the single angle ϑ1 = ϑ2 = 0.161π, which separates the slow
jumps from the slow shocks. The polar plot for a near-Alfvénic value, M1 =
0.95, is shown in Fig. 20.16(b). The slow jumps S− have disappeared now and
the slow shocks S+ are focused close to the parallel direction (anticipating the
switch-off behavior of Fig. 20.15). Since M1 is now close to 1, the intermediate
jumps have returned: retrograde IM jumps R− and quasi-prograde IM jumps P̂−

appear for ϑ1 ≥ 0.178π. Starting from the turning point B (where ϑ1 = 0.178
and ϑ2 = −0.111π), for increasing upstream angle ϑ1, the downstream angle
ϑ2 monotonically decreases towards ϑ2 = −π/2 (perpendicular jump) for R−,
whereas ϑ1 monotonically increases towards ϑ2 = −0.037π (point L, at ϑ1 =
0.263π) for P−, where this jump becomes unphysical again.

In Figs. 20.16(c) and (d), the polar plots are shown for super-Alfvénic val-
ues of M1. Now, parameter region I (jump curves as in Fig. 20.11(a)) applies
for smaller ϑ1 and parameter region II (jump curves as in Fig. 20.9) applies for
larger angles. In the polar plot for the near-Alfvénic value M1 = 1.05 shown in
Fig. 20.16(c), the intermediate discontinuities have become genuine shocks. For
increasing upstream angle ϑ1, retrograde R+ shocks switch-on at ϑ1 = 0 (where
ϑ2 = −0.110π), while ϑ2 monotonically decreases towards −π/2 (perpendicular
R+ shock). Quasi-prograde P̂+ shocks also appear for all upstream angles, but
their ϑ2 monotonically decreases from ϑ2 = 0 towards −π/2 (perpendicular P̂+

shock). For this near-Alfvénic value of M1, fast F+ shocks only occur for a nar-
row range of ϑ1: they switch-on at ϑ1 = 0 (where ϑ2 = 0.110π), their value of
ϑ2 monotonically decreases to ϑ1 = ϑ2 = 0.081π, where they turn into fast F−

jumps, which become unphysical at ϑ1 = 0.292π (ϑ2 = 0.028π). For the large
super-Alfvénic value M1 = 1.8 illustrated in Fig. 20.16(d), only fast discontinu-
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ities survive. Fast F+ shocks occur for the rather wide range 0 ≤ ϑ1 ≤ 0.289π and
they turn into fast F− jumps at ϑ1 = 0.289π (where ϑ2 = 0.288π), which become
unphysical beyond ϑ1 = 0.386π (where ϑ2 = 0.224π).

A final cautionary remark on the angular dependence ϑ2(ϑ1) of the polar plots
is in order. For fixed Δ1 and β1, this dependence follows from the misleadingly
simple relationship (20.72),

Δ2 tanϑ2 = Δ1 tanϑ1 , (20.95)

i.e. it involves the solution Δ2(ϑ1) of the distilled jump condition (20.71). To avoid
possible misunderstanding with respect to our terminology, which is based on the
monotonicity of the jump condition with respect to the Alfvén Mach numbers:
in general, because of the dependence Δ2(ϑ1), the angular dependence ϑ2(ϑ1) is
not monotonic. For example, for the fast shocks and jumps of Fig. 20.16(d) just
discussed, ϑ2 rapidly increases for small ϑ1 (a remnant of the switch-on behavior
at M1 = 1), becomes rather flat and reaches a maximum (ϑ2 = 0.304π at ϑ1 =
0.188π), and then decreases again.

20.3.4 Observational considerations of MHD shocks

We have now discussed the implications of the distilled jump conditions (20.71)–
(20.73) from a wide variety of view points, with the time reversal duality (20.86)
and the associated classification (20.87) of shocks as the most prominent ones.
They imply that a transonic plasma is uniquely described by assigning values to the
three upstream parameters Δ1, ϑ1, β1 at each point,2 at shock fronts complemented
with the values of the three downstream parameters Δ2, ϑ2, β2. As we have seen,
the relationship between these two parameter spaces is a very intricate one, where
the downstream parameters are not uniquely determined by the upstream ones since
the distilled energy jump condition (20.71) is a cubic equation, having one, two or
three solutions at each point of the shock front, dependent on the value of Δ1.
Moreover, some of the values for the upstream parameters have to be excluded
a posteriori since they correspond to negative values of the downstream pressure.
Having arrived at this point of our exposition, the reader may wonder how such a
rich structure, with far-reaching physical implications, could have emerged from
just a set of algebraic relations (20.3)–(20.9), not even involving partial differential
equations. The reason is that these relations express, at each point of the transonic
plasma, the laws of conservation of mass, momentum, energy and magnetic flux
of the ideal MHD model, supplemented with a prescription for the entropy change.

2 Recall, though, that we have eliminated the two parameters ρ1 and B1 of scale independence and the two
parameters of the de Hoffmann–Teller boost v∗ − v. Of course, in a full 3D calculation of all seven primitive
variables, these four need to be computed as well since they have different values at different positions.
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In a certain sense, these equations bring together all the physical properties of the
model of nonlinear magnetohydrodynamics, discussed so far, at a single point! It
thus focuses on the nonlinearity of these equations, which, by definition, does not
relate to the differential equations but to the algebraic aspects of the model.

Which of the multifarious MHD shocks may be realized in actual stationary or
time-dependent transonic MHD flows will be determined by the dissipative and
nonlinear processes acting in such an inhomogeneous configuration. The ones
that survive are called evolutionary. Since intermediate shocks precisely occur
when the distilled shock problem is multi-valued in terms of the upstream Alfvén
Mach number M1, such shocks typically have bifurcations and may split up into
other types of discontinuity. For dissipative models in simple geometries in the
limit of vanishing dissipation, the intermediate shocks were shown not to be stable
against certain perturbations. Traditionally (Akhiezer et al. [6, 5], Germain [155],
Jeffrey and Taniuti [250]), this failure of the test of evolutionarity has been used to
rule out the physical reality of intermediate shocks. However, in 1988, Wu [487]
showed intermediate shocks arising in a numerical solution of the dissipative MHD
equations through nonlinear steepening from a continuous wave. This claim was
further substantiated by calculations by Kennel et al. [254] for a dissipative model
problem and by De Sterck et al. [112] on transonic flows in complex geometries
like those encountered at solar wind–magnetosphere boundaries.

After Wu’s paper, a flurry of numerical and observational papers appeared on the
formation of intermediate shocks [488, 144, 490, 491, 202], on their astrophysical
implications [123, 85], on their relationship with magnetic reconnection [451, 291],
on their significance for the Riemann problem [344, 345, 346, 437, 438], on their
occurrence in bow-shock flows [113, 114] and on their possible breakup [482]. On
the other hand, Falle and Komissarov [132] presented arguments to stick to the tra-
ditional view point, subjecting numerical calculations to strict rules on what to call
a shock and what a transient feature. However, as noted by Kennel et al. [253], and
reiterated in Section 20.3.2, this view point has also hampered the development of
the theory of MHD shock relations, as demonstrated by the fact that the solutions
of this section were obtained only recently [172]. For the purpose of understanding
how the MHD jump conditions permit a continuous description in parameter space
from slow to fast shocks through the intermediate ones, the problem of evolution-
arity of the intermediate shocks can be deferred to a later stage, when conclusive
observational and numerical evidence has been collected. It may be noted that such
a strategy is customary (because effective) in experimental fusion research when
slow dissipative tokamak evolution is analyzed by means of the two-fold arbitrary
family of equilibrium solutions of the Grad–Shafranov equation, and the decision
on which of these equilibria is actually chosen by the experiment is left to evidence
obtained from the different diagnostics. A glance at the list of plasma transport
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coefficients of Section 3.3.2 [1], and the realization that these just present the clas-
sical picture, which nearly always needs to be modified by anomalous corrections
of even the orders of magnitude, suffices to appreciate the practical impossibility
of predictive transport calculations of the dynamics of magnetized plasmas. Sim-
ilarly, in the related subjects of helioseismology and MHD spectroscopy [180],
discussed in Section 7.2.4 [1], and extended to accretion disks [255, 51] and gen-
eral transonic flows [173, 169, 52], the full variety of MHD waves for all possible
equilibrium configurations is simply cataloged and the final decision on which of
those is realized in nature is left to data obtained from observations by telescopes
(in astrophysics) or from the various diagnostics (in the laboratory). In physics, the
difference between theoretical truth and prejudice is eventually decided by empir-
ical evidence: nature has all the answers, let us consult her.

20.4 Stationary transonic flows

Thus far in this chapter, our exposition concentrated on the various discontinuities
that can occur in stationary MHD. Magnetohydrodynamic shocks play a promi-
nent role in the wide variety of transonic laboratory and astrophysical plasmas.
Concrete examples range from those exploited in the early pinch implosion experi-
ments [281], to more recent inertial confinement fusion experiments [99], over bow
shocks encountered at planetary magnetospheres or at the heliosphere–interstellar
medium boundary, up to shocks found in supersonic accretion flows onto neutron
stars [395] and black holes [151]. As briefly mentioned in Chapter 14, reconnec-
tion processes [387] may also create standing magnetohydrodynamic shock fronts.
In turn, steady, transient or recurring shock fronts aid in the acceleration of par-
ticles. In many astrophysical outflows, like in extragalactic jets [11, 259], shock-
accelerated particles can easily reach relativistic speeds [278]. Knowledge of the
MHD shock relations, extended up to relativistic MHD as introduced in Chapter 21,
is thus a vital ingredient to our understanding of transonic flows and the physical
processes involved in particle acceleration.

Explicit analysis, as given above for the algebraic problem of classifying all the
different MHD shocks, is also important for the numerical solution of the nonlinear
evolution problem by means of characteristics. In two-dimensional equilibria with
flow, the characteristics exhibit both spatial (equilibrium) and temporal (wave) fea-
tures such that equilibrium and waves appear to be no longer separate issues, as
already pointed out in the introduction of this chapter. Some of these features of
transonic MHD flow have been analyzed by Goedbloed and Lifschitz [181, 309] for
a special class of (“self-similar”) solutions that permits in-depth explicit analysis of
the transitions and shocks of the flow, by means of a system of coupled PDEs and
an algebraic Bernoulli equation. For non-planar flows, in particular MHD flows in



530 Transonic MHD flows and shocks

spatially two-dimensional axi-symmetric stationary equilibria [181], a further divi-
sion of the flow regimes discussed in Section 20.2.4 occurs due to the occurrence
of limiting line characteristics in the hyperbolic magneto-sonic regions (as already
shown for gas dynamics by Courant and Friedrichs [97]) and of flows that are dis-
connected at the Alfvén speed by a forbidden flow regime due to the constraint of
constant Bernoulli function. These additional divisions make the computation of
transonic MHD flows particularly complicated.

In the remainder of this chapter, we will discuss selected examples of continu-
ously varying transonic flows. The solar wind is perhaps the best known example
of such a “smooth” transonic flow, on top of which the complex shock patterns
associated with CMEs develop. In essence, the solar wind is just one manifestation
of a smooth transonic flow whose acceleration is mainly thermally driven, while
magnetized stellar winds or outflows emanating from accretion disks can also reach
high speeds by e.g. magneto-centrifugal mechanisms. In young star environments
where circumstellar accretion disks prevail, strong stellar magnetic fields may even
deviate the accreting matter to form transonic “funnel” flows. We briefly discuss
the intricacies of transonic solar wind solutions in what follows, and then continue
with exemplary stationary astrophysical flows.

20.4.1 Modeling the solar wind–magnetosphere boundary

The existence of intermediate shocks in numerical solutions of the dissipative
MHD equations for transonic flows of the type encountered at the solar wind–
magnetosphere boundary by De Sterck, Low and Poedts [112] nicely illustrates
the surprising complexity of ideal MHD shock-dominated flow patterns. To model
the interaction of the solar wind with a “magnetosphere”, or to study the shock
fronts associated with CMEs traversing the solar wind, the authors considered uni-
form magnetized flow around perfectly conducting obstacles. When the upstream
plasma β is smaller than 2/γ, while the inflow is super-Alfvénic and characterized
by an Alfvén Mach number M = v/vAn such that, in agreement with Eq. (20.74)
in the limit ϑ1 = 0, Δ2 = 0,

1 ≤M ≤
√
γ(1− β) + 1

γ − 1
, (20.96)

fast switch-on shocks can exist [112] and the shock structure in the flow around
the obstacle can become quite complicated. De Sterck et al. [112] obtained steady
shock structures numerically, using shock-capturing schemes of the type discussed
in Chapter 19. Figure 20.17 shows a global view and a detail of the converged
bow shock solution for an initially uniform field-aligned flow with β = 0.4 and
M = 1.5 around a cylinder in the switch-on regime. The steady shock front was
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Fig. 20.17 Interacting MHD shocks in a homogeneous flow around a perfectly con-
ducting cylinder. Global view (left) and detail of the flow in the half plane above
the stagnation streamline (right). (From De Sterck et al. [112].)

found to consist of multiple shock segments of various types. The shock D–E
is a fast shock and almost a fast switch-on shock, as By,1 is almost vanishing
upstream. The leading shock front part E–F is a hydrodynamic shock and E–G is
an intermediate shock as well as D–G–H–I. The latter one is almost a slow switch-
off shock. The part indicated with E–H is a tangential discontinuity and other
tangential discontinuities stretch out from points D, G and H along the streamlines
to infinity. Notice that, in this inflow regime, the shock front shape is not parabolic
(the shape expected in a hydrodynamic supersonic inflow about the cylinder), but
shows a clear dimple in the leading shock front. This simulation may thus provide
an explanation for CME related shocks, which are observed to have such a dimple.

20.4.2 Modeling the solar wind by itself

The solar wind, predicted analytically by Parker [364], is a clear example of a
stationary, “smooth” transonic MHD flow. While the original analytic prediction
of its existence was made under the assumption of a spherically symmetric, iso-
thermal, unmagnetized, non-rotating solar wind (see Chapter 8 [1]), the true tran-
sonic nature of the solar wind is better described in MHD models which relax some
of these assumptions. The simplest of these is the 1D Weber–Davis solution [475]
which incorporates both rotation and magnetic fields. In spherical coordinates (Ap-
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pendix A.2.3), it represents a steady-state (∂/∂t = 0) axi-symmetric (∂/∂φ = 0)
wind for the equatorial plane only, where the polar angle θ = π/2 (assuming
vθ = 0 and Bθ = 0), and it adopts a polytropic relation between density and pres-
sure. The transonic solution for given rotation rate Ω∗, magnetic field strength,
and base temperature and density passes through the slow and fast magneto-sonic
critical points of the radial momentum equation. The Alfvén point rA, where the
radial velocity equals the radial Alfvén speed, plays an important role in quantify-
ing the angular momentum flux of the solar wind. This flux is due to the advection
of angular momentum by the plasma flow and due to magnetic tension. This flux
is constant as a function of radius and equal to minus the total rate of change of the
angular momentum of the Sun. For the 1D Weber–Davis solution this gives

dJz
dt

= −2
3
(rvφ − rBφBr

ρvr
)4πr2ρvr =

2
3
Ω∗r2A

dM

dt
, (20.97)

where dM/dt = −4πr2ρvr is the solar mass loss rate. The second equality shows
that the rate of angular momentum change dJz/dt is directly related to the Alfvén
radius. The factor 2/3 comes from a moments of inertia calculation. Typical values
for a 1D solar-type Weber–Davis wind solution result in a solar mass loss rate
of dM/dt = −2.94 × 10−14M�yr−1. The 1D Weber–Davis solar solution is
unrealistic in the sense that the actual solar wind has open field lines along the
poles and closed field lines about the equator.

In a sequence of papers, Keppens and Goedbloed [256, 257] initiated a grad-
ual approach towards dynamic solar/stellar wind numerical simulations. In [256],
the authors proceeded from pure hydrodynamic Parker winds to arrive at axi-
symmetric, polytropic, magnetized, rotating models. These 2D generalizations of
the analytical Weber–Davis wind solution can contain both a “wind” and a “dead”
zone. For these axi-symmetric, steady-state solutions, one can use the flux func-
tions introduced in Chapter 18 to verify the physical correctness of the numerical
solutions. Using explicit and implicit time-marching procedures to obtain steady-
state stellar wind solutions, converged steady-state solutions for magnetized, ro-
tating winds containing helmet streamers were obtained. An example solution is
shown in Fig. 20.18. The polytropic solutions generalize the iso-thermal model by
Pneuman and Kopp [372] of a mixed open–closed magnetic wind structure by in-
cluding the effects of rotation. The stellar rotation causes a toroidal winding of the
field lines and the resulting azimuthal field component Bϕ is shown in color scale
in the figure. Note the way in which the outflow accelerates to super-fast flow.
This is characterized by the critical surfaces where the poloidal flow exceeds the
poloidal slow, Alfvén and fast velocities. The poloidal streamlines and field lines
are necessarily parallel in these stationary solutions of the flux function ψ(R,Z)
(exploiting the cylindrical coordinates of Appendix A.2.4 now). In ideal MHD,
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Fig. 20.18 Axi-symmetric magnetized wind with a “wind” and a “dead” zone. The
poloidal magnetic field lines (solid lines) and flow vectors are shown. The colors
indicate the azimuthal magnetic field component, which is non-zero in the wind
zone only. The slow (dotted), Alfvén (solid) and fast (dashed) critical transitions of
the solar wind are also drawn. (From Keppens and Goedbloed [257].)

one obtains various flux functions conserved along the streamlines, like Λ(ψ) =
Rvϕ−RBϕBp/ρvp, where ρ is the density andBp (vp) indicates the poloidal mag-
netic field (velocity). The polytropic condition implies that the entropy is constant,
S = 1/γ. One can further verify Ω(ψ) = [vϕ − (vp/Bp)Bϕ] /R and the Bernoulli

functionH(ψ) =
[
v2
R + v2

Z + v2
ϕ

]
/2+ργ−1γS/(γ−1)−GM�/r−RΩvϕ. These

flux functions are specific to stationary, axi-symmetric ideal MHD flows, and they
can be used to verify the correctness of transonic numerical solutions.

In [257], it was shown how reasonable changes in the coronal magnetic field
strength and topology alter the detailed acceleration behavior of the solar wind
during a solar cycle. Larger dead zones cause effective, fairly isotropic, acceler-
ation to super-Alfvénic velocities as the polar open field lines are forced to fan
out rapidly with radial distance. In the ecliptic, the wind outflow is modulated by
the extent of the dead zone. Boundary conditions at the stellar surface imposed the
mass flux and ensured the correct rotational coupling of velocity and magnetic field
by prescribing the flux function Ω(ψ) at the base. The resulting–calculated–pole-
to-pole variation of the base number density has a clear imprint of the dead zone,
with higher densities about the equator consistent with observations. Also the den-
sity fall-off with height at the poles agrees well with the observed variation. This
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confirms that the macroscopic behavior of the solar wind can be described by the
MHD equations, as discussed in Chapter 8 [1]. From these axi-symmetric transonic
solutions, one can again quantify the stellar spin-down rate, which will be different
from a Weber–Davis estimate due to the variation of the transonic transitions with
polar angle. For a 2.5D axi-symmetric wind this can be written as

dJz
dt

= −2π
∫ π

0
r3 sin2 θ(ρvrvφ −BrBφ)dθ . (20.98)

The first term between brackets represents the angular momentum flux due to ad-
vection, the second is due to the magnetic tension. Whereas the angular momentum
loss of the 1D Weber–Davis wind is directly related to the Alfvén radius, for the
2.5D case this is less obvious. For typical solar wind conditions, it was found that
the total angular momentum flux as quantified from these models is about one or-
der of magnitude smaller than the 1D Weber–Davis estimate. This reduction is due
to the presence of the equatorial dead zone, which reduces the effective magnetic
lever arm. Near the solar surface, the flux is dominated by magnetic tension, so that
the angular momentum loss of the Sun via the solar wind is basically magnetic.

20.4.3 Example astrophysical transonic flows

Other transonic, magnetized plasma flows, collimated over very large distances
from their source region, occur throughout our observable Universe. Astrophysical
jets on light year scales are associated with young stellar objects (YSO) and the
fossils of dead stars: neutron stars and stellar mass black holes in X-ray binary
systems (XRB). Jets up to several millions of light year long occur in association
with active galactic nuclei (AGN), containing a supermassive black hole. Many of
these jets likely involve equipartition magnetic field strengths where the thermal
and the magnetic energy contents are comparable. Observational and theoretical
arguments favor such dynamically strong magnetic fields, which must play a role
in jet launching and propagation, and in the termination of the jet through the in-
teraction with the surrounding medium. Moreover, to explain their remarkable
collimation, magnetic hoop stresses are needed to counteract the tendency of the
outflow to widen by centrifugal and pressure effects. Another ingredient, common
to the YSO, XRB and AGN type systems, is the presence of an accretion disk.
Observational links have been established in all cases between accretion disk lu-
minosity and jet emission, highly suggestive of a unifying jet launch scenario. The
most promising scenario to explain the ubiquitous jet phenomenon relies on the in-
teraction of a large-scale magnetic field with the accretion disk in order to give birth
to bipolar self-collimated jets. The mass loaded onto the jet is then a nearly con-
stant fraction of the mass accretion rate of the system, and its acceleration to highly
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super-fast magneto-sonic speeds is realized magneto-centrifugally. The presence
of a structured global magnetic field configuration in accretion disk–jet systems
is important in all three aspects of the astrophysical jet phenomenon: it plays a
role in realizing a magneto-centrifugal jet launching, provides a natural way for jet
collimation by magnetic tension, and modifies the jet linear and nonlinear stability
properties against perturbations.

(a) Jets launched from magnetized accretion disks. A magnetic field threading an
accretion disk can brake rotating matter, allowing accretion, and can act to transfer
(part of the) angular momentum into a jet. A seminal MHD model by Blanford
and Payne [49] (with transonic flows in a cold plasma) has laid the foundations
for many sophisticated analytical and numerical investigations of magnetized jet
dynamics. In equipartition thin accretion disks (with β � 1), it is possible to real-
ize sufficiently bent magnetic field configurations in the inner disk regions needed
for magneto-centrifugal acceleration of jet material. To reach a stationary config-
uration in the simulations, one must model the disk internal regions in a resistive
MHD framework, as material should be allowed to accrete without dragging in
magnetic field lines. The anomalous resistivity mimics the effect of the magneto-
turbulent nature of the inner disk plasma (with the turbulence presumably originat-
ing from magneto-rotational instabilities, or any of the transonic MHD instabili-
ties discussed in Chapters 13 and 18). At the same time, the jet regions and the
surrounding medium are adequately modeled in ideal MHD. Most simulations of
astrophysical jets treat the dynamics of the disk as a mere boundary condition, and
focus on acceleration and collimation. This ignores how the presence of a jet alters
the magnetic and thermodynamic conditions within the jet launch region.

More recent work has numerically demonstrated the continuous launching of
trans-magneto-sonic collimated jets from resistive accretion disks threaded by open
large-scale magnetic fields. In particular, Casse and Keppens [80, 81] performed
MHD simulations where the disk launches a non-transient ideal MHD jet accel-
erated to super-fast magneto-sonic velocities. In [80], the authors still assumed a
simple polytropic relation between pressure and density profiles, and were able to
evolve the magnetized disk over many rotational time scales. Figure 20.19 gives
a 3D impression of the numerical end result, showing that a bipolar pair of self-
collimated cool jets forms and is persistently ejected. The dominant part of disk
matter is effectively accreted. A constant fraction reaches the inner disk surface
while it accretes, where the pressure gradient lifts the matter to be propelled in
the jet. Jet material is then magneto-centrifugally accelerated to reach super-fast
magneto-sonic speeds. Note how the collimation is already complete near the top
of the domain. In a follow-up paper [81], the energetics of the flow (without radia-
tive losses) were accounted for as well, and the simulations produced hot jets with
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Fig. 20.19 A 3D impression of a transonic jet launched from an accretion disk. A
high density iso-surface (brown) indicates the disk location, while selected mag-
netic field lines are shown in yellow. A fraction of the accreting disk matter gets
lifted out of the disk and forms magneto-centrifugally accelerated jet matter: an
indicative particle streamline (red) shows how spiraling fall-in motion gets diverted
into a collimated jet. (From Casse and Keppens [80, 81].)

equipartition internal magnetic fields. In a fully self-consistent manner, the mag-
netized accretion–ejection structures (MAES), obtained numerically, accounted for
the puzzling observation that many systems display bright collimated jets, together
with under-luminous accretion disks. These and similar MHD models then quanti-
fied how the energy released by accretion can be mainly sent into the jet, naturally
explaining the disk’s low radiative efficiency. Note that, to make the problem com-
putationally tractable, the simulations were performed in a 2.5D framework, where
the flow and magnetic field are fully three-dimensional, under the restriction of axi-
symmetry about the jet axis. This in effect eliminates potential shear flow as well
as current-driven kink-mode perturbations deforming the jet, and precludes the de-
velopment of non-axi-symmetric perturbations in the magnetized accretion disk.
Various ongoing research efforts have started to relax these assumptions exploiting
advanced computational tools, such as those mentioned in Chapter 19.
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(b) Funnel accretion flows onto magnetized young stars. Our final example of a
more continuous transonic flow configuration in astrophysics zooms in on the cen-
tral region of the YSO-accretion disk system. While the previous example showed
that jets can be launched from the inner equipartition disk regions, the fate of the
major accreting fraction of the disk material was treated in a rudimentary fashion:
a “sink” region allowed matter to escape the simulation box near the origin. For
a YSO system, this inner region would have a typical size of about 0.1 AU, while
the disk and jet dynamics were covering a region extending to several AU. The jet
launch simulations thus illustrated how self-collimated, hollow jets can form within
2–3 AU. The central accreting object was, in the MAES configuration, merely im-
portant from its gravitational influence on the disk matter. We now shift our view
to the star–disk dynamics happening within a range of a few stellar radii, account-
ing for the observational fact that young solar-type stars can harbor dynamically
important global magnetic fields of strengths within several 100 G to a few kG. In
reality, the very central accretion dynamics can be very complex, as the young star
will rotate as it has gone through a contraction phase, and its main dipole moment
does not need to be aligned with the rotation axis. We will once more avoid these
complications, and discuss a computational example of magnetized star–disk inter-
action, which assumes axi-symmetry (with aligned magnetic dipole moment and
rotation axis) and focuses on the near-stellar accretion disk dynamics.

In the presence of a stellar magnetic field, the accretion flow onto the star can
be significantly different from purely equatorial accretion. The stellar field can
truncate the disk at an inner truncation radius rt and, as pointed out by Romanova
et al. [394] and consecutively refined by Bessolaz et al. [37], dynamical arguments
can be used to estimate this truncation radius for a given accretion rate Ṁa, stellar
field strength B∗, and other parameters like its radius R∗ and mass M∗. Bessolaz
et al. [37] showed that, once again, equipartition fields with β ∼ 1, together with
the requirement that the accretion ram pressure ρv2

r is balanced by the magnetic
poloidal pressure, provides an estimate for the truncation radius given by

rt
R∗
� 2m2/7

s

( B∗
140 G

)4/7( Ṁa

10−8M�/yr

)−2/7( M∗
0.8M�

)−1/7( R∗
2R�

)5/7
.

(20.99)
The parameter ms � 1 denotes the sonic Mach number for the radial accretion
flow at the disk midplane. The estimate assumed for simplicity that the real base of
the funnel flow, located at rbf where both β ∼ 1 and ms ∼ 1, is close to the trun-
cation radius rt where by definition the radial motion is halted and diverted along a
stellar field line. Under typical T-Tauri star parameters as indicated in the scalings
of Eq. (20.99), the disk is thus truncated within a few stellar radii. A numerical
study by Romanova et al. [394] was the first to convincingly demonstrate the for-
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Fig. 20.20 In an axi-symmetric computation of accretion onto a young magnetized star,
the accretion disk (the high density matter seen in yellow) is magnetically halted within a
disk truncation radius rt. The infalling matter gets diverted into a transonic funnel flow
along the dipolar magnetic field lines (black lines) connecting star and disk. The base of
the funnel is located at rbf . (From Bessolaz et al. [37].)

mation of accretion “funnels” near the star, as material gets lifted out of the disk
due to a vertical plasma pressure gradient and loaded onto the stellar field lines.
While the original results were obtained for kG stellar fields, Fig. 20.20 shows a
later result by Bessolaz et al. [37] which extended the findings to lower stellar field
strengths of about 140 G, at even lower accretion rates of order 10−9M�/yr. The
disk region was treated resistively, in a manner analogous to the jet launch stud-
ies mentioned above. The accretion funnels develop self-consistently from initial
conditions where only a truncated accretion disk is embedded in a dipolar stellar
magnetosphere. The end state shown in Fig. 20.20 can be considered as a station-
ary transonic flow configuration: when analyzing the funnel flow in detail, it is
found to cross the slow magneto-sonic point, reaching sonic Mach numbers of up
to 3.5. However, the funnel flow found remained sub-Alfvénic throughout. The
main forces acting within the funnel are the thermal pressure gradient at the base,
as matter accumulates there, while eventually gravity overwhelms near the stel-
lar radius: matter reaches the star with approximately free-fall velocities. While
these funnel flows seem to be a common ingredient to accreting magnetized stars,
the stellar parameters may bring the YSO system to completely different transonic
flow regimes, such as the “propeller” flow predicted in Romanova et al. [395].
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(c) Ongoing research trends. While the previous examples clearly illustrate that
transonic MHD flows are ubiquitous in astrophysics, they concentrate on highly
simplified configurations to isolate one aspect of what happens in reality (be it
the stellar wind, the jet launch, or the near-stellar accretion dynamics). Con-
tinued progress is made on each aspect separately, e.g. by tackling 3D accretion
flows onto young stars with unaligned rotation and magnetic axes, and/or consid-
ering higher order multi-pole fields, as suggested by polarimetric measurements
of starspots. While the basic funnel flow physics is well understood from the
axi-symmetric simulations, the bewildering variety of multi-column accretion fun-
nels, and the possibility of intermittent accretion tongues, forming as a result of
Rayleigh–Taylor instabilities developing at the inner truncation radius [289], illus-
trates that the observational task of inverting from spectroscopic data, with coarse
spatial (and limited temporal) resolution to obtain the ongoing thermo-dynamics is
simply daunting. Furthermore, the supersonic accretion columns themselves must
ultimately end on the stellar surface, and thus involve a standing shock front, from
which much of the radiative losses occur. This aspect needs to be studied within
the global disk dynamics simulations. Finally, the angular momentum regulation
in true YSO systems is still posing many puzzles to the emerging theoretical pic-
ture: a large fraction of classical T-Tauri stars showing circumstellar disks rotate
much slower than expected from pre-main-sequence evolutionary models. Due
to the fact that these stars contract and hence should spin up significantly, a reg-
ulating role of star–disk coupling was typically invoked to explain the observed
slow rotation rates (see e.g. Keppens et al. [258]). Under typical YSO parameters,
Eq. (20.99) predicts that the funnel flows and disk truncation happen inwards from
the co-rotation radius, which separates disk regions where the magnetic coupling
would act to spin up (inwards) versus spin down (outwards) the central star. Cur-
rent trends investigate the role of stellar winds in shedding the young star angular
momentum (combining the disk, accretion funnel and stellar outflow problem), as
well as the possibility that coherent external disk magnetic fields coexist with the
stellar magnetic field component (bringing together the MAES jet launch and cen-
tral accretion studies). Due to the different range in spatial and temporal scales, the
full 3D demonstration of stellar outflows, (shocked) multicolumn accretion flows
and disk jet/wind launching is a research item that is still challenging to the current
generation of even grid-adaptive, massively parallel software tools. Nevertheless, it
is guaranteed to be at the forefront of ongoing research efforts. A related challenge
is the study of jet launch, propagation, stability and ultimate shock-dominated ter-
mination by interaction with the interstellar medium, for systems ranging from the
YSO to the AGN category. We will give a modern example of the latter in the
next chapter, but this requires an appropriate treatment of relativistically flowing
magnetized plasmas. How this is done is the subject of Chapter 21.
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20.5 Literature and exercises

Notes on literature

Classic treatments of gas dynamic and MHD shocks

– A classic treatment of gas dynamic shocks is Supersonic Flow and Shock Waves by
Courant & Friedrichs [97]. Equally classic, but much shorter, are the chapters on
gas dynamic shocks and MHD shocks in Course of Theoretical Physics (Volume 6,
Chapter IX, and Volume 8, Chapter VIII) by Landau & Lifshitz [294, 295]. An in-
depth treatment of MHD charateristics may be found in Magnetohydrodynamics by
Kulikovskij & Lyubimov [288].

Textbook chapters on MHD shocks

– A number of textbooks on plasma physics have useful chapters on MHD shocks,
e.g. Magnetohydrodynamics (Chapter VI) by Jeffrey [249]; Solar Magnetohydrody-
namics (Chapter 5) by Priest [386]; The Physics of Plasmas (Section 5.6) by Boyd
& Sanderson [64]; Introduction to Plasma Physics (Chapter 7) by Gurnett & Bhat-
tacharjee [201].

MHD shock relations

– The material on shock relations presented in this chapter is based on the paper ‘Time
reversal duality of magnetohydrodynamical shocks’ by Goedbloed [172]. It adds
the view point of scale-independence of the MHD equations to the powerful tangen-
tial transformation that can be found in the classical, and still very readable, paper
‘Magneto-hydrodynamic shocks’ by de Hoffmann and Teller [108].

Exercises

[ 20.1 ] Entropy

In this chapter, it is stated that the entropy has to increase across a shock front.
– What is entropy? Explain why it has to increase across a shock front.

[ 20.2 ] Essential steps

What are the essential steps in deriving the distilled shock conditions from the original
ones? Explain for each step why it is important.

[ 20.3 ] Distilled energy jump condition

In this exercise, you are going to reproduce the S-shape curve of Figs. 20.9 and 20.10. We
assume that you use IDL, but you can also use Matlab, Maple or any other similar program.
Whatever program you use, make sure that Laguerre’s method [385] is implemented.

– Write p̄1 and B̄t1 in terms of the angle ϑ1 and the plasma beta β1.
– Now, write an IDL program which reproduces the S-curve shown in Fig. 20.9. Create

a file called quantities.pro in which you put two functions, one for the upstream
pressure and one computing the tangential magnetic field. Both functions use the
angle ϑ1 and the plasma beta β1 as input parameters.

– Write the distilled energy jump condition (20.63) as a polynomial in the squared
Alfvén Mach numberM2

2 . How many solutions are there and what are the expressions
for each of the coefficients?
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– Next, create a function computing the coefficients of the energy jump condition for
given ratio of specific heats γ, pressure p̄1, tangential magnetic field B̄t1 and squared
Alfvén Mach number M2

1 . Put this function in the file shockconditions.pro.

– Next, write a generic function computing the roots of a polynomial using Laguerre’s
method, which is part of the IDL library. Create the file solvers.pro which creates
the function rootfinder with input parameters γ, p̄1, B̄t1, “points” and max(M2

1 ).
With “points” the number of points to be calculated between 0 and max(M2

1 ) is
meant. At each point, you should compute the coefficients of the energy jump condi-
tion needed to compute the roots with Laguerre’s method. Store only the appropriate
solutions. What kind of test can you design to check if a solution is appropriate or
not? How do you sort the solutions? The generic function should return the appropri-
ate solutions as a two-dimensional array with the values for M2

1 and M2
2 .

– Make a plot of the roots found for the given parameters of Fig. 20.9.

[ 20.4 ] Downstream magneto-sonic transition function

The main purpose of this exercise is to make a plot of the downstream magneto-sonic
transition function as a function of the upstream Alfvén Mach number. Similarly to the
previous exercise, we assume that you use IDL. If you want to use another program, like
Matlab, this is no problem, but make sure that you can use Laguerre’s method [385].

– Write the downstream magneto-sonic transition equation (20.67) as a polynomial in
M2

2 . What are its coefficients?

– Add a function to the file shockconditions.pro which computes these coefficients.
If you did not do the previous exercise, then create this file.

– Extend the function rootfinder so that it can also compute the roots of the down-
stream magneto-sonic transition function. Again, if you did not do the previous exer-
cise, make a file solvers.pro creating the function rootfinder. What this function
should do is specified in the last but one question of the previous exercise.

– Make a plot of the curves M2
s2,A2,f2. If you did the previous exercise, you can just

add the curves to the previously created plot.

– Finally, also add the curve M2
1 = M2

s1,A1,f1 to the plot.

[ 20.5 ] Distilled entropy condition

In this exercise, you are going to make a plot of the distilled entropy condition (20.64). We
assume again that you use IDL, but you may use a similar program. Make sure you are
able to use the van Wijngaarden–Dekker–Brent (WDB) method [385]. This is an advanced
method to compute the zero of a monotonic function on a given domain.

– Explain why you cannot plot the distilled entropy condition (20.64) using Laguerre’s
method.

– For a numerical reason, you have to multiply the entropy condition by M2γ
2 . What is

that reason precisely?

– The entropy condition will be plotted using the WDB method. Add a function com-
puting it for given M2

2 , γ, p̄1, B̄t1, M2
1 to the file shockconditions.pro. Make

sure that the first input parameter is the squared Alfvén Mach number M2
2 . If you did

not do one of the two previous exercises, then create this file.

– Download the file zbrent.pro from the internet. This is a part of the IDL Astronomy
User’s Library (idlastro.gsfc.nasa.gov) which contains the WDB method. Modify the
function zbrent such that it accepts four additional parameters.
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– Make a plot of the entropy condition for ϑ1, β1 = 0.4, M2
1 and M2

2 = [0, 2.5]. What
do you observe and what does it mean for the use of the WDB method?

– What method can be used to solve the problem of the previous question?
– Add a function to the file solvers.pro (create it if it does not exist), which computes

where the entropy condition is zero for given γ, p̄1, B̄t1, “points” and max(M2
1 ). The

zeros should be computed using the WDB method. By “points” the number of points
between zero and the maximum of M2

1 is meant. The function should return a 2D
array containing the values M2

1 and M2
2 for which the entropy jump is zero.

– Make a plot of the solutions found. If you did one of the two previous exercises, you
can just add the solutions to the existing plot.

[ 20.6 ] Weber–Davis trans-magneto-sonic wind solution

We here investigate the trans-magneto-sonic properties of a stellar wind for a star of mass
M∗ under a number of approximations according to Weber and Davis [475].

– Write down the ideal MHD equations in spherical coordinates including a spherically
symmetric external gravity due to the stellar mass M∗. Drop the energy equation and
assume a polytropic relation p = p0(ρ/ρ0)γ . We will look for a stellar wind solution
which is stationary and axisymmetric. Apply this assumption to the equations.

– The analysis will be restricted to the equatorial plane θ = π/2. At this equatorial
plane we assume that vθ = Bθ = 0 and that all other physical quantities ρ, vr,
vφ, Br, Bφ depend only on the radius r. Write out the remaining forms for mass
conservation, induction equation and the ∇ ·B = 0 equation.

– Show that the toroidal component of the momentum equation can be written as

rvφ − rBrBφ
ρvr

= L ,

where the constant L is related to the angular momentum flux.
– Show that

r (vφBr − vrBφ) = Ωr2Br ,

where Ω is the stellar angular rotation rate.
– Express the toroidal velocity vφ in terms of r, L, Ω and the radial Alfvén Mach

number defined from M2
Ar ≡ ρv2

r/B
2
r . Furthermore, derive an expression for the

constant L by evaluating expressions at the Alfvén point MAr = 1.
– Express the density ρ, toroidal velocity vφ, radial magnetic field Br and toroidal

magnetic field Bφ in terms of the radius r and radial velocity vr. Show that the radial
component of the momentum equation can be written as

d

d r

[1
2
(
v2
r + v2

φ

)
+

γp

(γ − 1)ρ
− GM∗

r
− BrBφ

ρ

Ωr
vr

]
= 0 .

– Show that the radial component of the momentum equation can also be written as

d vr
d r

=
vr
r

[ (v2
r −A2

r)(2c
2
s + v2

φ −GM∗/r) + 2vrvφArAφ
(v2
r −A2

r)(v2
r − c2s )− vrA2

φ

]
,

where the (squared) sound speed c2s ≡ γp/ρ, the radial Alfvén speed Ar ≡ Br/
√
ρ

and the toroidal Alfvén speed Aφ ≡ Bφ/
√
ρ. Discuss the critical points of this ODE

for the radial velocity vr.
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Ideal MHD in special relativity

We have seen that the MHD description for the macroscopic dynamics of plas-
mas offers a uniquely powerful, unifying, viewpoint on both laboratory and as-
trophysical plasmas. The applicability of the MHD viewpoint was discussed pre-
viously in Volume [1], along with the various approximations made to arrive at
the MHD equations from first principles. For most laboratory plasmas, the sin-
gle fluid ideal or resistive MHD model eventually needs to be extended towards a
multi-fluid model and by including important kinetic effects, since its continuum
approach to plasma modeling neglected, e.g., Landau damping as well as many
other velocity-space dependent physical phenomena. For many astrophysical plas-
mas, we face yet another shortcoming of the MHD model used thus far, namely
that we restricted all attention to non-relativistic plasma velocities. This is per-
fectly adequate for most of the plasma found in our own solar system. However,
astronomical observations indicate that, e.g., the extragalactic jets associated with
Active Galactic Nuclei clearly harbor dynamically important magnetic fields and
relativistically flowing plasmas. In order to model these plasmas in a continuum
model, the restriction on the plasma velocities must be alleviated, by revisiting
the ideal MHD equations in a frame-invariant relativistic formulation within four-
dimensional space-time. In this chapter, we present such a formulation, restricting
our attention to special relativity where we still have a “flat” geometry. In recent
years, modern computational techniques such as those discussed in Chapter 19
have started to be used in this more demanding relativistic MHD regime. Since
such activities are necessarily still maturing, we only summarize the numeric al-
gorithmic challenges posed by the ideal MHD model in special relativity. We end
this chapter with selected example applications. In particular, we discuss insights
gained from recent computations of astrophysical jets with speeds approaching the
speed of light.

543
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21.1 Four-dimensional space-time: special relativistic concepts

Relativity implies that physical laws do not depend on the chosen reference frame.
In special relativity, the speed of light c is explicitly recognized as the maximal
speed with which information can travel between different spatial locations. Since
this maximal speed c is the same for all observers in uniform relative motion
with respect to each other, we must abandon the familiar notion of Galilean in-
variance. Indeed, under Galilean invariance between two such inertial reference
frames, speeds expressed in the two frames transform by adding the speed of the
relative motion. In order to account for an upper limit c in propagation speed, which
is the same for two inertial systems moving with relative velocity v, one must relax
their notion of simultaneity. What appears simultaneous in one frame will occur at
different times in any other frame, and as a result, the temporal duration of a phys-
ical event will differ from frame to frame. This leads to a viewpoint where time is
an extra coordinate, augmenting the three spatial coordinate directions, to describe
physical events in a four-dimensional space-time continuum. The four coordinates
associated with different inertial space-time reference frames are related by the
Lorentz transformation. In the following, we introduce these and other basic con-
cepts leading to a special relativistic formulation of nonlinear compressible gas dy-
namics. Section 21.2 extends this with the inclusion of electromagnetic fields, and
discusses how one successively obtains the ideal MHD model in special relativity.
The material in this introductory treatment towards special relativistic MHD bene-
fited from material presented in the more broadly oriented textbook by Blandford
and Thorne [50], while much more complete, but also more technical, treatments
can be found in earlier monographs by Anile [8] and Lichnerowicz [307].

21.1.1 Space-time coordinates and Lorentz transformations

In Section 2.2.2 [1], we presented the Lorentz transformation of two inertial frames
moving with relative velocity v, given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′ = x +
Γ− 1
v2

v v · x− Γv t ,

t′ = Γ
(
t− 1

c2
v · x

)
, Γ ≡ 1√

1− v2/c2
.

(21.1)

The Lorentz factor Γ depends nonlinearly on the relative velocity v, which is still
a vector with three components (v1, v2, v3) along the three spatial (orthogonal)
coordinate directions x ≡ (x1, x2, x3)

T. We will write a Latin index i = 1, 2, 3
when a spatial coordinate direction is meant, e.g. in xi or vi. However, the Lorentz
transformation (21.1) must rather be interpreted as a transformation between the
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four-dimensional space-time coordinates

X ≡
(
ct

x

)
, X′ ≡

(
ct′

x′

)
, (21.2)

when we write it as

X′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ −Γ
v1
c

−Γ
v2

c
−Γ

v3

c

−Γ
v1

c
1 + (Γ− 1)

v2
1

v2
(Γ− 1)

v1v2
v2

(Γ− 1)
v1v3

v2

−Γ
v2

c
(Γ− 1)

v1v2
v2

1 + (Γ− 1)
v2
2

v2
(Γ− 1)

v2v3

v2

−Γ
v3

c
(Γ− 1)

v1v3
v2

(Γ− 1)
v2v3
v2

1 + (Γ− 1)
v2
3

v2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
X . (21.3)

The space-time coordinates X are specific to a pre-chosen inertial Lorentzian ref-
erence frame. If we indicate the 4 × 4 matrix occurring in (21.3) with Lα

′
α , and

denote the four coordinate entries as Xα and Xα′
, with Greek index α = 0, 1, 2, 3,

we have the compact notation

Xα′
= Lα

′
α X

α . (21.4)

This formula implicitly assumes a choice of two Lorentzian reference frames L′

with space-time coordinates X′, and L with coordinates X. The inertial frame L′

is moving at speed v with respect to frame L, and Eq. (21.4) merely states how
the coordinates for a unique point in four-dimensional space-time, also referred
to as an “event”, relate between the two selected frames. Obviously, all symbols
appearing in Eq. (21.4) are frame-dependent. The inverse transformation, written
symbolically as

Xα = (L−1)αα′Xα′
, (21.5)

can be computed by noting that the matrix (L−1)αα′ = (Lα
′
α )−1. As expected on

physical grounds, the matrix (L−1)αα′ turns out to be found from Lα
′
α by merely

replacing v by−v. Note also that the Lorentz transformation matrix Lα
′
α (and thus

its inverse) is symmetric.

Pure Lorentz boost, length contraction and time dilation We can specify the
Lorentz transformation to a case where frame L′ is moving with a velocity v di-
rected along the x1 coordinate axis of frame L. Then, we speak of a pure Lorentz
boost with direct transformation given by⎛⎜⎜⎜⎝

ct′

x′1
x′2
x′3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Γ −Γv1/c 0 0

−Γv1/c Γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ct

x1

x2

x3

⎞⎟⎟⎟⎠ . (21.6)
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The inverse transformation replaces X by X′ and v1 by −v1. A length interval
Δx1 along the x1 axis of frame L is measured in the L′ system at a fixed time
t′. The inverse transformation yields immediately that, for the moving observer in
frame L′, the length appears to contract since

Δx′1 = Δx1/Γ . (21.7)

Since Γ ≥ 1, lengths in the inertial frame L along the direction of motion of
a moving observer in L′ appear shorter to him, which is the well-known length
contraction effect. Note that in the two directions perpendicular to the motion, no
difference occurs, so volume measures will only differ by the single factor Γ−1.
For a comparison of time intervals, we use the direct transformation to compare
time intervals as determined at fixed position (Δx1 = 0) in frame L. We find
similarly that

Δt′ = ΓΔt , (21.8)

telling that time in the inertial frame L appears to run slow to the moving observer
in L′. Of course, when we change view point from L′ to L, the same conclu-
sions will be reached: L is also moving with velocity −v along the x′1 coordinate
axis of frame L′. We will reach the (apparently paradoxical) conclusions that then
Eqs. (21.7)–(21.8) will hold in reverse, i.e. when replacing t by t′ and x′1 by x1.
This is just what relativity is all about: both observers come to the same conclu-
sion. The paradoxical nature is a mere consequence of the fact that simultaneity
has obtained a different meaning in both systems.

Fig. 21.1 Pure Lorentz boost and loss of simultaneity.

For the pure boost of Eq. (21.6), we can graphically illustrate the different
parameterization of space-time associated with both (x1, t) and (x′1, t′) systems.
When frame L′ moves at speed v in frame L along x1, and we draw the axes of
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L′ at the moment when origins of L and L′ coincide, the t′ axis is given by the
straight line ct = (c/v)x1. Similarly, the x′1-axis given by t′ = 0 points is the line
ct = (v/c)x1. This is illustrated in Fig. 21.1. It is then clearly seen that simulta-
neous events in frame L are no longer simultaneous to frame L′. Such space-time
diagrams can also be used to prove in a more graphical sense the mentioned effects
of length contraction and time dilation. Note finally that from Eq. (21.6) (as well
as from Eq. (21.3)), we find the relation

− c2t2 + x2
1 + x2

2 + x2
3 = −c2t′2 + x′1

2 + x′2
2 + x′3

2
, (21.9)

which will return in the discussion of the metric associated with flat space-time.

21.1.2 Four-vectors in flat space-time and invariants

We now consider the path traced in space-time by a single particle, which we will
call the world line of this particle. Time progression as experienced by this particle
is referred to as its “proper time”. This proper time τ is measured by an ideal clock
in the particle’s local rest frame, i.e. in a reference frame moving along with the
particle. Introducing a local Lorentzian reference frame with orthogonal coordi-
nates Xα, the particle four-velocity is then given by

Uα ≡ dXα

dτ
, (21.10)

where dXα ≡ (c dt, dx1, dx2, dx3)
T measures the “distance” along each coordi-

nate direction traversed in the proper time interval dτ . These concepts are graphi-
cally shown in Fig. 21.2, depicting space-time as an (x, t) plane where two of the
spatial directions are conveniently omitted.

The four components Uα in Eq. (21.10), as well as the coordinates Xα, are
in fact contravariant components of physically meaningful four-vectors in four-
dimensional space-time. The four-position vector X ≡ Xαeα connects the origin
of our reference frame with the space-time point with coordinates Xα, whereby
the basis vectors eα point along the four coordinate axes. The transformations
given by Eqs. (21.4) and (21.5) can thus be understood as follows: two reference
frames L and L′ each introduce their set of basis vectors eα and eα′ , respectively.
The matrix Lα

′
α quantifies how each basis vector eα can be written as a linear

combination of the other set of basis vectors, namely eα = Lα
′
α eα′ . Note that

the double appearance of the Greek index α′ implies a summation, and we will
from now on adopt this Einstein convention. The frame-independent four-position
vector X is then clearly

X = Xαeα = XαLα
′
α eα′ = Xα′

eα′ , (21.11)
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which directly leads to the transformation as given in Eq. (21.4).

X

dτ
= U

dX

x

c t

x=ct

particle wordline
proper time τ

X U
position four−vector

four−velocity 

Fig. 21.2 World line of a particle, four-position vector and four-velocity.

Once a set of basis vectors eα is given, we can in general introduce a set of dual
or reciprocal basis vectors which obey eα · eβ = δβα, where δβα is the Kronecker
delta. Covariant vector components appear when working with this dual basis, e.g.
for the four-position vector X = Xαeα. These dual basis vectors eβ can then be
used to express the two sets of basis vectors in terms of each other, namely

eα = eα · eβeβ ≡ gαβeβ or eα = eα · eβeβ ≡ gαβeβ . (21.12)

This introduces the 4 × 4 components of the metric tensor gαβ and its inverse
gαβ . They generally allow one to transform from contravariant components Xα

to covariant components Xα by Xα = gαβX
β . The metric tensor components

associated with flat space-time, i.e. in a Lorentzian reference frame equipped with
space-time coordinates, are given by the Minkowski metric

gαβ = gαβ =

⎛⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ . (21.13)

Note that the four basis vectors for this flat space-time are orthogonal to each other.
Also, the three space-like directions form an orthonormal set with unit lengths
since ei · ei = 1. The squared length of the temporal basis vector e0 · e0 has
the negative value −1. For flat space-time, we then conclude that the dual basis
vector e0 = −e0, while all spatial directions have basis vectors identical to their
dual vector ei = ei. This simplifies the tensor calculus considerably, and one only
needs to remember the sign reversal for any temporal tensor component.

In general, the squared length of a four-vector represents a frame-independent
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scalar invariant upon which different observers will agree. It can be evaluated by
means of the metric since for a four-vector X we find

X ·X = (Xαeα) · (Xβeβ) = gαβX
αXβ = XαXα . (21.14)

In flat space-time, and for a differential vector dX, this then is simply

ds2 ≡ dX · dX = −c2 dt2 + dx2
1 + dx2

2 + dx2
3 , (21.15)

where we introduced the (square of the) line element ds. A four-vector with neg-
ative square length is said to separate time-like events in space-time, while a four-
vector with a positive squared length separates space-like events. A zero squared
length is a light-like separation. World lines of particles will always have time-like
tangent four-vectors in space-time, while light (a photon) travels along a path with
light-like tangents.

From (21.15), we can deduce several useful relations connected to the proper
time τ and a particle’s four-velocity as introduced in Eq. (21.10). It is clear that,
for a stationary particle, the proper time τ will be equal to the time coordinate
t of an inertial frame attached to the particle. We then find from (21.15) that
dτ2 = −ds2/c2. Since ds is an invariant quantity, this relation between proper
time intervals and the (time-like) line element tangent to the world line of a parti-
cle will always be true. One then uses this equality to find the general relation

− c2 = −c2 dt
2

dτ2
+
dx2

1

dτ2
+
dx2

2

dτ2
+
dx2

3

dτ2
. (21.16)

Noting further that
dxi
dτ

=
dxi
dt

dt

dτ
,

dxi
dt

= vi , (21.17)

where vi is a component of the spatial three-velocity v, one finds that

dt

dτ
= Γ . (21.18)

This is again the time-dilation effect, expressing the fact that the proper time as-
sociated with a moving particle will always appear to run slow from a stationary
viewpoint, since Γ ≥ 1. As a result of Eq. (21.18), the contravariant components
of the four-velocity can be written as

Uα = (cΓ,Γv)T . (21.19)

Using the general relation (21.14), we can then verify the invariance of

UαUα = −c2 . (21.20)

This confirms the time-like nature of the four-velocity, which is the tangent vector
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to the particle world line. For a particle with rest mass m0, the four-momentum is
then the four-vector

Pα = m0U
α . (21.21)

In Chapter 2 [1], we used the notation E = Γm0c
2 and p = Γm0v to indicate the

relativistic energy and (three-)momentum, respectively. This allows us to write

Pα =
(
E

c
,p
)T

, E2 = m2
0c

4 + p2c2 , (21.22)

where the latter relation comes from evaluating the invariant PαPα. Hence, energy
includes the rest mass contribution m0c

2, and momentum and energy need to be
treated on the same footing.

Particle dynamics and forces in space-time The dynamics of a particle is gov-
erned by forces exerted on it, and this requires the generalization of the force con-
cept from a three-vector F to its four-vector equivalent. We can expect these two
concepts to coincide in the rest frame of the particle, such that we write the con-
travariant components of the four-vector in this frame by Fα

′
= (0,F)T. When

we then transform to the reference frame which observes the particle moving with
velocity v, we use the inverse Lorentz transform to compute

Fα = (L−1)αα′Fα
′
=
(

Γ
v · F
c

,ΓF
)T

, (21.23)

where we used the fact that the velocity v will typically be aligned with F. The
equation of motion is then

dPα

dτ
= Fα , (21.24)

which can be decomposed into its temporal and spatial parts as

dE

dt
= v · F , (21.25)

dp
dt

= F . (21.26)

We find familiar results: Eq. (21.25) states that work done by a force changes
the energy, and Eq. (21.26) is the equation of motion, expressed in three-vectors.
Note that the latter contains the relativistic three-momentum p = Γm0v. This
is sometimes written as p = m(v)v, where the particle “mass” m(v) = Γm0

increases from its rest mass value m0 when the particle velocity approaches the
speed of light.
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Three-velocity addition law As stated before, since we need to use the Lorentz
transformation to transform between inertial reference frames, three-velocities will
no longer merely add up. We can find the special relativistic rule for three-velocity
addition from the following consideration. Suppose that a particle is observed
in a frame L to move with three-velocity v. In frame L′ co-moving with this
particle, a signal propagates away from the particle at the speed w (with respect to
L′). Obviously, when we then denote the Lorentz factor evaluated for this three-

velocity as Γw =
(
1− w2/c2

)−1/2, frame L′ will ascribe a four-velocity Uα
′

=
(cΓw,Γww)T to that signal. We can then use the inverse Lorentz transform Uα =
(L−1)αα′Uα

′
, to obtain the corresponding four-velocity in frame L as⎛⎝ cΓu

Γuu

⎞⎠ =

⎛⎜⎝ Γ Γ
v
c

Γ
v
c

I + (Γ− 1)
vv
v2

⎞⎟⎠
⎛⎝ cΓw

Γww

⎞⎠ , (21.27)

where I is the 3× 3 identity matrix. It is then found easily that

u =
v
[
Γ + (Γ− 1)v ·w/v2

]
+ w

Γ (1 + v ·w/c2) . (21.28)

It is a matter of algebra to show that Γu = ΓΓw
(
1 + v ·w/c2) is the Lorentz factor

for the velocity given by this Eq. (21.28). One can reorganize this expression to
one giving the three-speed w in frame L′, obtained from adding velocities u and v
known in L, namely

w =
u− v

[
Γ− (u · v/c2)Γ2/(Γ + 1)

]
Γ (1− u · v/c2) . (21.29)

21.1.3 Relativistic gas dynamics and stress–energy tensor

We can now formulate the governing conservation laws in four-dimensional space-
time. We begin with particle conservation. The proper density ρ is the mass per
unit volume as seen in the rest frame of the gas. When we indicate the number
density per unit volume in this frame by n0, we have

ρ = m0n0 . (21.30)

In the inertial Lorentzian frame where the gas is seen to move with velocity v,
volumes differ due to the length contraction effect. As a result, the number density
will be n = Γn0. A convenient variable to quantify the “density” in this “labora-
tory” frame is D = Γm0n0 = m0n = Γρ. It should be noted that the actual lab
frame density is ΓD, due to the mass increase m(v) = Γm0, but we will loosely
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refer to D as the density. Particle number conservation is then generally expressed
by the vanishing divergence of the four-vector ρUα, namely

∂α (ρUα) = 0 . (21.31)

Written out in terms of the coordinates (ct,x), we then find

∂D

∂t
+∇ · (Dv) = 0 . (21.32)

It is easily seen how the classical limit Γ → 1 indeed reduces to the familiar mass
conservation equation, since D → ρ.

Because energy and momentum need to be treated as a single physical entity,
the classical (three-)momentum and energy conservation laws will be unified in
a conservation law in four dimensions, involving the vanishing divergence of a
four-tensor. This four-tensor is the stress–energy tensor which we will denote in
contravariant components with Tαβ . Its components contain⎛⎝ T 00 T 0i

T i0 T ij

⎞⎠ =

⎛⎝ energy density energy flux

momentum flux stresses

⎞⎠ . (21.33)

In the rest frame of the fluid, explicit expressions for its components are easily
given, since fluxes vanish there. The energy density T 0′0′ contains both a rest mass
and an internal energy contribution. Writing the specific internal energy in the fluid
frame as ε, the expression for the energy density is

T 0′0′ = ρc2 + ρε . (21.34)

When the pressure in the fluid frame is denoted by p, isotropic pressure corresponds
to stresses

T i
′j′ = p I . (21.35)

When we now transform back to the laboratory frame where the gas moves with
velocity v, we compute

Tαβ = (L−1)αα′(L−1)ββ′T
α′β′

, (21.36)

which yields the expression

Tαβ =
(
ρc2 + ρε+ p

) UαUβ
c2

+ pgαβ . (21.37)

The tensor is symmetric, Tαβ = T βα, and scalar invariants computed from this
stress–energy tensor, upon which all observers will agree, are its trace defined as

Tαα = Tαβgαβ = 3p− ρc2 − ρε , (21.38)
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and

TαβTαβ =
(
ρc2 + ρε

)2
+ 3p2 . (21.39)

We can write this tensor in the form of Eq. (21.33), and introduce some convenient
notation as⎛⎝T 00 T 0i

T i0 T ij

⎞⎠ =

⎛⎝(ρc2 + ρε+ p
)
Γ2 − p (

ρc2 + ρε+ p
)
Γ2v/c(

ρc2 + ρε+ p
)
Γ2v/c ρΓ2vv + pI + (ρε+ p) Γ2vv/c2

⎞⎠

≡
⎛⎝τg +Dc2 Sg/c

Sg/c Sgv/c2 + pI

⎞⎠ . (21.40)

In terms of the variables τg (the total energy density in the lab frame, minus the
rest mass contribution), and the three-vector Sg (the relativistic energy flux), the
divergence of the stress–energy tensor is then written as follows. The temporal
part, i.e. the equation ∂αT 0α = 0, will yield

∂

∂t

(
τg +Dc2

)
+∇ · Sg = 0 . (21.41)

We can combine this relation with particle conservation expressed by Eq. (21.32)
to obtain

∂τg
∂t

+∇ · ((τg + p)v) = 0 . (21.42)

The spatial part ∂αT iα = 0 works out to be

∂Sg

∂t
+∇ ·

(
Sgv + pc2I

)
= 0 . (21.43)

Note that in these variables, the classical Newtonian limits are directly obtained,
since in that limit we find

Sg
Γ→1→ c2ρv ,

τg
Γ→1→ ρ

v2

2
+ ρε . (21.44)

This set of equations still needs a specification of an equation of state, relating
specific energy ε to the gas pressure p and proper density ρ.

Thermodynamics and special relativity The combination of mass energy, internal
energy and pressure appearing in both the energy density τg and energy flux vector
Sg is known as the relativistic enthalpy. We can introduce the specific enthalpy h
by

ρh ≡ ρc2 + ρε+ p ≡ ρ(c2 + hg) , (21.45)
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where hg = ε + p/ρ is the specific enthalpy of the gas as used in non-relativistic
treatments. With these definitions, we can now work out the following scalar iden-
tity

Uα∂βT
αβ = 0 , (21.46)

which must hold since we already had vanishing ∂βTαβ for each α = 0, 1, 2, 3.
In doing so, we can use relation (21.20) to find that for all β = 0, 1, 2, 3 we have
Uα∂βUα = 0. The temporal β = 0 relation gives an alternative expression for
∂Γ/∂t, while the spatial ones yield expressions for ∂Γ/∂xi. When we also use the
particle conservation law (21.32), we can rework Eq. (21.46) to

ρΓ
{
∂hg

∂t
+ v · ∇hg

}
− Γ
{
∂p

∂t
+ v · ∇p

}
= 0 . (21.47)

Note that Γ {∂/∂t+ v · ∇} ≡ Uα∂α is the derivative along the world line.
When we now specify the discussion to an ideal gas law equation of state, we

make a commonly encountered simplification with constant polytropic index γ ap-
pearing as

ρε =
p

γ − 1
. (21.48)

It is then a matter of algebra to manipulate Eq. (21.47) to one in terms of the entropy
related quantity S = pρ−γ , written as

Γ {∂/∂t+ v · ∇}S = 0 . (21.49)

Hence, as in the non-relativistic case, entropy is advected with the fluid. Further-
more, it is possible to show (see Sec. 21.1.4) that the relativistic expression for the
sound speed cg in the polytropic case becomes

cg
c

=
√
γp

ρh
. (21.50)

The non-relativistic limit clearly reduces to cg =
√
γp/ρ, as expected. Further-

more, this relation also shows that c2g ≤ (γ − 1)c2, so that there is an upper limit
to sound propagation speeds.

� The Synge gas The constant γ in Eq. (21.48) is in practice always taken in the range γ ∈
[4/3, 5/3]. In fact, for a perfect gas law where p = kBρT/m0, the lower value γ = 4/3
is applicable at relativistic internal energies, i.e. kBT ≥ m0c

2, while the non-relativistic
limit for a monatomic gas is known to be 5/3. A proper generalization of the perfect gas
law to relativistic regimes needs to start from a relativistic kinetic plasma theory and the
relativistic counterpart of the Boltzmann equation. For an equilibrium distribution function
known as the Juttner distribution function (the relativistic counterpart of the Maxwell–
Boltzmann distribution), one can again deduce the perfect gas law relation p = kBρT/m0.
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Moreover, it is then found that

ρc2 + ρε+ p = ρc2
K3(z)
K2(z)

, (21.51)

where Kn denotes the modified Bessel function of the second kind, with the argument
z ≡ m0c

2/kBT = ρc2/p. If we then write in analogy with the polytropic case

γ̂ ≡ 1 +
p

ρε
, (21.52)

we find the relation 1+ γ̂/z(γ̂−1) = K3(z)/K2(z). To find the effective polytropic index
γ̂(z) at low temperature (z →∞) and high temperature z → 0, we can use the asymptotic
expansions at small and large argument for the ratio

K3(z)
K2(z)

z→∞≈ 1 +
5
2z
,

K3(z)
K2(z)

z→0≈ 4
z
. (21.53)

The actual polytropic index thus increases smoothly between 4/3 at ultra-relativistic inter-
nal energies and its non-relativistic value 5/3, when plotted as function of z. This is shown
in Fig. 21.3, and this relativistically correct perfect gas description is known as the Synge
gas [428]. Writing the modified Bessel ratio as G(z), it has a sound speed given by

c2g
c2

=
G′

GzG′ +G/z
. (21.54)

The derivative G′ = G2 − 1 − 5G/z, due to recurrence relations. For computational
approaches, one can use a convenient approximation introduced by Mathews [327], which
avoids the (costly) Bessel function evaluations and sets

c2 + ε = c2

⎧⎨⎩ p

(γ − 1)ρc2
+

√(
p

(γ − 1)ρc2

)2

+ 1

⎫⎬⎭ ,

h =
1
2

[
(γ + 1)(c2 + ε)− (γ − 1)

c4

c2 + ε

]
. (21.55)

In this approximation, the sound speed is given by

c2g
c2

=
p

ρh

[
γ + 1

2
+
γ − 1

2
c4

(c2 + ε)2

]
, (21.56)

while the locally effective polytropic index is then given by

γ̂ = γ − γ − 1
2

(
1− c4

(c2 + ε)2

)
. (21.57)

In these expressions, setting the parameter γ = 5/3 yields an excellent approximation to
the Synge gas variation, as shown in Fig. 21.3, while non-adiabatic effects can be approxi-
mated using different γ values. �
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Fig. 21.3 The variation of the effective polytropic index with (inverse) temperature
for the Synge gas. The dashed line represents the Mathews approximation.

21.1.4 Sound waves and shock relations in relativistic gases

To obtain the relativistic expression for the sound wave speed, one must perform
the usual linearization of the relativistic hydrodynamic equations about an equilib-
rium configuration. We will do this for a homogeneous gas, and adopt a strategy
which rewrites the governing covariant equations in four-dimensional space-time
to equivalent expressions in a 3 + 1 formalism in terms of a convenient set of
primitive variables. The 3 + 1 formalism splits temporal and spatial derivatives in
a fixed Lorentzian reference frame, and shows clearly how the equations become
more involved with respect to their Galilean versions used in all previous chapters.
Also, the 3 + 1 formalism is the one adopted in modern numerical approaches,
where one fixes a laboratory frame and uses shock-capturing schemes to solve the
governing conservation laws. We choose as primitive variables the entropy S, the
rest frame proper density ρ and the velocity v in our laboratory frame. For simplic-
ity, we restrict the discussion here to a constant polytropic equation of state, where
S = pρ−γ and note that we already have Eq. (21.49) for the entropy. In a similar
fashion, one can (after some algebra) obtain the following set of equations:

∂S

∂t
+ v · ∇S = 0 ,

∂ρ

∂t
+ v · ∇ρ+

ρh

u
∇ · v − 1

uΓ2
v · ∇ (Sργ) = 0 ,
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∂v
∂t

+ (v · ∇)v +
c2

ρhΓ2
∇ (Sργ)

− v (∇ · v)
(
1− yc2

u

)
− v

yc2

uρhΓ2
v · ∇ (Sργ) = 0 . (21.58)

In these equations, we introduced

u = h− v2

c2
γSργ−1

[
→ c2

]
,

y =
2h
c2
− 1− γ2Sργ−1

c2(γ − 1)
[→ 1] ,

h = c2 +
γSργ−1

γ − 1

[
→ c2

]
, (21.59)

where the expressions between brackets denote the Galilean limits when Γ → 1.
In this form, no approximations have been made yet, and we can clearly identify
all terms denoting relativistic corrections. We will next use this form as a starting
point to obtain linear wave speeds in two complementary approaches.

Waves in a static homogeneous gas The equations (21.58) can easily be linearized
about a static v0 = 0, uniform gas with constant entropy and density S0, ρ0. As
before, one conveniently assumes a plane wave variation exp(−iωt+ ik · x) of all
linear quantities S1, ρ1,v1 to arrive at

ωS1 = 0 ,

ωρ1 = ρ0k · v1 ,

ωv1 =
c2

ρ0h0
k
(
S0γρ

γ−1
0 ρ1 + ργ0S1

)
. (21.60)

As already known from the non-relativistic case, this system admits five solutions,
where three wave modes are at marginal frequency ω = 0. These are the entropy
wave with arbitrary S1 but without density or velocity perturbation, together with
the two transverse translations (shear waves), already encountered in Section 5.2.2
[1]. The physically more interesting modes are compressible perturbations with
k · v1 �= 0 and have the dispersion relation

ω2

k2c2
=
γS0ρ

γ−1

h0
=

γp0

ρ0h0
. (21.61)

This shows that the sound speed cg for the polytropic case is indeed given by
Eq. (21.50).
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Characteristic speeds A second approach to using the equations (21.58) follows
the technique discussed in Section 19.1.1, noting that this form allows us to read
off the components of the 5× 5 coefficient matrix W in the quasi-linear form from
Eq. (19.3), namely

∂V
∂t

+ W
∂V
∂x

= 0 , (21.62)

where the primitive variables are V = (S, ρ, vx, vy, vz)T. When we compute the
five eigenvalues λ of the W matrix, we obtain the characteristic equation

(λ− vx)3
[
λ2 − 2λvx

1− cg2/c2
1− v2c2g/c

4
+
v2
x

(
1− c2g/c2

)
− c2g

(
1− v2/c2

)
1− v2c2g/c

4

]
= 0 .

(21.63)
Hence, the characteristic speeds either take the value λ = vx (which obviously
correspond to the entropy and shear waves from above), or the value for the sound
waves this time found from a more complicated quadratic expression. Naturally,
both approaches must agree. The key observation is that by computing the char-
acteristic speeds from the W matrix, we in fact linearized the equations about a
moving plasma, and that we need to consider how plane waves in the gas rest
frame transform relativistically to a moving reference frame. We therefore address
how plane waves behave under the Lorentz transformation.

� Exercise Consider the purely 1D case where v = vx, and show that the quadratic expres-
sion in Eq. (21.63) corresponds to relativistic speed addition between vx and cg. �

Phase and group diagrams in special relativity As usual, we will consider frame
L′ with coordinates (ct′,x′) to move with respect to frame L with a velocity v.
Equation (21.1) then relates the time and space coordinates, and we momentarily
assume that in L′ we have a plane wave with variation exp[−i(ω′t′ − k′ · x′)].
Anticipating Doppler shifts as well as a change in the wave vector, we indicate the
frequency and wave vector to be specific to L′. One then finds directly that frame
L will still observe a plane wave with variation exp[−i(ωt−k ·x)] with frequency
and wave vector given by

ω = Γ
(
ω′ + k′ · v) , k = k′ + v

[
ω′Γ
c2

+
(
k′ · v) Γ− 1

v2

]
. (21.64)

These expressions quantify the relativistic Doppler effect (i.e. the change in fre-
quency) and show that the wave vector changes direction when viewed from a
moving vantage point. The latter effect is known as relativistic wave aberration.
The inverse formulas (which are identical with ω′ ↔ ω, k′ ↔ k and a sign change
for v↔ −v) then allow us to find the phase speed for frame L given by vph = ω/k
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Fig. 21.4 Phase and group speed diagram in the gas rest frame (top left), compared
to the phase speed in a frame where the source moves at 0.9c along the z-axis (top
right). The bottom left panel shows the Huygens construction, which can be used
to obtain the (bottom right) group speed diagram in the same lab frame.

from the formula

v′2ph

c2
=

Γ2 (vph − n · v)2

c2 + Γ2 (vph − n · v)2 − v2
ph

. (21.65)

We introduced, in analogy with the notation of Section 5.4.3 [1], the unit vector
n = k/k. When we invert this formula to find the phase speed in frame L, we get

v2
ph− 2vph(n ·v)

1− v′2ph/c
2

1− v2v′2ph/c
4

+
(n · v)2

(
1− v′2ph/c

2
)
− v′2ph

(
1− v2/c2

)
1− v2v′2ph/c

4
= 0 .

(21.66)
This is directly seen to agree with expression (21.63) for the sound waves in the
moving reference frame. To complete this discussion on plane wave propagation
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in uniform gases for special relativity, we can draw the phase and group speed
diagrams in different reference frames. This is done in Fig. 21.4, where the z − x
plane is drawn. We show at top left the phase vphn/c and group speed vgr =
∂ω/∂k in the gas rest frame, where we find isotropic sound wave propagation in
all directions, and where phase and group speed diagrams overlap. The sound wave
diagram will always be interior to the inner dashed circle which corresponds to the
upper limit

√
1/3c, while the outer circle indicates the light limit. In this diagram,

we actually adopted the Mathews prescription described above, and took ρ0 = 1,
p0 = 1 (a relativistically hot gas, making the sound speed very close to the upper
limit) and scaled with c = 1. In the right panel, the phase speed diagram is plotted
as seen in a reference frame where the plane wave emitter is moving at velocity
v = 0.9cez along the horizontal z-axis. The wave aberration effects deformed the
single circle to a kind of double loop form. In the bottom panels, we indicated
how a Huygens construction then yields the corresponding group speed diagram
in the same reference frame. As before, the group diagram is what evolves from
a point perturbation in a finite time. The final panel just shows this group speed
diagram in that frame, and demonstrates how the wave front gets “beamed” into an
anti-symmetric (about the position of the point source) oval shape.

� Exercise Obtain the analytic expressions for the phase and group speed diagrams for
sound waves in both reference frames, and show that the group speed diagram clearly
follows the speed addition rule from Eq. (21.169) (see Exercise [21.2]). �

Gas dynamic shock relations To discuss gas dynamic shocks in special relativity,
we need to go back to the actual conservation laws in four-dimensional space-time,
and consider the limits where discontinuities occur across moving manifolds in
space-time. The shock front is generally a surface in space-time, which is given by
an equation φ(ct,x) = d where d is some constant. The normal to the shock front
is a space-like four-vector l (i.e. one whose invariant lαlα > 0), whose components
are given by lα = ∂αφ. We are free to normalize this such that lαlα = 1. The
Rankine–Hugoniot conditions always follow from the conservation laws across the
manifold, expressed generally as

[[ρUα]]lα = 0 , (21.67)

[[Tαβ ]]lα = 0 . (21.68)

These expressions can be written out in various reference frames, and can be used
to quantify shock compression ratios, or be manipulated to identify various shock
invariants. In analogy with Chapter 20, we will write out the expressions in the
shock rest frame (SRF), where by definition the four-velocity of the shock is Us =
(c,0). Without loss of generality, we can assume the shock normal to be oriented



21.1 Four-dimensional space-time: special relativistic concepts 561

l
1

Γ2

v2 2Γ
c

Γ1
v1

c

x

12

upstreamdownstream
ct

U
c

s

dU
c

uU
c

Γ l

c
rel Γrel

Γ1

Γ1

−v
c
Γ1 1

−v
c
Γ1 1

x

12

upstreamdownstream
ct

Γrel

dU
c

U
c

s
uU

c

v

Fig. 21.5 The space-time diagrams appropriate for analysis of the Rankine–
Hugoniot shock relations in the shock rest frame (SRF, left panel), and in the up-
stream rest frame (URF, right panel).

along the x-axis, such that l = (0, ex) ≡ (0,n), where the space part is then
indicated by a three-vector n. The four-velocities at right and left of the shock
front are denoted in this SRF as

Uu = (cΓ1,Γ1v1) ,

Ud = (cΓ2,Γ2v2) , (21.69)

where the index 1 is for the upstream state, while 2 denotes the downstream state.
A graphical representation of the various four-vectors in the SRF is given in the

left panel of Fig. 21.5 (the right panel shows the same quantities in the upstream
rest frame). Besides the three-velocities v1 and v2, which indicate the velocity of
the upstream (downstream) gas with respect to the shock, a third relative veloc-
ity can be identified: the relative velocity of the upstream gas with respect to the
downstream gas vrel (its explicit formula can be obtained from velocity addition
rules). In any case, when we write out the jump relations (21.67)–(21.68) in the
SRF, we find that

ρ1Γ1v1n = ρ2Γ2v2n ,

ρ1h1Γ2
1v1v1n + c2p1n = ρ2h2Γ2

2v2v2n + c2p2n ,

h1Γ1 = h2Γ2 . (21.70)

From the second equation, it follows that the tangential velocities do not jump
[[vt]] = 0, where t ⊥ n is a unit three-vector perpendicular to n in the Euclidean
sense. We can thus Lorentz transform to a frame which is moving with this con-
stant, purely tangential, three-velocity. Denoting this reference frame by tangential
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reference frame or TRF, the gas dynamic shock relations are then reduced to 1D
relations as all tangential velocities vanish, and we find

ρ1Γ1v1 = ρ2Γ2v2 ,

ρ1h1Γ2
1v

2
1 + c2p1 = ρ2h2Γ2

2v
2
2 + c2p2 ,

h1Γ1 = h2Γ2 . (21.71)

Note that although we used the same symbols to denote the velocities up and down-
stream, these in Eq. (21.71) are in the TRF, while in Eq. (21.70) we have velocities
as observed in the SRF, with the two related by a Lorentz transformation involving
the tangential velocity seen in the SRF. Further discussion of these shock relations
is then possible for various physically interesting limiting cases, and we refer to
the topical review by Kirk and Duffy [279] to find some quantitative expressions.
As a final note on gas dynamic shocks, one can manipulate the expressions to the
following generalization of the Hugoniot adiabat from Eq. (20.18), which is known
as the Taub adiabat:

h2
1 − h2

2 + (p2 − p1)
(
h1

ρ1
+
h2

ρ2

)
= 0 . (21.72)

This is an invariant across the shock, and thus holds in any reference frame.

� Exercise Verify that the coefficient of the term proportionate to c2 in expression (21.72)
reduces to the Hugoniot adiabat from Eq. (20.18). �

Example application: Fanaroff–Riley type I jet deceleration As a representa-
tive application of the relativistic hydro equations, we summarize findings from a
modern relativistic hydro computation with shock-governed dynamics. The appli-
cation focuses on active galactic nuclei (AGN) jet dynamics. Such jets typically
demonstrate Lorentz factors of about Γ ∼ 5 − 30, and the Fanaroff–Riley (FR)
classification distinguishes between type I and FR II radio galaxies, according to
the power of the jet and the corresponding accretion rate in their galactic centre.
In contrast to FR II galaxies where the jet remains relativistic and narrow on all
scales, the jet in FR I sources is relativistic on the parsec scale and in many cases
sub-relativistic and diffuse on kparsec scales. To explain this sudden deceleration,
Meliani et al. [330] explore a model where high Lorentz factor jets encounter den-
sity discontinuities as they propagate through the interstellar medium. In Fig. 21.6,
two jet morphologies from their ten model computations are displayed for jets that
start with inlet Lorentz factor 10, and are characterized by kinetic energy luminosi-
ties of about 1046 (top) versus 1043ergs/s (bottom). The study demonstrated that as
long as the jet propagates through uniform media, the density contrast between jet
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Fig. 21.6 Relativistic hydro simulations, where Lorentz factor 10 jet beams propa-
gate through ISM regions of varying density. The two cases differ in beam kinetic
luminosity (highest at top), and display the logarithm of the proper density after
about 800 light crossing times of the jet beam radius. (From Meliani et al. [330]).

beam and ISM sets most of the propagation characteristics, fully consistent with
previous modeling efforts. When the jet runs into a denser medium, the authors
found a clear distinction in the deceleration of high-energy jets depending on the
encountered density jump. For fairly high-density contrast, the jet becomes desta-
bilized and can decelerate strongly, even to sub-relativistic speeds. If the density
contrast is too weak, the high-energy jets continue with FR II characteristics. The
trend is similar for the low-energy jet models, which start as under-dense jets from
the outset, and decelerate by entrainment into the lower region as well. Another as-
pect of these high-resolution grid-adaptive simulations (employing an HLLC type
shock-capturing solver and using the Mathews equation of state) is that they pro-
vide insight into dynamical details, like the Richtmyer–Meshkov instabilities de-
veloping at the original contact interface. This instability occurs as a shock passes a
contact discontinuity, depositing vorticity on the shocked contact, eventually lead-
ing to Kelvin–Helmholtz roll-up. This is clearly seen in the density maps displayed
in Fig. 21.6, where the original interface is strongly deformed and situated midway
along the simulated distance at Z � 10.
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21.2 Electromagnetism and special relativistic MHD

When dealing with plasmas, with charged particle constituents, the electric and
magnetic fields generated by static as well as moving charged particles introduce
particle accelerations due to electrostatic fields and the Lorentz force. The electric
and magnetic fields themselves are governed by the Maxwell equations. In Sec-
tion 2.2.2 [1], we wrote these Maxwell equations in terms of three-vector electric
and magnetic fields. However, static charges which act as sources for electric fields
in one Lorentzian reference frame will be moving charges, i.e. currents, leading to
magnetic fields in another frame in relative motion. The combined six components
of both three-vectors will in fact form the six independent tensor components of
an asymmetric four-tensor of rank two. In what follows, we revisit the Maxwell
equations in the appropriate tensorial formulation applicable in space-time. We
then generalize the stress–energy tensor to include electromagnetic field contribu-
tions. Finally, we specify the governing equations for relativistic plasma dynamics
for perfectly conducting plasmas, where the electric field in the co-moving frame
vanishes. This then yields the ideal MHD equations in special relativity.

21.2.1 Electromagnetic field tensor and Maxwell’s equations

In analogy with Eqs. (21.25)–(21.26), the relativistically correct equation of motion
for a particle of charge q, written in three-vector notation, can be expected to be

dp
dt

= q (E + v ×B) . (21.73)

Since the Lorentz force is orthogonal to the spatial three-velocity, the change in
relativistic energy E = Γm0c

2 is

dE

dt
= v · (qE) . (21.74)

As the Lorentz force involves the fluid velocity, we need to generalize Eq. (21.24)
to a four-momentum formulation with a four-force involving the four-velocity as
in

dPα

dτ
= qFαβUβ . (21.75)

The tensor components of the occurring electromagnetic field tensor Fαβ can in
fact be computed from requiring the spatial and temporal components of this ex-
pression (21.75) to reduce to Eq. (21.73) and Eq. (21.74), respectively. The end
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result is the anti-symmetric tensor with contravariant components given by

Fαβ =

⎛⎜⎜⎜⎝
0 E1/c E2/c E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

⎞⎟⎟⎟⎠ . (21.76)

The components of the electric field E and magnetic field B as observed in this
particular reference frame thus form the six independent entries of this tensor. As-
sociated with this tensor, we can compute the invariant scalar quantity

FαβFαβ = 2
(
B ·B− E ·E

c2

)
. (21.77)

All observers will thus agree on the relative magnitude of electric E2 = E · E
and magnetic field vectors B2 = B ·B. In particular, for electromagnetic (plane)
waves in vacuum where |E| = c|B|, all observers will find a zero value.

When we change from one Lorentzian frame to another by means of the Lorentz
transformation (21.3), the components of the electromagnetic field tensor trans-
form in the usual manner. When changing from frame L to frame L′ moving with
velocity v with respect to L, we thus find from

Fα
′β′

=

⎛⎜⎜⎜⎝
0 E′

1/c E′
2/c E′

3/c

−E′
1/c 0 B′

3 −B′
2

−E′
2/c −B′

3 0 B′
1

−E′
3/c B′

2 −B′
1 0

⎞⎟⎟⎟⎠ = Lα
′
α L

β′
β F

αβ (21.78)

that the Lorentz transformation in terms of the three-vectors for electric and mag-
netic fields implies⎧⎪⎪⎪⎨⎪⎪⎪⎩

E′ = Γ
(
E + v ×B

)
− Γ2

(Γ + 1) c2
v v ·E ,

B′ = Γ
(
B− 1

c2
v ×E

)
− Γ2

(Γ + 1) c2
v v ·B ,

(21.79)

as already given in Section 2.2.2 [1].
We can introduce a four-vector equivalent of the electric field E, when we write

the governing equation of motion (21.75) as

dPα

dτ
= qFαβUβ = qeα . (21.80)

The contravariant components eα then quantify the electric field measured in the
local rest frame of the moving plasma (analogous to qE for electrostatic accelera-
tion of a static charge q in three-vector form). We can write this four-vector as

eα =
[
Γv ·E/c,Γ(E + v ×B)

]T
. (21.81)
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Note that this four-vector vanishes when E = −v × B, and this observation will
lead us in Section 21.2.3 to the ideal MHD limit in special relativity. Generally,
though, the electric four-vector is orthogonal (in a space-time sense) to the four-
velocity, since it is easily shown that

eαUα = 0 . (21.82)

An invariant quantity is then also

eαeα = Γ2
[
(E + v ×B) · (E + v ×B)− (v ·E/c)2

]
. (21.83)

To arrive at Maxwell’s equations in four-dimensional space-time notation, we
will need to handle the source terms appearing in the non-homogeneous equations⎧⎨⎩ ∇ ·E = c2σ ,

∇×B = j +
1
c2
∂E
∂t

.
(21.84)

The charge density is given by σ = qn = qΓn0, where the charged particle num-
ber density is n (n0 in the local rest frame). The current density three-vector is
j = qnv. Note that we used mks units, setting μ0 = 1 for convenience (and equiv-
alently setting the permittivity ε0 = 1/c2). It is then clear how, in analogy with
four-velocity or four-momentum, we introduce a four-current Jα = qn0U

α such
that

Jα = (cσ, j)T . (21.85)

Its invariant is JαJα = −c2q2n2
0. Charge conservation is expressed as ∂αJα = 0

or
∂σ

∂t
+∇ · j = 0 . (21.86)

The non-homogeneous Maxwell equations (21.84) are then unified in the following
law in terms of the electromagnetic field tensor:

∂βF
αβ = Jα . (21.87)

Also, with the aid of this four-current Jα, we can combine the Lorentz force, and
its contribution to the energy, for an ensemble of particles with number density n.
The equivalent of the single particle expression Eq. (21.75) writes as

FαβJβ = FαβJ
β =

⎛⎝ nqv ·E/c
nq(E + v ×B)

⎞⎠ . (21.88)

As a consequence, the divergence of the stress–energy tensor (21.40) for a plasma
now equals

∂βT
αβ
pl = FαβJ

β . (21.89)
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� Exercise Alternatively, we can arrive at the expression for the four-current (21.85) by
noting that in the local rest frame it must boil down to (cqn0,0)T, and by performing the
inverse Lorentz transformation to the frame where the plasma moves at velocity v. �

For any anti-symmetric second rank tensor in space-time, such as the electro-
magnetic field tensor Fαβ , we can define a related anti-symmetric tensor by mak-
ing use of the Levi-Civita symbol. In four-dimensional space-time, the Levi-Civita
symbol is defined as

εμναβ =

⎧⎨⎩
+1 for any even permutation of 0, 1, 2, 3 ,
−1 for uneven permutations of 0, 1, 2, 3 ,

0 for any case with repeated indices.
(21.90)

� Parity of permutations and Levi-Civita symbols The parity of a permutation of
0, 1, 2, 3 is, by definition, given by the parity of the amount of numbers that appear in
a non-increasing order, when going from left to right. As an example, the permutation
P = {0, 1, 2, 3} has zero numbers appearing in non-increasing order, hence its parity is
even. However, the cyclic permutation of P given by Q = {3, 0, 1, 2} has three numbers
appear “in the wrong order”, namely the sequence 0, 1, 2 following 3. Therefore, its parity
is odd. Permuting Q in cyclic fashion once more, we get R = {2, 3, 0, 1} where four num-
bers are non-increasing: 0, 1 follow both 2 and 3. Hence R is even again. This means that
the Levi-Civita symbol in four-dimensional form changes sign under cyclic permutations
of its indices, a result which is different from the perhaps more familiar 3D case. In flat
space-time, we also find easily that

εμναβ = −εμναβ . (21.91)

Finally, we note the following equalities (e.g. see [429]):

εαβμνεαγλκ = − δβγδμλδνκ + δβγδ
μ
κδ
ν
λ + δβλδ

μ
γδ
ν
κ − δβλδμκδνγ

−δβκδμγδνλ + δβκδ
μ
λδ
ν
γ = −δβμνγλκ = −

∣∣∣∣∣∣
δβγ δβλ δβκ
δμγ δμλ δμκ
δνγ δνλ δνκ

∣∣∣∣∣∣ ,
εαβμνεαβλκ = − 2δμνλκ ,

εαβμνεαβμκ = − 6δνκ , (21.92)

where we introduced the generalized Kronecker delta symbols, such as δβμνγλκ which has
components that vanish unless βμν are mutually distinct and γλκ is a permutation of
βμν. When γκλ is an even permutation of βμν, its value is +1, while it is −1 for an
uneven permutation. �

With the aid of this Levi-Civita symbol, we define the dual electromagnetic ten-
sor to be

F ∗
μν = − 1

2c
εμναβF

αβ . (21.93)

Written out in components and transforming to contravariant notation, we get
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F ∗αβ = gαμgβνF ∗
μν , or

F ∗αβ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 B1/c B2/c B3/c

−B1/c 0 −E3/c
2 E2/c

2

−B2/c E3/c
2 0 −E1/c

2

−B3/c −E2/c
2 E1/c

2 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (21.94)

We can now compute another invariant from the combination of

F ∗αβFαβ = − 4
c2

E ·B . (21.95)

Hence, when the three-vector electric and magnetic fields are orthogonal in one
frame, they will be orthogonal (in the three-space sense) in all other inertial frames.
The homogeneous Maxwell equations ∇ ·B = 0 and ∇×E = −∂B/∂t are then
the temporal and spatial components of the four-law

∂βF
∗αβ = 0 . (21.96)

� Exercise It is of course also possible to write the homogeneous Maxwell equations di-
rectly in terms of the tensor Fαβ . Show that alternative forms are

εαβλκ∂βFλκ = 0 . (21.97)

This can be rewritten, using the anti-symmetry of the tensor Fλκ, as

∂βFλκ + ∂λFκβ + ∂κFβλ = 0 . (21.98)

Note the cyclic permutation of the indices appearing in Eq. (21.98). �

In complete analogy with the four-electric field, we can also consider the four-
vector given by

bα = F ∗αβUβ . (21.99)

Splitting into temporal and spatial components, we get

bα =
[
Γv ·B/c,Γ(B− v ×E/c2)

]T
. (21.100)

This four-vector is again found to be orthogonal in space-time to the local four-
velocity since bαUα = 0, and is then identified as the four-magnetic field measured
in the local rest frame. The invariant associated with this field is

bαbα = Γ2
[
(B− v ×E/c2) · (B− v ×E/c2)− (v ·B/c)2

]
. (21.101)

� Alternative expressions for the electromagnetic field tensor The four-vectors for the
electric field eα and magnetic field bβ can also be used to express the electromagnetic field
tensor as follows. First note that

bα = F ∗
αβU

β . (21.102)
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Using this to work out an alternative form for the components of εαβμνbαUβ , and ma-
nipulating the expression to one in terms of Fλκ with the aid of Eq. (21.91)–(21.92), one
finds

Fαβ = − 1
c
εμναβbμUν − 1

c2
(
eαUβ − eβUα) ,

F ∗αβ =
1
c2
(
Uαbβ − Uβbα)+

1
2c3

εαβμν (eμUν − eνUμ) . (21.103)

These expressions simplify considerably for vanishing eα, as will be the case in ideal
relativistic MHD. �

21.2.2 Stress–energy tensor for electromagnetic fields

The electromagnetic field also has an energy density 1
2(B2 + E2/c2), with B2 =

B ·B and E2 = E · E. The energy flux associated with the electromagnetic field
is given by the Poynting flux three-vector

Sem = E×B . (21.104)

The full Maxwell stress tensor involving both electric and magnetic field contribu-
tions is further given in three-vector notation by

1
2

(
B2 + E2/c2

)
I−EE/c2 −BB . (21.105)

Hence, the stress–energy tensor for the electromagnetic field1 will, in analogy with
the gas dynamic case from Eq. (21.40), write as

Tαβem =

⎛⎝ 1
2(B2 + E2/c2) Sem/c

Sem/c
1
2(B2 + E2/c2)I−EE/c2 −BB

⎞⎠ . (21.106)

Using the four-tensor for the electromagnetic field introduced in the previous sec-
tion, it is possible to write it as

Tαβem = FαγF
βγ − 1

4g
αβF γδFγδ . (21.107)

This stress–energy tensor for the electromagnetic field is symmetric and traceless,
i.e. Tαα = 0. When we compute the divergence of this electromagnetic stress–
energy tensor from the above expression, we find after some algebra

∂βT
αβ
em = −FαγJγ . (21.108)

1 This is actually the expression for electromagnetic fields in vacuum, but this restriction will be sufficient for
our purposes.
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In the derivation, one uses the inhomogeneous Maxwell equation (21.87), the anti-
symmetry of F βμ to write 2F βμ∂βFνμ = F βμ(∂βFνμ − ∂μFνβ), and the homo-
geneous Maxwell equation in the form (21.98). In combination with the stress–
energy of the plasma given by Eq. (21.89), the governing conservation equation
then considers the combination of plasma stress–energy and electromagnetic field
stress–energy, such that

∂β
(
Tαβpl + Tαβem

)
= 0 . (21.109)

� Entropy conservation in a relativistic plasma Due to the conservation law (21.109),
we again can write

Uα∂β

(
Tαβpl + Tαβem

)
= 0 . (21.110)

However, the electromagnetic part in this double summation also vanishes separately, since

Uα∂βT
αβ
em = −UαFαγJγ = qn0e

βUβ = 0 . (21.111)

Therefore, the derivation for the entropy equation (21.49) given for a relativistic gas also
applies in the plasma case. The entropy S = pρ−γ thus obeys

Uα∂αS = 0 , (21.112)

and this can be combined with particle number conservation (21.32) to yield a conservation
law for DS = ΓρS since

∂ (DS)
∂t

+∇ · (DSv) = 0 . (21.113)

This equation can then be used instead of the energy conservation law. �

21.2.3 Ideal MHD in special relativity

To arrive at the ideal MHD limit, we now only need to consider the consequences
of all the above, when the electric field in the co-moving frame vanishes. We
already mentioned that this occurs when in the lab frame E = −v ×B, or equiv-
alently eα = 0 with eα expressed by Eq. (21.81). Under this assumption, several
expressions given earlier simplify. For example, the invariant associated with the
magnetic field four-vector is then

bαbα =
B ·B
Γ2

+
(v ·B)2

c2
. (21.114)

This is proportional to the magnetic pressure and we write bαbα ≡ 2pmag.

� Exercise Verify that we get the same result from the transformation laws for electric
and magnetic field three-vectors given by Eq. (21.79). Note that E = −v × B will yield
E′ = 0, and that Eq. (21.114) is obtained from B′ ·B′. �
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Revisiting the general stress–energy tensor for electromagnetic fields, we can
now write for the case where co-moving electric fields vanish (i.e. eα = 0)

Tαβem = 2pmag
UαUβ

c2
+ pmagg

αβ − bαbβ . (21.115)

In a similar form to the general case given by (21.106), we get for vanishing co-
moving electric fields the following expression for Tαβem :⎛⎜⎜⎝

1
2B

2 +
1

2c2
[B2v2 − (v ·B)2]

Sem

c
Sem

c

Semv
c2

+ pmagI− BB
Γ2
− (v ·B)vB

c2

⎞⎟⎟⎠ .

(21.116)
In this expression, the Poynting flux three-vector now writes as

Sem = B2v − (v ·B)B . (21.117)

We can now write the total energy density for the gas plus electromagnetic field in
the lab frame as τH +Dc2, which separates off the rest mass contribution. Hence,
we have the relations

τH = τg + 1
2B

2 +
1

2c2
[B2v2 − (v ·B)2] , (21.118)

where the two additions to τg represent magnetic and electric field energy densi-
ties, respectively. It is then seen from Eqs. (21.116) and (21.40) that the temporal
component of the conservation law (21.109) is written as

∂

∂t

(
τH +Dc2

)
+∇ · (Sg + Sem) = 0 . (21.119)

When we write the total energy flux Stot = Sg + Sem as the added relativistic
energy flux of the gas and the Poynting flux, we can combine this relation with
particle conservation ∂D/∂t+∇ · (Dv) = 0 to obtain

∂τH
∂t

+∇ · [(τH + ptot)v − (v ·B)B] = 0 . (21.120)

In so writing, the total pressure is introduced as

ptot = p+ pmag = p+ 1
2

[B ·B
Γ2

+
(v ·B)2

c2

]
. (21.121)

The equation governing the momentum/energy flux evolution is obtained from the
spatial part of (21.109), and is then recognized to become

∂Stot

∂t
+∇ ·

[
Stotv + ptotc

2I− c2BB
Γ2
− (v ·B)vB

]
= 0 . (21.122)
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The Newtonian limits again reduce to the familiar non-relativistic ideal MHD equa-
tions, since

Stot
Γ→1→ c2ρv , τH

Γ→1→ 1
2ρv

2 +ρε+ 1
2B ·B , ptot

Γ→1→ p+ 1
2B ·B . (21.123)

� Exercise Verify that the expressions for the spatial flux three-vectors in Eq. (21.120) and
(21.122) indeed reduce to their non-relativistic counterparts for Γ→ 1. �

To get a closed set of equations governing special relativistic MHD, we now
need to combine the full set of Maxwell equations with particle conservation as
in Eq. (21.32), and energy–momentum conservation. The latter splits in the fixed
Lorentzian reference frame into Eq. (21.120) and Eq. (21.122). As for the gas
dynamic case, we additionally need to provide an equation of state, such as the
polytropic one given in Eq. (21.48). However, due to the vanishing electric field
in the co-moving frame, it was possible to write energy–momentum conservation
solely in terms of the magnetic field three-vector B and three-velocity v. Hence,
just as in the non-relativistic ideal MHD limit, we can close the system (mathemat-
ically speaking) by the homogeneous Maxwell equations alone, since Eq. (21.96)
can use the identity

F ∗αβ = (Uαbβ − bαUβ)/c2 . (21.124)

Written out in spatial and temporal parts, Eq. (21.96) turns into the familiar set⎧⎪⎪⎨⎪⎪⎩
∇ ·B = 0 ,

∂B
∂t
−∇× (v ×B) = 0 .

(21.125)

In contrast to the classical ideal MHD formulation, the full non-homogeneous
Maxwell equations (21.84) need to be used now for computing the lab frame charge
density σ and current density three-vector j. In particular, this latter three-vector
has a contribution from the displacement current c−2∂E/∂t, which was appropri-
ately neglected in the non-relativistic regime.

21.2.4 Wave dynamics in a homogeneous plasma

To obtain the propagation speeds for linear waves in relativistic MHD, the gov-
erning conservation laws in tensorial form can be linearized in space-time. The
algebra involved can be substantial, even in the case of linearizing about a station-
ary, homogeneous plasma. This is partly because of the wave aberration effects,
which we mentioned already for the relativistic gas dynamic case. The analysis is
tractable for the special case of the plasma rest frame, and a very elegant means
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to obtain the relativistic variants of the slow, Alfvén and fast wave speeds can be
found in the appendix from Komissarov [283].

We note that it is possible to write down the equivalent set of equations in a
3 + 1 formalism for the primitive variables (S, ρ,v,B), analogous to the equa-
tions (21.58) for gas dynamics. The equation for the entropy (21.49) was already
shown to be identical, while Eqs. (21.125) for the magnetic field are familiar from
the non-relativistic case. The continuity as well as the momentum equation become
fairly cumbersome expressions, and we only mention what results from them, after
linearizing with plane waves exp[−i(ωt − k · x)] about the homogeneous plasma
rest frame. Indicating as usual the background quantities by S0, ρ0,B0, and the
linear variables by S1, ρ1,B1,v1, we get

ωS1 = 0 ,

ωρ1 = ρ0k · v1 ,

ωB1 = B0(k · v1)− v1(k ·B0) , k ·B1 = 0 ,

ωv1 =
c2

w0
k
(
S0γρ

γ−1
0 ρ1 + ργ0S1

)
+
c2

w0
[k(B0 ·B1)−B1(k ·B0)]

+
c2(k ·B0)
w0ρ0h0

B0

(
S0γρ

γ−1
0 ρ1 + ργ0S1

)
. (21.126)

We here adopted a polytropic equation of state, where h0 = c2+[γ/(γ−1)]S0ρ
γ−1
0 ,

and introduced the quantity

w0 = ρ0h0 +B2
0 . (21.127)

One can directly compare these expressions with the non-relativistic expressions
given in Section 5.2 [1], and note that only the momentum equation yields an extra
term (the last term is purely relativistic, and the coefficients for the other terms are
changed to involve w0). Not surprisingly then, the seven wave solutions return in
slightly modified form. The marginal entropy mode is identical, being the solution
at ω = 0 for which S1 �= 0 only. The Alfvén waves return in a virtually unmodified
form: they represent solutions with v1 �= 0 and B1 �= 0 while

ρ1 = S1 = k · v1 = k ·B1 = B0 ·B1 = B0 · v1 = 0 , (21.128)

this time given by the dispersion relation

ω2 = c2
(k ·B0)2

w0
. (21.129)

They retain their field-sampling property familiar from non-relativistic MHD, and
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we can express their phase vph and group velocity vgr as follows. For that purpose,
assuming n = k/k and denoting by ϑ the angle between n and B0, we find

vph

c
=
B0 cosϑ√

w0
n ,

vgr

c
=

B0√
w0

. (21.130)

The compressible modes are obtained from straightforward algebraic manipula-
tions on Eqs. (21.126) to the dispersion relation

ω4 − ω2

[
k2c2

w0

(
ρ0h0

c2g
c2

+B2
0

)
+ c2g

(k ·B0)2

w0

]
+ k2c2c2g

(k ·B0)2

w0
= 0 .

(21.131)
Here we purposely wrote this again in terms of the squared sound speed c2g, while
we can now also introduce the squared Alfvén speed v2

A = B2
0c

2/w0. The expres-
sions are then generally valid, with the expressions for specific enthalpy h0 and
sound speed cg depending on the equation of state. It is then left as an exercise to
the reader that their phase speeds are found from

vph/c = (vph/c)n = n
√

1
2 [(ρ0h0/w0)c2g + v2

A]/c2
√

1 + δ cos2 ϑ± a .
(21.132)

Here, the symbols δ and σ (no longer the charge density!) express the following
dimensionless ratios

δ =
c2gv

2
A[

(ρ0h0/w0)c2g + v2
A

]
c2
, σ =

4c2gv2
A[

(ρ0h0/w0)c2g + v2
A

]2 . (21.133)

The symbol a follows from

a2 = (1 + δ cos2 ϑ)2 − σ cos2 ϑ . (21.134)

Noting that ρ0h0/w0 = 1− v2
A/c

2, the phase speed for purely parallel propagation
reduces to the same expression found in non-relativistic MHD, where we have

vph,‖/c =
√

1
2

(
c2g/c

2 + v2
A/c

2
) [

1±
√

1− 4c2gv2
A/(c2g + v2

A)2
]
. (21.135)

The group speed is then written in terms of the orthogonal directions n = k/k and
t = [(B0/B0)× n]× n as

vgr

c
=
vph

c

[
n± t

[
σ ∓ 2δ

(
a± (1 + δ cos2 ϑ)

)]
sinϑ cosϑ

2 (1 + δ cos2 ϑ± a) a

]
. (21.136)

These can be compared directly with the non-relativistic expressions, and we can
note that all relativistic effects are due to the parameter δ, together with the fact
that both sound and Alfvén speeds get relativistic corrections.
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As representative examples, we show in Fig. 21.7 the phase and group diagrams
for three cases with (again with units making c = 1)

• ρ0 = 1, p0 = 0.1, B0 = 0.3, for which cg = 0.354 and vA = 0.258;

• ρ0 = 1, p0 = 0.1, B0 = 0.5, for which cg = 0.354 and vA = 0.406;

• ρ0 = 0.01, p0 = 0.001, B0 = 1, for which cg = 0.354 and vA = 0.99.

These assume a Mathews equation of state. In Fig. 21.8, we also show the group
diagram for the first and the third case, plotted in a frame which saw the point
perturbation pass by along the field lines at a velocity 0.9c. (Also see Ref. [260]).

Characteristic speeds for relativistic MHD For the relativistic ideal MHD equa-
tions, expressions for the characteristic speeds can be derived which correspond to
the phase speeds as seen from the laboratory frame (as opposed to the plasma rest
frame discussed thus far). There will again be seven signal speeds, where one is
related to the entropy equation (21.113). Entropy is passively advected with the
characteristic speed λE in the i-coordinate direction given by

λE/c = vi/c . (21.137)

Similar to the non-relavistic case (cf. Eqs. (5.120), (7.161) [1] and (13.22)), the
characteristic speeds are again ordered according to

− c ≤ λ−F ≤ λ−A ≤ λ−S ≤ λE ≤ λ+
S ≤ λ+

A ≤ λ+
F ≤ c . (21.138)

In contrast to the non-relativistic case, the forward and backward wave speeds of a
given family (fast, Alfvén, slow) are no longer necessarily symmetric about λE =
vi. The Alfvén wave speeds are found from

λ±A
c

=
vi
c
± 1

Γ2

Bi√
ρhtot ±B · v/c . (21.139)

We thereby introduced the total specific enthalpy, where

htot = h+ 2pmag/ρ . (21.140)

The fast and slow characteristic speeds can most conveniently be found from the
following quartic polynomial:

ρh
(
c2 − c2g

)
Γ4
(
λ

c
− vi
c

)4

−
(

1− λ2

c2

){
Γ2
(
ρhc2g + 2pmagc

2
)(λ

c
− vi
c

)2

−c2g
[
Γ
(

v
c
·B
)(

λ

c
− vi
c

)
− Bi

Γ

]2}
= 0 . (21.141)

As before, these expressions can in fact be obtained from the rest frame expressions
given earlier. They become more involved due to relativistic aberration, and will
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Fig. 21.7 Phase (left) and group speed (right) diagrams in the gas rest frame for
three representative cases with uniform horizontal magnetic fields. Top to bottom
changes the thermodynamic quantities such that cg = 0.354 > vA = 0.258 (top),
cg = 0.354 < vA = 0.406 (middle), and cg = 0.354 < vA = 0.99 (bottom).
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Fig. 21.8 For the case cg = 0.354 > vA = 0.258 (left) and the case with cg =
0.354 < vA = 0.99 (right), group diagrams as seen from a frame where the source
moves at 0.9c along the z-axis aligned with the horizontal magnetic field.

involve the Lorentz transformation for the magnetic field as well, as the magnetic
field component normal to the wave front will look different from differing inertial
reference frames.

21.2.5 Shock conditions in relativistic MHD

The conservation laws of relativistic MHD can again be studied in the case of
discontinuous jump relations across surfaces in space-time. Completely analogous
to the relativistic hydro case, we write

[[ρUα]]lα = 0 , (21.142)

[[Tαβ ]]lα = 0 , (21.143)

[[Uαbβ − bαUβ]]lα = 0 . (21.144)

where lα is the space-like normal to the shock surface. The analysis of these re-
lations can be rather complicated in general, and their precise algebraic form in a
3 + 1 manner depends on selecting a specific Lorentzian reference frame, as usual
in relativistic settings. We already noted this for relativistic hydro, where we men-
tioned the shock rest frame (SRF), upstream rest frame (URF), downstream rest
frame (DRF) and the tangential reference frame (TRF). We will mention the sig-
nificance of the important de Hoffman–Teller (or HTF) frame further on, which,
like the TRF, involves a transformation with a certain tangential velocity. If we, for
now, consider the relations (21.142)–(21.144) in the shock rest frame, where we



578 Ideal MHD in special relativity

denote the shock normal as l = (0,n) with n the normal three-vector, we find

[[ρΓvn]] = 0 , (21.145)

[[Bn]] = 0 , (21.146)[[(
ρhΓ2 +B2

)vtvn

c2
− (v ·B)

c2
(Btvn + vtBn)− BtBn

Γ2

]]
= 0 , (21.147)

ρΓvn

[[Bt

ρΓ

]]
= Bn[[vt]] , (21.148)

[[(
ρhΓ2 +B2

)v2
n

c2
+ p+ pmag − 2

(v ·B)
c2

vnBn − B2
n

Γ2

]]
= 0 , (21.149)

ρΓvn

[[
hΓ +

B2

ρΓ

]]
= Bn[[v ·B]] , (21.150)

where we wrote the equations purposely in the same order as Eqs. (20.3)–(20.8)
from Section 20.2, where we find the non-relativistic variants. It is a manner of
algebra to show that this limit agrees, while the relativistic hydro limit is obtained
for vanishing magnetic field and agrees with Eqs. (21.70).

� Exercise Verify these statements. �

The occurrence of the Lorentz factor in many terms of these expressions makes
a discussion of the general case beyond the scope of this textbook. These rela-
tions have been studied in some detail by de Hoffmann and Teller [108], Majorana
and Anile [323], Appl and Camenzind [11], and the procedure to obtain the down-
stream from the upstream state variables is briefly recapitulated in the appendix
to the review by Kirk and Duffy [279]. The books by Lichnerowicz [307] and
Anile [8] contain a precise mathematical treatment. We here only mention the im-
portant limiting case of normal perpendicular shocks, and point out the means to
obtain various shock invariants from the relations (21.142)–(21.144), as already
discussed by Anile [8].

Normal perpendicular shocks This limit case assumes that in the SRF, where the
relations (21.145)–(21.150) hold, the normal magnetic fields vanish completely,
Bn = 0 (making the field purely tangential to the shock front, hence the name
“perpendicular”). Moreover, we assume purely normal velocities for which vt = 0
as well (hence the name “normal”). It is then easy to verify that we are left with

[[ρΓvn]] = 0 , (21.151)

[[Btvn]] = 0 , [[ΓB′
tvn]] = 0 , (21.152)[[(

ρhΓ2 +B2
t

)v2
n

c2
+ p+

B2
t

2Γ2

]]
= 0 , [[ρhtotΓ2v2

n + ptot]] = 0 , (21.153)
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[[ρhΓ2vn +B2
t vn]] = 0 , [[ρhtotΓ2vn]] = 0 . (21.154)

The relations on the right express these SRF relations in terms of the plasma rest
frame magnetic fields at left and right of the shock front (those we have in the DRF
and URF, respectively), which in this normal perpendicular case are B′ = B/Γ.
Using them, the total enthalpy and pressure are written as ρhtot = ρh + B′2

t and
ptot = p+B′2

t . In this way, a rather direct generalization of the pure gas dynamic
case is obtained, replacing pressure and enthalpy with their total counterparts.

� Relativistic MHD shock invariants. For completeness, we now list various relativis-
tic MHD shock invariants, as described and proven already in Anile [8]. They are most
conveniently found from the general expressions (21.142)–(21.144), while we will give
expressions as obtained in the SRF for some of them. Of course, many more combinations
may be found, but we here list the following.

(i) Normal particle flux

M = ρUαlα [ = ρΓvn] . (21.155)

(ii) Introducing V β =
(
Uαbβ − bαUβ) lα, we have the invariant H = −V αVα/M2

or

H =
c2 (bμlμ)

2

M2
− bβbβ

ρ2

[
=

c2

(ρΓvn)2
(Bn

Γ
+

Γ(v ·B)vn
c2

)2
− 2pmag

ρ2

]
.

(21.156)
(iii) Writing W β = Tαβlα we have

B =
VαW

α

M = hbαlα

[
= h

(
Bn

Γ
+

Γ(v ·B)vn
c2

)]
. (21.157)

(iv) The quantity E found from

E = Wμlμ

[
= p+ pmag + (ρΓvn)2

(
h

ρc2
− H
c2

)]
. (21.158)

(v) Introducing Xβ = W β − (Wαlα) lβ , we have the invariance of

K = −X
αXα

M2
=
h2

c2
+
M2h2

ρ2c4
+
(

2h
ρc2
− H
c2

)(
2pmag − M

2H
c2

)
. (21.159)

(vi) Also combinations of the above, such as

L = −KH+
B2

M2
= c2
(

2pmag − M
2H
c2

)(
h

ρc2
− H
c2

)2

. (21.160)

With the knowledge of all the above invariants, one can obtain the relativistic MHD gener-
alization of the Taub adiabat, called the Lichnerowicz adiabat and given by

h2
2

c2
−h

2
1

c2
−
(
h1

ρ1c2
+

h2

ρ2c2

)
(p2 − p1)+ 1

2

(
h2

ρ2c2
− h1

ρ1c2

)
(χ1 + χ2)+α2χ2−α1χ1 = 0.

(21.161)
We introduced the quantities χ = 2pmag−M2H/c2 as well as α = h/(ρc2)−H/c2. This
invariant then can be shown to reduce to the various limit cases we encountered thus far,
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namely the non-relativistic hydrodynamic Hugoniot adiabat (20.18), the relativistic Taub
adiabat (21.72) and the classical MHD relation (20.39). �

� Exercise Verify the various limits of Eq. (21.161). �

We conclude the discussion of the relativistic MHD shock relations with pointing
out that, in analogy with the discussion given in Chapter 20, it is likely that a more
insightful classification for relativistic MHD shocks can be found than the one
currently scattered throughout the literature. Such a discussion will best be done
in the de Hoffmann–Teller reference frame, which writes the equations in a frame
where the total electric field at left and right of the shock vanishes. This involves a
Lorentz transformation from the SRF to a frame moving with a certain tangential
speed with respect to the SRF. The existence of this frame was already pointed out
by de Hoffmann and Teller [108], and we saw that the non-relativistic case then
became most insightful when we expressed all relations using the Alfvén normal
Mach number in this reference frame. This is still to be pursued in future research
for the relativistic case. Note as well that we thus far did not mention the extra
inequality of entropy increase across a shock front, which obviously still acts to
select physically realizable shocks.

21.3 Computing relativistic magnetized plasma dynamics

We demonstrated that relativistic magneto-fluids obey, in a fixed “laboratory” Lo-
rentz frame, a set of conservation laws given by Eqs. (21.32), (21.120), (21.122)
and the familiar set of equations for the magnetic field given by Eqs. (21.125). As
an alternative, also Eq. (21.113) can be used instead of (21.32) or (21.120). In any
case, it is clear that we end up with a nonlinear system of conservation laws, which
can be integrated numerically using shock-capturing techniques such as those pre-
sented in Chapter 19. A discussion of numerical relativistic hydrodynamics, in-
cluding extensions to general relativistic hydrodynamics, can be found in the book
by Wilson and Mathews [484]. Relativistic MHD poses its own challenges, as can
be expected from the algorithmic complexity already needed when going from non-
relativistic hydro to MHD. As an early example, Dubal [126] adopted an FCT algo-
rithm to special relativistic MHD, where 1D Riemann problems of modest Lorentz
factors (up to Γ ∼ 3) were adequately resolved: Riemann invariants through rar-
efactions remained constant to within 1%, and even 2D spherical blast waves in
initially uniform magnetic fields could be computed. Another approach was fol-
lowed by van Putten [465], where a pseudo-spectral method in combination with
a leapfrog scheme was exploited, demonstrating that the compound waves found
in coplanar non-relativistic MHD Riemann problems persist in (numerical) rela-
tivistic MHD. As mentioned further on, more recent efforts successfully exploit
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approximate Riemann solvers or TVDLF schemes in challenging applications in-
volving high Lorentz factor plasma flows. These are gaining popularity, although
they still face various complications, which call for suitable algorithmic improve-
ments.

Conservative to primitive variable transformation The most obvious complica-
tion in relativistic ideal MHD is that we have truly non-trivial relations between
the primitive variables (ρ,v, p,B) and the conserved variables, since

D = Γρ ,

Stot = ρhΓ2v +B2v − (v ·B)B ,

τH = ρhΓ2 − p− Γρc2 + 1
2B

2 +
B2v2 − (v ·B)2

2c2
. (21.162)

Especially due to the occurrence of the Lorentz factor Γ, the conversion from con-
servative to primitive variables, which is needed to evaluate the flux expressions,
is non-algebraic and must be handled numerically. Defining an auxiliary variable
ξ = ρhΓ2, we can note that Stot ·B = ξv ·B and thus we get

v =
Stot + Stot ·BB/ξ

ξ +B2
. (21.163)

The Lorentz factor can then be computed from ξ and the conservative variables
Stot and B, since Γ−2 = 1− v2/c2. This in turn means that the defining equation
for the energy variable τH in expressions (21.162) provides a nonlinear relation for
ξ as being the zero of

ξ − p−Dc2 +B2 − 1
2

[B2

Γ2
+

(Stot ·B)2

ξ2c2

]
− τH . (21.164)

For a constant polytropic index, we find also

p =
γ − 1
γ

ξ − ΓDc2

Γ2
, (21.165)

so one can determine ξ from a given set of conserved variables (D,Stot, τH,B)
using root finding algorithms on Eq. (21.164).

The Riemann problem and modern solver strategies Just as in non-relativistic
MHD, knowledge of the solution of the 1D Riemann problem in special relativistic
MHD is extremely useful to test the various flavors of shock-capturing schemes. It
is surprising that the exact solution for the general case where all seven nonlinear
waves are accounted for has only recently been obtained [156], while the develop-
ment of shock-capturing solvers for relativistic MHD problems started in earnest
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in the late nineties and beginning of the twenty-first century. A first Godunov-
type method for relativistic MHD, exploiting an approximate Riemann solver, was
presented by Komissarov [283], and his paper collects all details needed for its
implementation, such as the eigenvalue and eigenvector pairs, the means to han-
dle degenerate cases, and how to convert from primitive to conservative variables.
Using a staggered representation where the magnetic field components are defined
on cell interfaces, a constrained transport type approach was taken to handle the
solenoidal field constraint. This allowed multi-dimensional simulations involving
considerably higher Lorentz factors than those achieved in early works [126, 465].
Following this, improved, but purely 1D, approximate Riemann solver implemen-
tations are found in [22] and in [282], where the former is of TVD type. Multi-
dimensional relativistic MHD schemes exploiting more central approximations to
the Riemann fan (HLL and HLLC) emerged in [110] and [332]. A TVDLF type
method which uses only the fastest propagation speed is exploited in [456, 457].
The latter uses parabolic source term treatments for handling ∇ · B = 0 in a
grid-adaptive framework. There is currently a quickly growing research commu-
nity focused on numerical MHD solvers for relativistic regimes, already involving
general relativistic MHD simulations in dynamically evolving space-times [157].

Fig. 21.9 The exact (solid line) versus numerically obtained solution of a relativis-
tic MHD Riemann problem. Shown is the proper density and a tangential field
component Bz . (From van der Holst et al. [457].)

An example taken from [457] compares, in Fig. 21.9, the exact solution with a
grid-adaptive numerical solution of a Riemann problem, which was first presented
in [22] and subsequently analytically solved in [156]. The left state has

(ρ,v, p,B)L = (1.08, 0.4, 0.3, 0.2, 0.95, 2, 0.3, 0.3)

adjacent to (1,−0.45,−0.2, 0.2, 1, 2,−0.7, 0.5) and constant polytropic index γ =
5/3. It is seen that the grid-adaptive result nicely recovers the solution contain-
ing a left-going fast shock, a left-going Alfvén discontinuity, a slow rarefaction, a
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contact discontinuity, as well as the right-going slow shock, Alfvén discontinuity
and fast shock. However, close scrutiny reveals that the separation between left-
going Alfvén signal and slow rarefaction is still marginally resolved. The need for
grid-adaptive simulations in relativistic MHD is then already obvious for correctly
solving even 1D Riemann problems.

21.3.1 Numerical challenges from relativistic MHD

In this paragraph, we merely point out various challenges associated with numer-
ical, relativistic MHD. Some already led to clever algorithmic approaches, while
others may need new ideas for further progress. A fairly straightforward obser-
vation is that the equations of relativistic MHD contain in principle the physical
constants, such as the speed of light c (in mks units related to permeability μ0 and
permittivity ε0 through c2 = 1/μ0ε0) and the particle rest mass mp (for protons).
Obviously, in numerics one always exploits a proper scaling, which for relativistic
MHD sets c = 1 (and thus μ0 = 1 = ε0) and, together with a reference distance and
number density, all other quantities are measured in this scaled unit system. This
was already the case in non-relativistic MHD, where we noted scale-independence
in Section 4.1.2 and stated that units are set by choosing a length, magnetic field
strength and density at a reference position. One of these latter three can now no
longer be independently fixed in space-time, since c is the reference speed.

In the previous paragraph, we pointed out that the conservative to primitive vari-
able computation is now a numerical problem by itself. It must be stressed that
the accuracy with which this problem is solved numerically is a crucial element
of modern solvers. Indeed, we have the obvious physical restrictions that v < c,
which means Γ ≥ 1, while p > 0, ρ > 0, and we also want the electric field density
E2 > 0, whereE2 ∼ B2v2−(v ·B)2. The latter is obviously true analytically, but
numerical precision is finite. All these constraints must be consistent with τH > 0
and D ≥ ρ, and it helps to take explicit account of the numerical accuracy with
which factors like 1 − v2/c2 can actually be distinguished from zero. This can be
done, by building in an appropriate “upper limit” on velocities, up to which con-
versions are computationally feasible. Similar tricks can be employed to guarantee
consistent conversions from primitive to conservative variables, while ensuring a
lower limit on attainable densities and pressures. This is similar to classical MHD,
where this conversion is algebraic and trivial, but still requires that all contributions
to total energyH are positive separately, which may introduce numerical inaccura-
cies in regions of very low plasma beta. This problem returns in augmented form in
relativistic settings, since rest mass, internal energy, kinetic energy, magnetic and
electric field densities all may dominate in localized regions of the computational
domain.
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When using finite volume like treatments, we discussed in Chapter 19 how lim-
ited reconstructions from cell center to cell edge are needed for raising the spatial
order of accuracy, while avoiding spurious oscillations. This can still be used in
relativistic MHD, but it then pays off to perform the limiting on quantities without
physical bounds: one uses in practice the spatial part of the four-velocity Uα, i.e.
Γv to perform reconstructions, instead of the velocity itself v, which must obey
v < c. Similarly, when computing the roots of the quartic polynomial (21.141),
which are needed for all shock-capturing methods exploiting knowledge of the
characteristic speeds (even TVDLF which uses the maximal speed alone), one can
better solve for Γ(λ − vi), or some other suitably scaled variable. In [457], a
Laguerre method was then used to compute all four roots of this polynomial accu-
rately. Also, this process is a non-trivial exercise in handling numerical accuracy,
since its roots λ may come very close to each other and to 1 (the light speed in the
scaled system).

Finally, just as in the non-relativistic case, the magnetic field must be solenoidal.
For multi-dimensional computations, a suitable strategy must therefore be incor-
porated. It is noteworthy that the constrained transport idea [130] was from the
beginning designed for (even general) relativistic MHD computations. Many vari-
ants now exist, and some have been applied in relativistic applications. On the
other hand, since the induction equation appears identical to the non-relativistic
case, also the more straightforward source terms treatments (Powell source, or
parabolic cleaning, both limited to the induction equation) have been used suc-
cessfully [456]. In practice, the schemes in use today may still benefit from further
algorithmic improvements, although robust relativistic MHD solvers exist in mod-
ern code developments [456, 333, 157].

21.3.2 Example astrophysical applications

The current suite of shock-capturing, high resolution, schemes for relativistic MHD
has already been applied to a fair variety of astrophysical problems. The study of
pulsar wind nebulae is one such problem, where computational relativistic MHD
has led to novel insights. In the particular case of the Crab nebula, recent observa-
tions revealed a peculiar jet–torus structure at the center (see Figure 21.10). This
precise shaping of the circum-pulsar environment has been shown to relate to the
shock-governed interaction of an anisotropic, toroidally magnetized, relativistic
pulsar wind, interacting with the slowly expanding ejecta of the supernova [285]
which created the pulsar. A separate research line focuses on dynamics in the
vicinity of massive black holes to unravel the (general) relativistic processes, which
must play a role in their accretion disks, and in the launch and acceleration condi-
tions for Active Galactic Nuclei jets. In what follows, we present one example of
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special relativistic jet modeling, which investigates the shock-dominated processes
in AGN jets at large distance from their source, such that a flat space-time descrip-
tion can be adopted. Such studies then address the possibility of knot formation in
relativistic jet beams, deceleration processes when encountering denser interstellar
medium regions, and morphological characteristics of magnetized jets, depending
on the prevailing jet beam parameters.

Fig. 21.10 Crab nebula. (From website nssdc.gsfc.nasa.gov/image/astro/
hst southern crab 9332.jpg.)

Relativistic magnetized jet modeling The study of jet propagation and morphol-
ogy using numerical simulations was pioneered by van Putten [466], who simulated
impulsively injected toroidally magnetized jets, propagating in uniform unmagne-
tized environments. Using axi-symmetry, fairly mildly relativistic (Lorentz factor
2.46), light supersonic jets were shown to develop a Mach disk (shock), where the
beam matter gets thermalized and subsequently splits into a backflow surround-
ing the jet beam (cocoon) and a recollimated nose cone. In this nose cone, a new
propagating Mach disk develops, and a nozzle flow configuration was observed to
form in between the stagnation point ahead of the first Mach disk and the prop-
agating disk. The toroidal magnetic field pinched the beam and shocked beam
matter, and led to distinct hot spots of compressed material. The simulation ex-
ploited 256 × 2048 grid points, and gave detailed insight into the early stages of
relativistic jet propagation.

In a follow-up study, Komissarov [284] demonstrated that the morphology of
light, highly relativistic, jets with purely toroidal magnetic fields largely depends
on two characteristic parameters. While the initial magnetization of the beam is
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Fig. 21.11 An AMRVAC reproduction of the Poynting flux dominated jet with
purely toroidal field from Komissarov [284] (left panel), demonstrating the for-
mation of a magnetically pinched nose cone. Right panel: a purely poloidal field
case as in Leismann et al. [300], showing no nose cone and rich cocoon dynamics.

certainly important, and expressed quantitatively as a reciprocal plasma beta pa-
rameter

βr = pmag/p , (21.166)

another defining parameter is the ratio of magnetic to rest mass energy density,

σ = 2pmag/ρ . (21.167)

Conspicuous nose cones form when strongly magnetized (high βr), Poynting flux
dominated (high σ) inlet conditions prevail, in which case a strong toroidal field
accumulates in the region of shocked beam plasma ahead of the Mach disk, where
magnetic pinching causes the extended “nose”. This was further explained using
the relations for perpendicular (only Bφ and vz components) shocks in relativis-
tic MHD. An example is shown in Figure 21.11, which is a reproduction of the
Komissarov result using AMRVAC [456]. In [284], only two jets were simulated,
both at Lorentz factor 10, but differing mainly in their inlet σ value. The second
jet was kinetic energy dominated, and formed an extensive turbulent cocoon from
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Fig. 21.12 A helically magnetized relativistic jet, taken from Keppens et al. [259],
where a high axial beam Lorentz factor of 22 prevails.

the backflows generated at the leading Mach disk. This backflow surrounded the
beam with toroidal field, aiding in the jet-cocoon confinement.

A more comprehensive study of relativistic jet morphologies was more recently
presented by Leismann et al. [300]. These authors varied the magnetic field topol-
ogy as well, still restricting the simulations to axi-symmetric conditions and fo-
cused on light relativistic jets, with relatively low Poynting flux contributions (low
σ). The main innovation from this study was the systematic comparison between
purely toroidal magnetic field configurations and purely poloidal field ones. In
the right panel of Figure 21.11, a reproduction of a pure poloidal field model
from [300] with AMRVAC is shown, and it is seen that no nose cone develops,
while rich cocoon structure is evident. For purely toroidal cases with σ > 0.01 and
βr ≥ 1, the nose cone morphologies were once more confirmed.
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A final example, taken from a recent study by Keppens et al. [259], continued
this line of research with the inclusion of helical field topologies. The inlet condi-
tions now showed significant variation in Lorentz factor (from 22 on axis to about 4
at the jet radius, averaging Γ = 7 radially), and systematically explored the case of
kinetic energy dominated jets from toroidal to helical to mostly poloidal magnetic
fields. Using grid-adaptive techniques, it became possible to follow jet propaga-
tion over up to 140 light crossing times of the jet radius, as effective resolutions
of 3200 × 8000 became feasible. Figure 21.12 shows a snapshot of a reference
helical field model, which had an average σ ≈ 0.0064 and βr ≈ 0.29. The figure
quantifies the magnetic pressure and proper density distribution. It was found that
the magnetization of the jet beam, and its helicity, get fairly effectively transported
down the beam, and strong toroidal field regions remain localized in the vortical
patterns shed from the leading Mach disk. The study retained the assumption of
axi-symmetry, and one needs to investigate the fate of truly helically magnetized
relativistic jets in three space dimensions to properly address their overall stability,
propagation and deceleration aspects in scale-encompassing simulations. Given
the computational resources required for such studies, this is a likely area of con-
tinued active research in the decades ahead.

21.4 Literature and exercises

Notes on literature

Relativistic MHD theory

– The monograph by Anile, Relativistic fluids and magnetofluids [8], is still the ref-
erence work on relativistic fluid treatments, with a clear mathematical orientation.
This mathematical rigor is shared with the older work by Lichnerowicz, Relativistic
hydrodynamics and magnetohydrodynamics [307].

Relativistic MHD and numerics

– The (web-based) review article by Martı́ and Müller, ‘Numerical hydrodynamics in
special relativity’ [326], represents an updated account of modern numerical methods
and their applications for relativistic hydrodynamics. Numerical relativistic magneto-
hydrodynamics making use of Riemann solver methodology emerged in earnest with
the work by Komissarov, ‘A Godunov-type scheme for relativistic magnetohydrody-
namics’ [283].

Exercises

[ 21.1 ] Transformation laws for tensors

In this exercise we derive the transformation laws for the components of first rank tensors
(i.e. four-vectors) and second rank tensors within flat space-time.
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– Find, in analogy with (21.11), but now exploiting covariant components and dual
basis vectors, the transformation for covariant components of a four-vector in two
sets of dual basis vectors eα and eα

′
.

– Use the defining relations eα · eβ = δβα, as well as the symmetry in the Lorentz
transformation matrix Lα

′
α , to show that, when these two sets of dual basis vectors

are associated with basis vectors related by eα = Lα
′
α eα′ , they necessarily obey

eα = (L−1)αα′eα
′
.

– Find as well that the Lorentz transformation leaves the components of the Minkowski
metric tensor unchanged, by working out the relations gα′β′ = (L−1)αα′(L−1)ββ′gαβ

and gα
′β′

= Lα
′
α L

β′
β g

αβ . These laws for component transformations apply generally
to any second rank tensor.

[ 21.2 ] Three-velocity addition law

In this exercise, we revisit the three-velocity addition, written in various equivalent forms.

– Work out the velocity addition law given in Eq. (21.29), starting from the four-
velocity formulation in Eq. (21.27). Prove that when only one spatial direction is
involved, the addition law can be written as

u =
v + w

1 + v w/c2
, (21.168)

which clearly reduces to its Galilean u = v+w counterpart for non-relativistic speeds.

– Also verify that we can write Eq. (21.29) as

w‖ =
u‖ − v

1− u‖v/c2 , and w⊥ =
u⊥

Γ
(
1− u‖v/c2

) . (21.169)

by decomposing u = u‖ + u⊥, where u‖ ‖ v.

[ 21.3 ] Relativistic Doppler effect, aberration and beaming for light waves

The transformation formulas from Eq. (21.64) are perhaps best known in their specific
application to light waves in vacuum. Plane wave solutions to the Maxwell equations for
empty space obey k · B = k · E = E · B = 0, have dispersion relation ω2 = k2c2,
and electric and magnetic field (complex) wave amplitude vectors are related by B =
±(n×E)/c and E = ∓c(n×B).

– Using the Lorentz transformation for electromagnetic fields given by Eq. (21.79),
prove that the amplitude of the light waves as observed in frames in relative motion
to each other changes in accord with

(B′)2 = Γ2B2 (1∓ n · v/c)2 . (21.170)

This change in the intensity of the light is referred to as relativistic beaming.

– The relativistic Doppler effect can be written in terms of the frequency ν = ω/2π for
light waves as

ν = ν′Γ [1± (v/c) cosφ′] , (21.171)

where we denote the angle between k′ and v by φ′.
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– Aberration is then also expressed for light waves as

cosφ =
cosφ′ ± v/c

1± (v/c) cosφ′
. (21.172)

Derive all these expressions yourself.

[ 21.4 ] Relativistic hydro shock relations

When discussing the gas dynamic shock relations, we wrote the jump relations (21.67)–
(21.68) out for the shock rest frame (SRF). Find the expressions for the four-vectors Uu,
Ud, Us, l in reference frames in which the upstream gas is at rest (upstream rest frame or
URF), and in which the downstream gas is at rest (downstream rest frame or DRF). Make
a graphical representation of the various reference frames using space-time diagrams as
shown in Fig. 21.5. For simplicity, assume vanishing tangential velocities. Write down
and analyze the shock relations in these reference frames.

[ 21.5 ] Ohm’s law in special relativity

Note that we wrote the four-current as Jα = (cσ, j)T = (cσ, σv)T, where σ is the charge
density.

– Verify the invariant UαJα.
– Find that as a result

Jα + c−2(UβJβ)Uα = 0 . (21.173)

This is actually a simplified form of Ohm’s law in covariant form, where more gener-
ally a right hand side σce

α should be written, with σc the conductivity parameter.
– Find that, instead of j = σv, we must then write

j = σcΓ
[
E + v ×B− vv ·E/c2]+ σv . (21.174)

In the plasma rest frame, we have then indeed j′ = σcE′.

[ 21.6 ] MHD waves dynamics

In this exercise, we expand on the relations between the rest frame expressions for the
characteristic speeds, and the expressions as given in the lab frame. For a more detailed
discussion of the answers to the points below, we refer to [260].

– Show that the Alfvén wave expression (21.139) indeed corresponds with transforming
from the rest frame expression, where the Alfvén phase speed is found from v′2ph =
(B′ · k′)2c2/(ρh+B′2).

– Verify that the expressions for the characteristic speeds from Eq. (21.141) reduce to
their non-relativistic counterparts for Γ → 1. Show that Eq. (21.141) yields the rela-
tivistic hydro result from Eq. (21.63) when the magnetic field vanishes. Furthermore,
check the cold plasma limit where c2g = 0.

– Transform the rest frame expression (21.131) to the lab frame result (21.141). Note
that you will need to combine the phase speed relation given by Eq. (21.65) with the
Lorentz formula (21.79) (in ideal relativistic MHD) for the magnetic field, together
with the wave vector (and hence the wave front normal) relation from Eq. (21.64).



Appendix A

Vectors and coordinates

A.1 Vector identities

A list of the most frequently exploited identities:

a · (b× c) = c · (a× b) = b · (c× a) , (A.1)

a× (b× c) = a · cb− a · bc , (a× b)× c = a · cb− b · c a ; (A.2)

∇×∇Φ = 0 , (A.3)

∇ · (∇× a) = 0 , (A.4)

∇× (∇× a) = ∇∇ · a−∇2a ; (A.5)

∇ · (Φa) = a · ∇Φ + Φ∇ · a , (A.6)

∇× (Φa) = ∇Φ× a + Φ∇× a , (A.7)

a× (∇× b) = (∇b) · a− a · ∇b , (A.8)

(a×∇)× b = (∇b) · a− a∇ · b , (A.9)

∇(a · b) = (∇a) · b + (∇b) · a
= a · ∇b + b · ∇a + a× (∇× b) + b× (∇× a) , (A.10)

∇ · (ab) = a · ∇b + b∇ · a , (A.11)

∇ · (a× b) = b · ∇ × a− a · ∇ × b , (A.12)

∇× (a× b) = ∇ · (ba− ab)

= a∇ · b + b · ∇a− b∇ · a− a · ∇b ; (A.13)

591
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∇ · a dτ =

∫
©
∫

a · n dσ (Gauss) , (A.14)

a→ a× c(onst) ⇒
∫∫∫
∇× a dτ =

∫
©
∫

n× a dσ , (A.15)

a→ Φ c(onst) ⇒
∫∫∫
∇Φ dτ =

∫
©
∫

Φn dσ , (A.16)

a→ Φ∇Ψ−Ψ∇Φ ⇒∫∫∫
(Φ∇2Ψ−Ψ∇2Φ) dτ =

∫
©
∫

(Φ∇Ψ−Ψ∇Φ) · n dσ (Green) ;
(A.17)∫∫

(∇× a) · n dσ =
∮

a · dl (Stokes) , (A.18)

a→ a× c(onst) ⇒
∫∫

(n×∇)× a dσ =
∮
dl× a , (A.19)

a→ Φ c(onst) ⇒
∫∫

n×∇Φ dσ =
∮

Φ dl . (A.20)

A.2 Vector expressions in orthogonal coordinates

Considering the position vector as a function of orthogonal coordinates xi ,

r = r(x1, x2, x3) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = x(x1, x2, x3)

y = y(x1, x2, x3)

z = z(x1, x2, x3)

, (A.21)

the following geometric quantities are generated:

hi ≡ |∂r/∂xi| (scale factors), (A.22)

ei ≡ (1/hi) ∂r/∂xi , ei · ej = δij (dimensionless unit vectors), (A.23)

d� =
√∑

i (hidxi)
2 (line element), (A.24)

dτ = h1h2h3 dx1dx2dx3 (volume element). (A.25)

Vector representation:

V =
∑
i V̂i ei (V̂i – physical components, same dimension as V) . (A.26)
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Products:

A ·B =
∑
i ÂiB̂i (inner product), (A.27)

A×B =
∑
i

∑
j

∑
k εijkÂjB̂j ei (vector product), (A.28)

εijk ≡
{

1 if ijk even permutation of 123
−1 if ijk odd permutation of 123

0 otherwise
(permutation symbol), (A.29)

εijkεilm = δjlδkm − δjmδkl . (A.30)

Differential operators:

∇ψ =
∑ 1

hi

∂ψ

∂xi
ei , (A.31)

∇2ψ =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂ψ

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂ψ

∂x2

)

+
∂

∂x3

(
h1h2

h3

∂ψ

∂x3

)]
, (A.32)

∇ ·A =
1

h1h2h3

[
∂

∂x1
(h2h3Â1) +

∂

∂x2
(h1h3Â2) +

∂

∂x3
(h1h2Â3)

]
, (A.33)

∇×A =
1

h2h3

[
∂

∂x2
(h3Â3)− ∂

∂x3
(h2Â2)

]
e1

+
1

h1h3

[
∂

∂x3
(h1Â1)− ∂

∂x1
(h3Â3)

]
e2

+
1

h1h2

[
∂

∂x1
(h2Â2)− ∂

∂x2
(h1Â1)

]
e3 . (A.34)

Derivatives of the unit vectors:

∂e1

∂x1
= − 1

h2

∂h1

∂x2
e2 − 1

h3

∂h1

∂x3
e3 ,

∂e2

∂x1
=

1
h2

∂h1

∂x2
e1 ,

∂e3

∂x1
=

1
h3

∂h1

∂x3
e1 ,

∂e1

∂x2
=

1
h1

∂h2

∂x1
e2 ,

∂e2

∂x2
= − 1

h1

∂h2

∂x1
e1 − 1

h3

∂h2

∂x3
e3 ,

∂e3

∂x2
=

1
h3

∂h2

∂x3
e2 ,

∂e1

∂x3
=

1
h1

∂h3

∂x1
e3 ,

∂e2

∂x3
=

1
h2

∂h3

∂x2
e3 ,

∂e3

∂x3
= − 1

h1

∂h3

∂x1
e1 − 1

h2

∂h3

∂x2
e2 .

(A.35)
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Hence,

A · ∇B =
[
Â1

h1

(
∂B̂1

∂x1
+
∂h1

∂x2

B̂2

h2
+
∂h1

∂x3

B̂3

h3

)
+
Â2

h2

(
∂B̂1

∂x2
− ∂h2

∂x1

B̂2

h1

)

+
Â3

h3

(
∂B̂1

∂x3
− ∂h3

∂x1

B̂3

h1

)]
e1

+
[
Â1

h1

(
∂B̂2

∂x1
− ∂h1

∂x2

B̂1

h2

)
+
Â2

h2

(
∂B̂2

∂x2
+
∂h2

∂x1

B̂1

h1
+
∂h2

∂x3

B̂3

h3

)

+
Â3

h3

(
∂B̂2

∂x3
− ∂h3

∂x2

B̂3

h2

)]
e2

+
[
Â1

h1

(
∂B̂3

∂x1
− ∂h1

∂x3

B̂1

h3

)
+
Â2

h2

(
∂B̂3

∂x2
− ∂h2

∂x3

B̂2

h3

)

+
Â3

h3

(
∂B̂3

∂x3
+
∂h3

∂x1

B̂1

h1
+
∂h3

∂x2

B̂2

h2

)]
e3 .

(A.36)

� Notation The awkward hat, used until here to avoid conflict with the covariant com-
ponents of non-orthogonal coordinate systems (Section A.3), is dropped in the explicit
expressions for the different coordinate systems below by writing Axi

instead of Âi . �

A.2.1 Cartesian coordinates (x, y, z )

x ≡ x1 , y ≡ x2 , z ≡ x3 ⇒ h1 = h2 = h3 = 1 . (A.37)

∇ψ =
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez , (A.38)

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
, (A.39)

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

, (A.40)

∇×A =
(
∂Az
∂y
− ∂Ay

∂z

)
ex +

(
∂Ax
∂z
− ∂Az

∂x

)
ey +

(
∂Ay
∂x
− ∂Ax

∂y

)
ez .

(A.41)

� Note The vector identities of Section A.1, in particular the complicated ones involv-
ing vector products and curls, are most easily derived in Cartesian coordinates, exploiting
Eqs. (A.31)–(A.36) with hi = 1 (see, e.g., Goldston & Rutherford [185], p. 481). �
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A.2.2 Cylindrical coordinates (r, θ, z )
(Fig. A.1)

Scale factors and derivatives of the unit vectors:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = r cos θ

y = r sin θ

z = z

⇒ h1 = 1 , h2 = r , h3 = 1 ,

(A.42)

∂er
∂θ

= eθ ,
∂eθ
∂θ

= −er (only derivatives �= 0) .

(A.43)

z

rθx

y

Fig. A.1
Differential operators:

∇ψ =
∂ψ

∂r
er +

1
r

∂ψ

∂θ
eθ +

∂ψ

∂z
ez , (A.44)

∇2ψ =
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
, (A.45)

∇ ·A =
1
r

∂ (rAr)
∂r

+
1
r

∂Aθ
∂θ

+
∂Az
∂z

, (A.46)

∇×A =
(

1
r

∂Az
∂θ
− ∂Aθ

∂z

)
er

+
(
∂Ar
∂z
− ∂Az

∂r

)
eθ +

(
1
r

∂(rAθ)
∂r

− 1
r

∂Ar
∂θ

)
ez , (A.47)

∇2A =
(
∇2Ar − 1

r2
Ar − 2

r2
∂Aθ
∂θ

)
er

+
(
∇2Aθ − 1

r2
Aθ +

2
r2
∂Ar
∂θ

)
eθ +∇2Az ez , (A.48)

∇×∇×A =
[
− 1
r2
∂2Ar
∂θ2

− ∂2Ar
∂z2

+
1
r2
∂2(rAθ)
∂θ ∂r

+
∂2Az
∂z∂r

]
er

+
[
∂

∂r

(
1
r

∂Ar
∂θ

)
− ∂

∂r

(
1
r

∂(rAθ)
∂r

)
− ∂2Aθ

∂z2
+

1
r

∂2Az
∂z∂θ

]
eθ

+
[
1
r

∂

∂r

(
r
∂Ar
∂z

)
+

1
r

∂2Aθ
∂θ∂z

− 1
r

∂

∂r

(
r
∂Az
∂r

)
− 1
r2
∂2Az
∂θ2

]
ez ,

(A.49)
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A · ∇B =
[
Ar
∂Br
∂r

+
Aθ
r

(
∂Br
∂θ
−Bθ

)
+Az

∂Br
∂z

]
er

+
[
Ar
∂Bθ
∂r

+
Aθ
r

(
Br +

∂Bθ
∂θ

)
+Az

∂Bθ
∂z

]
eθ

+
[
Ar
∂Bz
∂r

+
Aθ
r

∂Bz
∂θ

+Az
∂Bz
∂z

]
ez . (A.50)

A.2.3 Spherical coordinates (r, θ, φ)
(Fig. A.2)

Scale factors and derivatives of the unit vectors:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = R cosφ , R = r sin θ

y = R sinφ

z = r cos θ

⇒ h1 = 1 , h2 = r , h3 = r sin θ . (A.51)

z

r
θ

x

y

φ
R

Fig. A.2∂er
∂θ

= eθ ,
∂eθ
∂θ

= −er ,

∂er
∂φ

= sin θ eφ ,
∂eθ
∂φ

= cos θ eφ ,
∂eφ
∂φ

= − sin θ er − cos θ eθ . (A.52)

Differential operators:

∇ψ =
∂ψ

∂r
er +

1
r

∂ψ

∂θ
eθ +

1
r sin θ

∂ψ

∂φ
eφ , (A.53)

∇2ψ =
1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
, (A.54)

∇ ·A =
1
r2

∂

∂r
(r2Ar) +

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂Aφ
∂φ

, (A.55)

∇×A =
1

r sin θ

[
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

]
er

+
1
r

[
1

sin θ
∂Ar
∂φ
− ∂

∂r
(rAφ)

]
eθ +

1
r

[
∂

∂r
(rAθ)− ∂Ar

∂θ

]
eφ ,

(A.56)
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∇2A =
[
(∇2Ar)− 2

r2
Ar − 2

r2 sin θ
∂

∂θ
(sin θAθ)− 2

r2 sin θ
∂Aφ
∂φ

]
er

+
[
(∇2Aθ) +

2
r2
∂Ar
∂θ
− 1
r2 sin2 θ

Aθ − 2 cos θ
r2 sin2 θ

∂Aφ
∂φ

]
eθ

+
[
(∇2Aφ) +

2
r2 sin θ

∂Ar
∂φ

+
2 cos θ
r2 sin2 θ

∂Aθ
∂φ
− 1
r2 sin2 θ

Aφ

]
eφ ,

(A.57)

∇×∇×A =
1

r2 sin θ

[
− ∂

∂θ

(
sin θ

∂Ar
∂θ

)
− 1

sin θ
∂2Ar
∂φ2

+
∂

∂θ

(
sin θ

∂(rAθ)
∂r

)
+
∂2(rAφ)
∂φ ∂r

]
er

+
1
r2

[
r
∂2Ar
∂r∂θ

− ∂

∂r

(
r2
∂Aθ
∂r

)
− 1

sin2 θ

∂2Aθ
∂φ2

+
1

sin2 θ

∂2(sin θAφ)
∂φ ∂θ

]
eθ

+
1
r2

[
r

sin θ
∂2Ar
∂r∂φ

+
∂

∂θ

(
1

sin θ
∂Aθ
∂φ

)

− ∂

∂r

(
r2
∂Aφ
∂r

)
− ∂

∂θ

(
1

sin θ
∂(sin θAφ)

∂θ

)]
eφ ,

(A.58)

A · ∇B =
[
Ar
∂Br
∂r

+
Aθ
r

(
∂Br
∂θ
−Bθ

)
+
Aφ
r

(
1

sin θ
∂Br
∂φ
−Bφ

)]
er

+
[
Ar
∂Bθ
∂r

+
Aθ
r

(
Br +

∂Bθ
∂θ

)
+
Aφ
r

(
1

sin θ
∂Bθ
∂φ
− cot θ Bφ

)]
eθ

+
[
Ar
∂Bφ
∂r

+
Aθ
r

∂Bφ
∂θ

+
Aφ
r

(
Br + cot θ Bθ +

1
sin θ

∂Bφ
∂φ

)]
eφ .

(A.59)

A.2.4 Cylindrical coordinates for toroidal problems (R, Z, ϕ)
(Fig. A.3)

These coordinates are an intermediate step to the toroidal coordinates (ϕ ignorable)
of Sections A.2.5–A.2.7 and A.3.1, where R and Z provide Cartesian coordinates
of the poloidal plane. From now on, we exploit capitals X , Y , Z for the Cartesian
coordinates to enable later use of the lower case x and y as scaled coordinates in
the poloidal plane. Scale factors and unit vector derivatives then become:
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x → X = R sinϕ ,

y → Y = R cosϕ ,

z → Z

⇒ h1 = 1 , h2 = 1 , h3 = R . (A.60)

∂eR
∂ϕ

= eϕ ,
∂eϕ
∂ϕ

= −eR . (A.61)

RX

Y
ϕ

Z

Fig. A.3

Differential operators are obtained from Eqs. (A.44)–(A.50) of Section A.2.2 with
the following replacements:

r → R , θ → π/2− ϕ , z → Z ,

∂/∂θ → −∂/∂ϕ , eθ → −eϕ , (A.62)

Ar → AR , Aθ → −Aϕ , Az → AZ , etc .

The crucial difference from ordinary cylindrical coordinates is the order R, Z, ϕ.

A.2.5 Toroidal polar coordinates (r, θ, ϕ)
(Fig. A.4)

Scale factors:⎧⎪⎨⎪⎩
X = R sinϕ , R = R(r, θ) = R0 + r cos θ

Y = R cosϕ

Z = r sin θ

⇒ h1 = 1 , h2 = r , h3 = R = R0 + r cos θ.
(A.63)

 r

θ
R

 Ro

Z

δ

ϕ

Fig. A.4

These coordinates may be used to describe global toroidal geometrical features,
like vacuum fields outside the plasma, but, since they do not incorporate the shift
of the magnetic axis, they are usually not appropriate to describe toroidal plasma
equilibrium. For that purpose, the Shafranov shifted circle coordinates should be
used; see Section 16.2.2, Eqs. (16.85)–(16.87).
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A.2.6 Toroidal–conformal coordinates (s, t, ϕ)
(Fig. A.5)

Moebius transformation of the poloidal plane,

z = x+ iy ⇒ w = u+ iv :⎧⎪⎨⎪⎩
X = R sinϕ , R = R(r, θ) = R0 + x(u, v)

Y = R cosϕ

Z = y(u, v) ,

s =
√
u2 + v2 , t = arctan(v/u)

⇒ h = h1 = h2 =
1− δ2

1 + 2δs cos t+ δ2s2
,

h3 = R . (A.64)

s = 1 

R

 Ro

Z

δ

t = π 

ϕ

Fig. A.5

These are not flux coordinates, but they can be used to describe toroidal equilibrium
since they do incorporate the shift of the magnetic axis; Section 16.3.3 and [162].

A.2.7 Orthogonal flux coordinates (Ψ,χ,ϕ)
(Fig. A.6)

These coordinates are nearly exclusively used for analytical theory since their ex-
plicit numerical construction suffers from logarithmic singularities in the distribu-
tion of the angle χ for elongated cross-sections. Their exploitation presupposes
the explicit solution of the equilibrium equation for the poloidal flux Ψ and the
construction of a poloidal angle χ such that ∇Ψ · ∇χ = 0 , so that Ψ(R,Z) and
χ(R,Z) are supposed to be known. Formal inversion of these expressions provides
the defining equations of the coordinates:

⎧⎪⎪⎨⎪⎪⎩
X = R(Ψ, χ) sinϕ ,

Y = R(Ψ, χ) cosϕ ,

Z = Z(Ψ, χ)

⇒ h1 =
1

RBp
, h2 = JoBp , h3 = R .

(A.65)

R

 Ro

Z

δ

ψ = 1 

χ = π 

ϕ

Fig. A.6

The index o on Jo distinguishes this Jacobian from that of the non-orthogonal flux
coordinates of Section A.3.1. See also Section 16.1.2, Eqs. (16.16)–(16.19).
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A.3 Vector expressions in non-orthogonal coordinates

Considering the position vector as a function of curvilinear coordinates xi,

r = r(x1, x2, x3) ⇐⇒
⎧⎪⎨⎪⎩
x = x(x1, x2, x3)
y = y(x1, x2, x3)
z = (x1, x2, x3)

, (A.66)

and exploiting the shorthand notation ∂i ≡ ∂/∂xi for derivatives, the following
geometric quantities are generated:

ai ≡ ∂ir , ai ≡ ∇xi , ai · aj = δi
j (basis vectors) , (A.67)

(in general, the basis vectors are not dimensionless!)

gij = ai · aj , gij = ai · aj , gij g
jk = δi

k (metric tensor) , (A.68)

a1 × a2 = J a3 , a1 × a2 =
1
J

a3 (cyclic) , (A.69)

J ≡ ∂(x , y , z )
∂(x1, x2, x3)

≡
∣∣∣∣∣∣
∂1x ∂1y ∂1z

∂2x ∂2y ∂2z

∂3x ∂3y ∂3z

∣∣∣∣∣∣ =
√

det (gij) (Jacobian) , (A.70)

( J > 0 for right-handed coordinate systems, i.e. excluding inversion)

d� =
√
gijdxidxj (line element) , (A.71)

(sum over repeated indices, unless stated otherwise)

dτ = J dx1dx2dx3 (volume element) . (A.72)

Vector representations (Fig A.7):

V = V i ai = Vi ai (V i – contravariant, Vi – covariant) , (A.73)

(in general, these components have non-physical dimensions !)

V i = gijVj , Vi = gijV
j (raising and lowering indices) . (A.74)

� Note For orthogonal coordinates,

gij = (hi)2 δij , hi = |ai| = |ai|−1 ⇒ ei = (hi)−1 ai = hi ai

⇒ V̂i ≡ V · ei = (hi)−1 Vi = hi V
i (not summing over i) . (A.75)

Hence, the hat on the physical components V̂i in Section A.2. �
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V

a1

a1

a2

a2

V2 a2

V1 a1

V1e1
^

V2 e2
^

x2 = const

x1 = const

a1V 1

a2V 2

Fig. A.7 Geometrical representation of covariant (Vi), contravariant (V i) and phys-
ical (V̂i) vector components in two dimensions. (Of course, the choice of the unit
vector e1 ‖ a1 is arbitrary.)

Products:

A ·B = AiB
i = gijA

iBj = AiBi = gijAiBj (inner product) ,
(A.76)

(A×B)i = JεijkA
jBk , (A×B)i =

1
J
εijkAjBk (vector product) ,

(A.77)

with the Levi-Civita symbols

εijk = εijk =

{
1 if ijk is even permutation of 123
−1 if ijk is odd permutation of 123 ,

0 otherwise
(A.78)

εijkεilm = δjl δ
k
m − δjmδkl . (A.79)

� Note (1) The Levi-Civita symbols εijk and εijk are tensor densities since it requires the
Jacobian to turn them into the tensors Jεijk and J−1εijk. Because of the presence of J ,
the latter are further classified as pseudo-tensors since they change sign upon coordinate
inversion (J < 0). Accordingly, the vector product is a pseudo-vector.
(2) Cyclic permutation of indices (123 → 312, etc.) is an even operation in the 3D case,
but in the 4D counterpart (21.90) cyclic permutation (0123→ 3012, etc.) is odd! �

Differential operators:

∇ψ = (∂iψ)ai , (A.80)

∇2ψ =
1
J
∂i(Jgij∂jψ) , (A.81)
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∇ ·A =
1
J
∂i(JAi) , (A.82)

(∇×A)i =
1
J
εijk∂jAk . (A.83)

Derivatives of the basis vectors,

∂iaj = Γkij ak , ∂iak = −Γkij a
j , (A.84)

involve the Christoffel symbols:

Γkij = Γkji ≡ ak · ∂iaj = −aj · ∂iak = 1
2g
kl(∂iglj + ∂jgil − ∂lgij) , (A.85)

∂igjk = gklΓlij + gjlΓlik , ∂ig
jk = −gjlΓkil − gklΓjil , (A.86)

∂iJ = JΓjij . (A.87)

Hence,

(A · ∇B)j = Ai (∂iBj + Γjik B
k) . (A.88)

Coordinate transformations,

xj = xj(x̄1, x̄2, x̄3) ⇒ dxj = αi
jdx̄i , αi

j ≡ ∂xj

∂x̄i
, det(αij) �= 0 ,

(A.89)

involve transformations

āi ≡ ∂r
∂x̄i

= αi
j aj (of the basis) , (A.90)

V j = αi
j V̄ i (of vector components: contragredient) , (A.91)

T kl = αi
kαj

l T̄ ij , etc . (of tensor components) . (A.92)

A.3.1 Non-orthogonal flux coordinates (Ψ,ϑ,ϕ)

As in Section A.2.4, we exploit capitals X , Y , Z for the Cartesian coordinates and
lower case x and y for the normalized coordinates in the poloidal plane:⎧⎪⎪⎨⎪⎪⎩

X = R sinϕ , R = R0 + x(Ψ, ϑ) ,

Y = R cosϕ ,

Z = y(Ψ, ϑ)

(A.93)
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The poloidal coordinate dependence follows from inversion of the equilibrium so-
lution:

equilibrium ⇒
{Ψ = Ψ(x, y)

ϑ = ϑ(x, y)
, inversion ⇒

{x = x(Ψ, ϑ)

y = y(Ψ, ϑ)
. (A.94)

Metric:

gij =

⎛⎝ g11 g12 0
g12 g22 0
0 0 g33

⎞⎠ ,
g11 = (xΨ)2 + (yΨ)2 ,

g12 = xΨ xϑ + yΨ yϑ ,

g22 = (xϑ)2 + (yϑ)2 ,

g33 = R2 = (R0 + x)2 .

(A.95)

Jacobian:

J = (∇Ψ×∇ϑ · ∇ϕ)−1 = R
√
g11g22 − (g12)2 = R (xΨ yϑ − xϑ yΨ) .

(A.96)

For further specification to straight field line coordinates (with Jacobian J ) see
Section 16.1.2, Eqs. (16.20)–(16.26), and the relations of Section 17.1.3.

Notes on literature

Vector expressions and coordinate systems

– NLR Plasma Formulary by Book [58] has been in use for decades by plasma physi-
cists to look up any of the standard formulas of vector analysis, systems of units,
plasma parameters, transport coefficients, etc.

– Flux Coordinates and Magnetic Field Structure by D’haeseleer, Hitchon, Callen &
Shohet [119] is a monograph entirely devoted to magnetic flux geometry, containing
derivations of all coordinate systems in use for 2D and 3D geometries, like Hamada
coordinates [206] (straight field and current lines) and Boozer coordinates [59].

– Plasma Physics and Fusion Energy (Appendix C) by Freidberg [141] has an extensive
derivation of Boozer coordinates and an application to guiding center orbit motion.
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[204] K. Hain and R. Lüst, ‘Zur Stabilität zylinder-symmetrischer
Plasmakonfigurationen mit Volumenströmen’, Z. Naturforsch. 13a (1958),
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parallel shocks, 506, 515
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perpendicular shocks, 506, 515
prograde intermediate shocks, 509, 515
quasi-prograde intermediate shocks, 516
quasi-retrograde intermediate shocks, 516
retrograde intermediate shocks, 509, 514, 515
shock evolutionarity, 515, 528
shock strength, 511
six dual pairs of entropy-allowed shocks and

entropy-forbidden jumps, 520
slow shocks, 505
switch-off fast–intermediate jumps, 524
switch-off shocks, 506
switch-off slow–intermediate shocks, 524
switch-on fast–intermediate shocks, 524
switch-on shocks, 506, 515
switch-on slow–intermediate jumps, 524
time reversal duality, 513, 518

MHD spectroscopy for tokamak plasmas, 303, 349,
350

MHD spectroscopy of galactic plasmas, 12
mixed field line/magnetic surface triad, 312
mode coupling, 382

non-holonomic initial data, 16
non-orthogonal eigenfunctions, 41
nonlinear conservation laws, 408–411

characteristic speeds, 409
characteristic variables, 411
conservative variables, 408
flux Jacobian, 408
generalized Riemann invariants, 411
genuinely nonlinear wave field, 419
Hugoniot locus, 417
linearly degenerate wave field, 419
method of characteristics, 410
overcompressive shock, 418
primitive variables, 408
quasi-linear form, 408
Riemann invariants, 410
simple wave, 410
strictly hyperbolic system, 409
structure coefficient, 419

normal Alfvén Mach number, 501
normal curvature of magnetic field line, 312
numerical methods

adaptive mesh refinement (AMR), 462
alternating direction implicit (ADI), 474
anti-diffusion, 425
approximate Riemann solver, 446
arbitrary Lagrangian–Eulerian (ALE), 470
conservative scheme, 421
dimensional splitting strategy, 455
∇ · B treatments, 455
entropy fix, 448
FCT anti-diffusion coefficient, 426
FCT diffusion coefficient, 426
finite volume method, 430
flux corrected transport (FCT), 425
flux limiter, 426
Gibbs phenomenon, 424
Godunov method, 434

Godunov splitting, 454
high resolution method, 429
HLL solver, 450
HLLC solver, 450
hybrid scheme, 429
hyper-diffusion, 471
Lax–Friedrichs scheme, 421
linear reconstruction, 441
local Lax–Friedrichs method, 441
MacCormack scheme, 422
minmod limiter, 442
monotonicity preserving scheme, 424
monotonized central-difference limiter, 442
pseudo-convergence, 453
pseudo-spectral method, 469
Richtmyer two-step Lax–Wendroff scheme, 422
Roe average, 447
Roe matrix, 447
Roe solver, 446
semi-implicit methods, 475
shock capturing scheme, 430
slope limiting, 442
Strang splitting, 454
total variation diminishing (TVD), 427
TVDLF method, 440

numerical MHD
double umbilic point, 438
quintuple umbilic point, 438
shearing box model, 468
solar magneto-convection, 462, 471
Tanaka’s splitting strategy, 460
triple umbilic point, 438

oscillation theorem C for complex eigenvalues, 91–92
oscillation theorem R for real eigenvalues, 59–64
overstable mode, 22, 52

parallel gradient operator, 308
Picard iteration, 293
Poisson adiabatic, 494
polar plots in de Hoffmann–Teller frame for MHD

shocks, 520–527
poloidal Alfvén Mach number, 359

critical cusp value, 379
poloidal curvature of magnetic surface, 311
poloidal vorticity–current density stream function,

358
predictor–corrector method, 232
pressure-driven p-modes, 64

quadratic eigenvalue problem, 22
quasi-interchange modes, 111
quiescent prominence, 301

rarefaction wave, 418–419
centered simple wave, 419
integral curve, 419

Rayleigh’s circulation criterion, 114
Rayleigh’s discriminant, 114
Rayleigh’s inflection point theorem, 78
Rayleigh–Taylor instabilities for magnetized plasmas,

73–76
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Rayleigh–Taylor instability, 56
relativistic gas dynamic waves

characteristic speeds, 558
entropy waves, 557
Huygens construction for sound waves, 560
linear sound waves, 557
phase and group speed diagrams, 558
shock relations, 560
Taub adiabat, 562
3 + 1 formalism, 556

relativistic gas dynamics
particle number conservation, 552
stress–energy tensor, 552

relativistic jet simulations
kinetic energy dominated jets, 588
nose cone, 586
Poynting flux dominated jets, 586

relativity and electromagnetism
electric four-vector, 565
electromagnetic field tensor, 564
electromagnetic stress–energy, 569
four-current, 566
Lorentz transformation for E and B, 565
magnetic four-vector, 568
Maxwell equations, 564

relativity and thermodynamics
effective polytropic index, 555
entropy, 554, 570
Mathews approximation, 555
polytropic equation of state, 554
relativistic enthalpy, 553
Synge gas, 554

resistive gravitational interchange mode
growth rate, 150
resistive layer width, 150
stability criterion, 150

resistive MHD spectrum, 150–160
Alfvén dispersion equation for homogeneous

incompressible plasma, 157
ideal quasi-mode, 160
spectrum for homogeneous compressible plasma,

157
spectrum for inhomogeneous compressible plasma,

158
resistive normal mode analysis, 135
resistive wall mode, 150–155
Richardson number, 85
Riemann problem for 1D MHD, 435–437

iso-thermal MHD, 443
rigidly rotating incompressible plasmas, 104–112
Runge–Kutta methods, 232

safety factor, 250, 365
saturation of ideal internal kink, 481
scalar conservation law, 415–420

compound wave, 419
convex flux, 419
Godunov theorem, 429
integral form, 430
inviscid Burgers equation, 415
Lax entropy condition, 417

Rankine–Hugoniot relation, 417
rarefaction wave, 418
Riemann problem, 417

scale independence of MHD, 3
Schwarzschild–Suydam stability criterion, 87
self-similar transonic flows, 529
semi-discretization, 231
Seret–Frenet triad for field lines, 311
Shafranov shifted circle approximation, 366
Shakura and Sunyaev α-parameter, 119
slow elliptic flow regime, 366

gravitational interaction coefficient, 371, 387
trans-slow poloidal flow ordering, 371, 377

Soloviev equilibrium, 289–292
solution paths for stationary plasmas, 35–46

Doppler–Coriolis indefinite range, 43
marginal stability transition, 43
path of stable solutions, 37
path of unstable solutions, 37
sloshing energy, 39
solution path topology, 81
solution-averaged Doppler–Coriolis shifted

frequency, 37
space weather, 464
space-time characteristics, 488
special relativity

four-dimensional space-time, 544
four-velocity, 547
length contraction, 546
light-like four-vector, 549
Lorentz boost, 545
Lorentz transformation, 544
Minkowski metric, 548
proper time, 547
relativistic beaming, 589
relativistic Doppler effect, 558
relativistic three-momentum, 550
relativistic wave aberration, 558
space-like four-vector, 549
space-time diagram, 547
space-time event, 545
three-velocity addition, 551
time dilation, 546
time-like four-vector, 549

spectral method
Chebyshev polynomials, 200
collocation approach, 200
Legendre polynomials, 199
non-Galerkin approach, 200
tau approach, 200

spectral theory for stationary plasmas
alternator, 68
alternator for middle path, 69
cluster criteria and local gravitational interchanges,

86
cusp value for shear Alfvén Mach number, 100
Doppler–Coriolis indefinite range, 110
flow continua, 59
forward and backward Alfvén and slow continua,

55, 60, 95
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forward and backward apparent fast and slow
singularities, 96

forward and backward local Doppler shifted Alfvén
and slow frequencies, 54

forward and backward turning point frequencies,
55, 95

generalized Suydam criterion for cylindrical
plasma, 100

gravito-MHD wave equation for plane plasma flow,
52

incompressible limit of spectral equation, 104
local Coriolis shift, 93
local Doppler shift, 50
local Doppler shifted frequency, 50
middle solution path, 68
non-holonomic Eulerian entropy continua, 60
oscillation theorem C for complex eigenvalues, 91
oscillation theorem R for real eigenvalues, 62
shear Alfvén Mach number, 99
solution averaged Doppler–Coriolis shift, 51, 98
sub-paths, 81
transfer of cluster sequences, 102

static tokamak plasmas
Alfvén and slow continuum, 319
spectral variational principle, 318
spectral wave equation, 316

steady-state problem, 179
stellar spin-down rate, 534
stellarator, 261
straight cylinder with elliptical cross-section, 266
straight field line coordinates

Christoffel symbols and curvature expressions, 313
straight tokamak approximation, 256
Sturm–Liouville equation, 178
sub-slow elliptic flow regime, 366

tearing induced by Kelvin–Helmholtz, 169
tearing mode

asymptotic analysis, 139
constant Ψ approximation, 147
Δ′ jump of logarithmic derivative, 148
Furth–Killeen–Rosenbluth approximate solution,

147
growth rate, 148
inner resistive layer, 140
matching of logarithmic derivatives, 145
matching to resistive layer solution, 141
regularity boundary conditions, 145
resistive layer width, 148
scaling of resistive layer equations, 144

tearing mode in incompressible resistive MHD,
138–147

thermodynamical variables, 493
θ-pinch, 256
tokamak, 248
toroidal Alfvén eigenmode (TAE), 325, 347
toroidal bootstrap current, 261
toroidal curvature of magnetic surface, 311
toroidal flow Alfvén eigenmode (TFAE), 349
total toroidal current, 258, 276
trans-slow poloidal flow ordering, 371, 387, 401

transition from ellipticity to hyperbolicity, 366, 370,
489

transonic MHD flows, 529
forbidden flow regimes, 530
limiting line characteristics, 530
Weber–Davis wind solution, 531

transonic transitions, 490
transonically rotating axi-symmetric plasmas, 355
Troyon limit, 334

vector potential, 129, 337
velocity shear, 50
von Neumann method, 226

wave equation for incompressible plasmas, 56
Wesson profiles, 277
WKB analysis, 102

z-pinch, 256
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